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Abstract

Artificial intelligence (AI) systems power the world we live in. Deep neural net-
works (DNNs) are able to solve tasks in an ever-expanding landscape of scenarios, but
our eagerness to apply these powerful models leads us to focus on their performance
and deprioritises our ability to understand them. Current research in the field of ex-
plainable AI tries to bridge this gap by developing various perturbation or gradient-based
explanation techniques. For images, these techniques fail to fully capture and convey
the semantic information needed to elucidate why the model makes the predictions it
does. In this work, we develop a new form of explanation that is radically different in
nature from current explanation methods, such as Grad-CAM. Perception visualization
provides a visual representation of what the DNN perceives in the input image by de-
picting what visual patterns the latent representation corresponds to. Visualizations are
obtained through a reconstruction model that inverts the encoded features, such that the
parameters and predictions of the original models are not modified. Results of our user
study demonstrate that humans can better understand and predict the system’s decisions
when perception visualizations are available, thus easing the debugging and deployment
of deep models as trusted systems.

1 Introduction
Explaining a deep model is an intricate problem that requires balance between soundness
and completeness to be effective in real-world scenarios such as model debugging [15], and
is essential for building trusted systems. Explanations need to succinctly convey the model’s
reasoning and not overwhelm the user. Current explanation techniques such as Grad-CAM
[27] have focused on generating pixel-wise measures of conspicuity, by analysing the effect
each pixel has on the model’s prediction using gradient or perturbation-based analysis [7].
However, these are often uninformative [25], as exemplified in Figure 1. We believe that
explanations should instead carry semantic meaning at a higher level. Thus, we introduce
Perception Visualization (PV), a novel technique to explain the latent semantics of a deep
convolutional neural network (CNN).

PV consists of two components: i) a gradient-based saliency map and ii) a reconstruction
obtained through network inversion. This combination allows PV to show both where the
model is looking and what the model is seeing, in contrast to the vast majority of previous
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Figure 1: Based on saliency maps it is unclear why this image is labelled as a cat rather than
a laundry basket. Grad-CAM [27] explanations are essentially the same for both classes.

techniques that only show where the network is focusing its attention when making a deci-
sion. To the best of our knowledge, ours is the first work producing image explanations by
using a neural network to invert latent representations. Moreover, our work aims at providing
explanations for the diagnostic situation in which a data scientist performs error analysis on
an image classifier, manually inspecting images on which the model performs poorly. Useful
explanations should inform the direction for resolving the fault, such as procuring more train-
ing data from a particular domain. In Figure 2 we see examples of such misclassified images,
and note that the PV for the first image shows that the model is confusing a neon sign for a
television, which indicates a possible lack of training images containing neon signs. Such
a realization could not have been obtained without the help of the perception visualization,
since neon signs aren’t even a class in this problem. In this case, we see that PV explanations
can be employed in a prescriptive manner in order to improve model performance.

PV reveals itself empirically to be particularly effective at explaining incorrect predic-
tions from the model, as shown in Figure 2. We validate PV through a user study, investigat-
ing the users’ ability to guess the model’s predictions when explanations are given. Results
of a survey on circa 100 subjects show that PV is able to help respondents better determine
the predicted class in cases where the model had made an error. We make our code publicly
available at: https://github.com/loris2222/PerceptionVisualization

2 Related Work

Explainable artificial intelligence (XAI) is an emerging field that is experiencing a surge in
research interest. We now discuss XAI techniques as they relate to image classification.

An explanation, in the context of XAI, is a way to present results to a human in under-
standable terms [8]. This definition is purposely vague and includes, for example: textual
descriptions of the reasoning behind the prediction [14], heatmaps indicating the pixels that
most contributed to the result [27], or graphs that match decisions with some knowledge base
[31]. Our explanations are local to a single sample, similarly to what is done in Grad-CAM
[27] and SHAP [17], and differently to works such as LIME [23] and SpRAy [16]. More-
over, PV differs from methodologies that make use of gradient information (e.g. Grad-CAM
[27]) or perturbation analysis (e.g. RISE [22], Score-CAM [30]), in that we use a deep neural
network to reconstruct the semantics of the latent space.
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Figure 2: Misclassified examples and their explanations using Grad-CAM and PV. Explana-
tions given by PV are much more informative and are able to describe the network’s error by
depicting semantic features of the network’s perception. In particular, the three PVs depict:
a rectangular object recalling a TV screen, a black and white object in water recalling a boat,
and an orange shape recalling a bus.

