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Abstract
Tracking the behaviour of livestock enables early detection and thus prevention of

contagious diseases in modern animal farms. Apart from economic gains, this would
reduce the amount of antibiotics used in livestock farming which otherwise enters the
human diet exasperating the epidemic of antibiotic resistance — a leading cause of death.
We could use standard video cameras, available in most modern farms, to monitor live-
stock. However, most computer vision algorithms perform poorly on this task, primarily
because, (i) animals bred in farms look identical, lacking any obvious spatial signature,
(ii) none of the existing trackers are robust for long duration, and (iii) real-world condi-
tions such as changing illumination, frequent occlusion, varying camera angles, and sizes
of the animals make it hard for models to generalize. Given these challenges, we develop
an end-to-end behaviour monitoring system for group-housed pigs to perform simul-
taneous instance level segmentation, tracking, action recognition and re-identification
(STAR) tasks. We present STARFORMER, the first end-to-end multiple-object livestock
monitoring framework that learns instance-level embeddings for grouped pigs through
the use of transformer architecture. For benchmarking, we present PIGTRACE, a care-
fully curated dataset comprising video sequences with instance level bounding box, seg-
mentation, tracking and activity classification of pigs in real indoor farming environment.
Using simultaneous optimization on STAR tasks we show that STARFORMER outper-
forms popular baseline models trained for individual tasks.

1 Introduction
In livestock farming, contagious diseases among animals cause havoc to their well-being
and massive economic damage to the farmer. As a precaution, farms excessively use vet-
erinary antibiotics leading to soil pollution and increased antibiotic resistance in humans
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[50]. To prevent this indiscriminate use of antibiotics, diseases need to be identified at an
early stage. Tracking animal-behaviour (movements and feeding patterns) enables us to do
so [46, 52]. Obvious visible signs of sickness almost always occur when the disease is in
an advanced stage and has already spread to the rest of the herd. Adding to the problem, a
typical farmer has about a second to visually inspect an individual [38]. Thus, continuous
monitoring of animal behaviour to detect anomalies as early as possible is invaluable to live-
stock farming [14]. Although, the techniques discussed in this paper are applicable across
different livestock, we present all our investigation based on pig livestock farming which is
one of the most widespread form of livestock in world 1, and prone to deadly infections.

For mid- or large-size farms continuous tracking of individual animals is not humanly
possible. For instance, only two seconds of daily observation per pig is recommended in
modern swine facilities [3]. Although the use of radio identification devices provide tracking
data on every individual animal, there are several disadvantages to methods that rely on the
use of wearable equipment such as being invasive, prone to damage, expensive and are often
the cause of infections in farm animals [35, 42]. Stationary RGB cameras, already available
in most modern farms, facilitate implementation that is cost effective, non-invasive, and
scalable. Such installations can work virtually in any indoor farming environment and does
not require extensive maintenance. With the advent of precision livestock farming using
computer vision techniques, continuous monitoring of livestock by video surveillance has
been a growing field of study [5, 21, 40].

Several works have been proposed in the recent years focusing on action classification,
detection and segmentation problems in livestock [34, 36, 37, 47]. Most of these works
rarely consider more than one task in a single model. To our knowledge there exists no work
that provides a single robust behaviour analysis model which can perform the STAR tasks i.e.
segmentation, tracking, action recognition and re-identification. We argue that for a complete
computer vision based livestock behaviour monitoring system, an end-to-end framework is
needed which can take into account these STAR tasks simultaneously. The advantage of
such a unified model would be that the learning process for multiple tasks positively affects
each other in building robust and generalizable low-level representations of the image/video,
thereby reducing the error to an extent beyond what can be achieved through individual
training on each task. Based on this hypothesis, we present STARFORMER, an end-to-end
domain-adaptive transformer based model for segmentation, tracking, action recognition and
re-identification (STAR) of livestock in closed environments.