The most prominent techniques to explain images in XAI literature are saliency maps,
which attempt to visualize where the model places its attention in the image. These tech-
niques include class-activation maps [21, 34] and their subsequent improvements [4, 19, 27].
A saliency map is itself an image, usually of the same size as the input, highlighting where
the model focuses its attention. Given a saliency map, an explanation can be constructed
either by superimposition or by masking. In the former case, the saliency map is displayed
with different hues depending on the importance of the region. For the latter, the image is
covered and only regions deemed relevant by the saliency map are shown. A more detailed
description of these practices is provided in the supplementary material.

Other works, which are closer to ours in philosophy, have attempted to directly visualize
what the model sees in the input image rather than simply where it focuses its attention.
Google’s Inceptionism [20] and Simonyan et. al. [28] optimize an input image to maximize
the network’s response to some desired class, and in turn give an intuition of how the model
represents such class. Our work, instead, provides visualizations of the model’s perception
for each image sample. Perhaps the most relevant, HOGgles [29] inverts visual features, most
notably allowing to view images through HOG glasses (HOGgles). This work, however,
relies on feature dictionaries to solve an optimization problem to reconstruct small image
windows. Our work, on the other hand, uses a neural network to decode full images, only
requires optimization during the learning phase, and works on much more complex models.
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Figure 3: An overview of our method and interactions between the models involved. En-
coder E is a truncation of the model M which we want to explain, decoder D is trained
to reconstruct the encoder’s latent representations. From these, we compute Grad-CAM
saliency maps and reconstructions, which are then combined to obtain PV.

3 Perception Visualization
Our core contribution is perception visualization (PV): a novel explainability technique that
makes use of a deep neural network to explain a pre-trained deep neural network. PV visu-
ally displays the input of the model from the model’s point of view, which is that of its latent
representation. PV leverages CNN inversion techniques and displays the resulting recon-
structions in a way that can help users understand whether the model correctly perceived the
input or not. Several works, including [9, 18, 33], propose techniques for reconstructing the
original image from its latent representation. These take ideas from research in autoencoders
[3] and generative adversarial networks (GAN) [11] to improve reconstruction quality. In our
work, we show how network inversion can be used to generate novel explanations, providing
a better insight into the model’s functioning without modifying its performance.

Method: In what follows we describe Perception Visualization for CNN classifiers (Figure
3), which are the most widely used deep neural models for images. Let us denote the trained
CNN we want to explain as:

M : Rw,h,3 → Rn, (1)

which maps RGB images of size (w,h) into a vector of n posterior probabilities. PV is a
class-discriminative explanation that we define, for a class c ∈ {1, . . . ,n} and for an input
image x ∈ Rw,h,3, as a second image pc ∈ Rw,h,3 constructed such that each of its pixels
pc(i, j,k) in position (i, j) of the k-th color channel is defined as:

pc(i, j,k) .
= (1−mc(i, j))+mc(i, j)y(i, j,k) , (2)

where mc ∈ [0,1]w,h,1 is a saliency map for class c and y ∈ Rw,h,3 is the reconstruction ob-
tained through network inversion. In the remainder of this section, we will describe these
two components in detail.

Saliency Map: The saliency map mc ∈ [0,1]w,h,1 is computed from x with respect to a specific
class c. While any saliency map algorithm could in principle be used, we adopt Grad-CAM
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[27] in our experiments. The map depicts where the model is looking, namely which por-
tions of x have influenced the prediction for class c. The saliency map is used to determine
which regions of the reconstruction to show in the PV. By definition (2), all the pixels where
mc(i, j) = 0 are mapped to white pixels in the explanation, while pixels where mc(i, j) = 1
return the corresponding values in the reconstruction, namely y(i, j,k).

Reconstruction: The reconstruction component y ∈ Rw,h,3 of PV is responsible for display-
ing what the model is seeing, and it is obtained by training a network to invert the feature
extraction portion ofM. Starting fromM, we define its submodel E , namely the encoder:

E : Rw,h,3→ Rw̃,h̃,d , (3)

which, given an image x, computes its latent representation z = E(x), z ∈ Rw̃,h̃,d having spa-
tial dimensions (w̃, h̃) and depth d. The encoder is merely a truncation of the original model
which we define to ease the description of our methods. Thus, no network re-training is
required, and the latent representation z computed by E is the same for PV and for inference.

We call the decoder the model that computes the reconstruction, which is instead trained
to restore the original image x from the latent representation z:

D : Rw̃,h̃,d → Rw,h,3. (4)

In this setup, given an input sample x, we define its reconstruction y as:

y =D(E(x)) . (5)

In our experiments we have inverted a pre-trained ResNet-50 [13] model, using as latent
representation the output of its deepest convolutional layer (conv5_block3), which is a tensor
of spatial dimensions [7,7] and depth 2048. Our decoder is therefore a CNN made of blocks
of convolutional layers and transposed convolutions to perform image up-sampling. The
kernel size was set to [3,3] for all layers, and all the layers have leaky ReLU activation with
α = 0.2, except for the output layer which uses a sigmoid activation and the transposed
convolutional layers which are linearly activated. We also perform batch normalization after
each transposed convolution. An overview of our model architecture and further discussion
regarding our design choices are detailed in the supplementary material.

Lastly, we note that while we have defined PV for CNN-based classifiers, our choice was
only guided by the popularity of this kind of models as a benchmark for explainability tech-
niques. Indeed, PV is extensible to any architecture that allows latent space reconstruction
and saliency map computation. This includes, but is not limited to, CNN-based models for
captioning and segmentation. We discuss possible extensions of our work in Section 5.

Decoder Training: We train the decoder to invert latent representations generated by pre-
trained models. The decoder, both during training and inference, has only access to the
embeddings E , which renders reconstructions dependent on the modelM to be explained.
Inspired by recent studies [9], we train D using different terms in the loss function:

L= α1 LMSE + α2 LSSIM + α3 LDSIM , (6)

where αi ≥ 0 i = 1, . . . ,3 are tuning parameters that we force to sum to one to disentangle the
norm of the loss from the learning rate. The components of the loss function are defined in
an attempt to yield reconstructions that are faithful to the latent representation. For the same
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Figure 4: Grad-CAM for class “chair” shows that the model has correctly recognized the
chair at the bottom of the image, but that also the table was part of the region of interest. PV
explains how the network was fooled by reconstructing a second chair in that region.

reason, we do to allow skip connections (such as those of U-nets [24]), as doing so would
enable the decoder to use information from layers further away from the latent representa-
tion. The following losses are for batches of input images X = {xi} of size b, their latent
representations Z = E(X) and their reconstructions Y =D(E(X)).

• Reconstruction Error: The MSE between the input images and the recovered images:

LMSE
.
= ∑

i=1..b
∑
j,k,l
|yi( j,k, l)− xi( j,k, l)|2. (7)

• Structural similarity loss: SSIM [32] is a full reference metric that is widely used in image
restoration, and that has also been used to train CNNs [33]. SSIM measures the similarity
of images from the perspective of perceived change in structural information, and exploits
measures of luminance and contrast. User studies show how SSIM correlates better than
MSE with visual quality assessment [32]. The SSIM loss is obtained by negating the sum of
the SSIM index over each channel of an RGB image:

LSSIM
.
=− ∑

i=1..b
∑

c∈{R,G,B}
SSIMc(xi,yi). (8)

• Deep perceptual SIMilarity loss (DSIM): When training a decoder using only image-
space losses, it is possible that the decoder learns to invert any embedding to the input image,
independently of the correctness of the prediction. The DSIM component counters this effect
by forcing reconstructions and input images to be similar in latent space. This translates in
a similarity between the encoding z = E(x) of the input and the encoding E(y) of the output.
Thus, following Dosovitskiy & Brox [9], we define the DSIM loss as the L2 norm between
the original latent representation and the latent representation of the reconstructed image:

LDSIM
.
= ∑

i=1..b
∑
j,k,l
|E(yi)( j,k, l)− zi( j,k, l)|2 . (9)

We have also run experiments including a Wasserstein GAN [2] loss term, but found that,
due to the very large and sparse nature of the latent space, these were not beneficial in our
case. Our best model achieves similar reconstruction quality as in [9] (model without GAN)
using the hyper-parameter combination α1 = 0.2,α2 = 0.4,α3 = 0.4. We discuss hyper-
parameter tuning in the supplementary material, including the topic of GAN loss terms.

PV as an Explanation: The intuition behind PV is that whenever the model correctly pre-
dicts an output label, the latent features must be consistent with the input. Consequently, the
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Figure 5: Example question from our surveys. Note how the possible answers are the same
for PV and Grad-CAM surveys (the order is randomized in the user’s view).

reconstruction will be similar to the input. Instead, whenever the model makes a mistake,
activations in the latent space are not consistent with the input, and the reconstruction will
semantically resemble those erroneous features, as observed in the PVs of Figure 2.

Another advantage of PV over techniques such as Grad-CAM is that PV can explain
faults in saliency maps even when the prediction is correct, as shown in Figure 4. Indeed,
there are cases where the localization seems to make little sense, despite the correctness of
the model’s prediction. Whenever this happens, PV will provide insight on the network’s
output. The user, looking at the reconstruction, can determine which features of the image
were most difficult for the network to correctly perceive.

Lastly, we mention that, in contrast to saliency maps, PV requires to train an additional
network (D). We argue, however, that this is a small price to pay to overcome the inherent
limitations of plug-and-play explanations, such as those discussed in [25]. Moreover, we
stress that training only involves D, whileM and its performance remain unaltered.

4 Experiments

The main objective of explainability techniques is to make the user understand why the
model provided some output. A best practice to quantitatively assess the effectiveness of an
explainable model is to measure simulatability [1, 8, 12], which means measuring how often
users are able to guess the model’s prediction when given the explanation to be evaluated
(possibly paired with the input). The core of our experiments comes in the form of a survey,
composed of a multiple choice quiz, following in the footsteps of [1]. During the survey, the
participants are asked, given different explanations, to predict the model’s output. To com-
pare with other state-of-the-art explanations, two different surveys have been administered
to different people, one showing PV and the other showing Grad-CAM explanations. Fur-
thermore, we perform additional experiments demonstrating the resilience of PV’s semantic
value to changes in the decoder.

Survey Structure: The structure of the survey is identical for both PV and Grad-CAM,
and is composed of a first portion introducing the explainability technique and of a series
of questions. The first section is meant to help users understand what they are about to see.
Then, a series of 30 input images are shown paired with their explanation, and for each
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Table 1: Aggregated participants’ accuracy at determining the model’s predictions on the 14
questions where the model had predicted incorrectly and the 16 questions where it predicted
correctly for the two explainers: Grad-CAM and PV.

User Accuracy (± standard error)
Model’s prediction is incorrect Model’s prediction is correct

Grad-CAM 8.3% (±1.3%) 95.9% (±0.7%)
PV 35.0% (±3.0%) 75.5% (±2.5%)

of them we ask: “What is the model’s prediction?”. The user can then select one of five
options, amongst which will be the class (or classes) that is actually present in the image
(i.e. the true label) and the class that the model predicts, which will differ when the model
misclassified the sample. The remaining options are chosen randomly. It is important to note
that throughout the survey we do not inform the user whether or not the model has made a
mistake. Figure 5 shows an example question from our surveys. Survey structure, question
images and respondent’s answers are detailed in the supplementary material.

Experiment Details: We run the experiment by applying PV and Grad-CAM on a pre-
trained ResNet-50 [13] model performing transfer learning on the popular PASCAL VOC
[10] dataset, due to its use in other similar works [1], the small number of classes (needed
for non-dispersive surveys), and its multi-label nature (which renders the task more compli-
cated). Question images are uniformly sampled between correctly classified (16 samples),
and incorrectly classified (14 samples). Due to the multi-label classification, we have con-
fined our selection to those images for which the prediction and label set coincided (correctly
classified), and those for which none of the targets were in the prediction set (incorrectly
classified). During the survey, we provide explanations and require answers only for the
top predicted class. For each question, we avoid providing sets of options where the correct
answer is very apparent and the others are clearly wrong. To do this, we select five candi-
date answers for each question, composed of: i) the model’s prediction, ii) three other target
labels for the sample (i.e. the objects actually present in the image), and iii) a “I just can’t
tell” option. In the rare case where there were an excess of true labels, some were dropped,
and likewise when there were insufficient labels, random classes were chosen (from those
in the dataset). The order of answer options was randomized for each question and user.
Additionally, to counteract possible response biases, choices are the same for both surveys.

A web application assigned users to the surveys in a round-robin fashion. Survey partici-
pants were gathered via university mailing lists sent to graduate students enrolled in machine
learning related subjects. We expect participants to be somewhat literate in artificial intelli-
gence. No personally identifying information was collected from participants.

Survey Results: We gathered responses from a total of 98 participants. The two surveys
were administered in a round-robin fashion, therefore, we expected the same number of
responses from the Grad-CAM and the PV surveys. However, responses were uneven: 40
for the PV survey, and 58 for the Grad-CAM survey. As the survey was administered on-line,
we do not know how many people dropped out before the end of the survey, however, this
number is higher for the PV survey, and may be due to the poor reconstruction quality. As a
baseline, we expect random guessing (excluding the “I just can’t tell” option) to score 25%
overall, both on the correct and incorrect subsets. Instead, if the explanations provided were
to be uninformative, we expect users to gather all their information from the original image,
and to predict the model’s output well only when the model made a correct prediction.

Our results (Table 1, Figure 6) show that respondents to the PV survey were better at
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Figure 6: Histograms of participant’s accuracy in terms of the number of times they deter-
mined the models prediction for cases where the model was incorrect in its prediction (left)
and correct in its prediction (right).

determining which class the model was predicting when this made a mistake, case for which
performance improved from 8.3% for Grad-CAM to 35.0% for PV. For samples that were
instead correctly classified, due to the lower visual clarity of PV, Grad-CAM users were
better at determining the predicted class by 95.9% compared to 75.5%.

We used the Mann-Whitney U test to check if there was a statistically significant differ-
ence in accuracy between users of the PV and of the Grad-CAM versions of the survey. For
cases where the model was incorrect, the left tailed test (H1: Acc(Grad-CAM)<Acc(PV))
confirms that the performance improvement achieved by PV is significant (p = 2.3e−11,
Z = −6.58). For cases where the model gave a correct prediction, the finding is in the op-
posite direction: a right tailed test (H1: Acc(Grad-CAM)>Acc(PV)) suggests that, for this
case, Grad-CAM was significantly better (p = 2.45e−11, Z = 6.57).

Overall, the performance improvement seen in cases where the model is wrong is in
line with the objective of providing insight for the purpose of debugging a model, that is,
whenever its predictions are incorrect. For other use-cases, we recommend pairing PV and
Grad-CAM explanations together to leverage their respective stregths. Lastly, these results
suggest that the encoder and decoder are not separate entities, that is, that the decoder has
not merely learned to imitate the input. Indeed, if this were the case, users would not have
been able to correctly predict the model’s output when the input was misclassified.

Invariance to decoder training: Since PVs depend on the result of the decoder training
process, we investigate whether explanations remain consistent under different training con-
ditions. On the one hand, this would verify that the decoder’s output is strongly linked to
M’s latent representation, thus to the network’s perception. On the other hand, this would
ensure practical use of PV in different circumstances, such as that of using a different dataset.

The decoder D used in our previous experiment was trained using the same dataset used
to also train the modelM to be explained (PASCAL VOC). For this experiment, we train a
new decoder by using a dataset composed of a random subset of 8000 ImageNet [26] images
(a sample count very similar to the 8077 VOC images used for trainingM). Since we are
always using a ResNet-50 model to encode images, also ImageNet samples are cropped and
resized to 224×224.

We provide qualitative evaluation of the results in Figure 7, showing that reconstructions
are only marginally altered, and still possess all the key features necessary for explaining
the model’s mistakes. In particular, we note (Figure 7) how features resembling the train in
the first sample remain (even though in a less clear way) also when the decoder is trained
on ImageNet. In the second and fourth samples, the dog features are present also in the
ImageNet trained decoder, and possibly even more clearly in the second sample. Finally, in
the third sample, we see how features pertaining the TV monitor are visible in both decoders.
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Figure 7: Reconstructions remain semantically similar between decoders, even when the
decoder is trained using a different dataset than that used to trainM.

These results suggest that the semantics of the decoder’s reconstructions are preserved
in two successful training runs in different conditions. This, in turn, indicates that PVs are
heavily determined byM’s latent representation, rather than the specific decoder training.
Furthermore, this experiments shows that it is possible to train D using a different dataset
than that used to trainM, and that the two datasets might not even have the same class sets
(as is the case for ImageNet and PASCAL VOC).

5 Conclusions and Future Work

We have introduced Perception Visualization (PV): the first method to provide explanations
by exploiting a neural network to invert latent representations. PV provides semantically
relevant information by learning to visualize the model’s perception. As shown in our exper-
iments, this allows PV to increase the user’s performance in predicting the model’s output
in cases where the model misclassifies a sample, hence giving better insight on the model’s
functioning than what was previously achievable using only saliency maps.

An important future direction consists in improving reconstructions, firstly in terms of
visual clarity, but also in terms of faithfulness to the latent representation. So far, we were not
able to improve reconstruction quality with GANs due to the nature of the space that needs
to be inverted, however, further studies regarding the properties of the latent representations
may allow to overcome this problem. We also plan to investigate class-discriminative de-
coding to provide a broader insight on the model, and exemplar losses to generate prototype-
based reconstructions [5]. We believe that better reconstructions could enable the application
of PV also in medical imaging and in other critical domains.

Other promising directions regard the extension of PV to different tasks and architec-
tures other than classification. For example, class-discriminative decoding could be used to
explain recurrent/transformer networks used for image captioning [6]. In this context, we
would generate sequences of PVs, one for each output token.
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