While common tasks like pedestrian detection and object tracking lend themselves well
to pre-trained networks and existing datasets, there exist unique challenges when monitoring
livestock in a video. Pig monitoring in closed farming environment, in particular, poses the
hard computer vision challenges of confusion between different pigs due to visual similarity,
abrupt motions due to aggressive behaviour of pigs, frequent occlusions, huddling of pigs on
top of each other, among others. These issues are seldom seen in traditional video datasets.
Moreover, livestock activities are confined, extremely repetitive and cyclic over time which
makes them different from traditional action datasets. To build robust models that can tackle
the issues outlined above, there is a need to acquire custom datasets and accompanying solu-
tions. Any such dataset should capture the variability in conditions and livestock’s behaviour
must be annotated under the supervision of expert animal scientists.

Transformers [8, 56] have shown great success in a wide range of domains including nat-
ural language [10], images [8], video [45] and audio [51]. In the visual domain, transformers

1http://www.fao.org/faostat/en/
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Figure 1: Example frames and annotations from 3 videos of the PIGTRACE dataset. Each
row corresponds to a video from a different farm, and each column to successive annotated
frames. The colors denote animal actions: green – eating; blue – drinking; red – aggression;
orange – walking/standing; black – inactive. Numbers on the animals are their unique ID.

have achieved promising results on object detection, panoptic segmentation and multi-object
tracking (MOT) [45]. Recently, several Transformer-based tracking approach [30, 55] has
tried to exploit the advantages of the encode-decoder architecture which can encode frame-
level features from a convolutional neural network (CNN) [19] and decodes queries into
bounding boxes associated with identities. We leverage this paradigm by devising an end-
to-end framework using the learned embeddings for performing STAR tasks.

In this paper, we present STARFORMER, a domain-adaptive transformer-based model
for simultaneous segmentation, tracking, action recognition and re-identification (STAR) of
livestock for robust behavioural monitoring in closed environments. Starformer employs
a spatio-temporal contrastive loss term that stresses on learning the intra-object temporal
similarity as well as the inter-object differences. We demonstrate that our formulation of a
multi-objective optimization problem, promoting multi-task assistance during training, en-
riches the feature representations significantly allowing to make clear distinctions between
visually identical objects. For benchmarking, we further present PIGTRACE, a dataset of
30 videos containing multiple pigs to benchmark performance of algorithms for multiple-
object tracking and action recognition in closed environment. Numerical experiments on
PIGTRACE and another large-scale dataset show STARFORMER outperforming the competi-
tive tracking baselines.

2 Related Work
behaviour monitoring for livestocks has been a topic of research over the past two decades
[28], researchers have approached this problem from multitutde of different angles [22].
These include 3D tracking via wearable ultra-wide band (UWB) devices [15, 39], GPS [22,
43], inertial measurement unit (IMU) activity trackers [2, 11, 29, 41] and RFID ear tags [12,
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13, 49]. Although livestock monitoring methods using radio identification devices directly
provide data on individual animals, using wearables have several practical disadvantages
[35]. In contrast, video-based approaches [9, 32] provides cheaper and information-rich
data to identify precisely what each animal is doing at all times. However, lack of robust
approach for discerning identical looking animals and expensive data acquisition makes it
hard to devise a unified vision based livestock monitoring framework.

Visual detection of multiple moving targets with a static camera often begins with seg-
mentation of foreground objects followed by background subtraction. Traditional computer
vision methods such as Mask R-CNN [19] uses top-down approach for performing instance-
level object segmentation and keypoint detection. However, it can not efficiently identify
unique instances if sufficient separation between the target does not exists such as in the case
of group-housed animals. This is because it relies on a priori region proposal, making it
inherently unable to separate objects with significant bounding box overlap [40]. Recently,
several approaches have been proposed for tracking animals in closed environments which
includes bottom-up keypoint detection for cow tracking [4], using three dimensional video
cameras (top view with depth sensors) [22, 25, 44], using Gaussian mixture models for pig
tracking [1] or using a computationally heavy implementation of Faster RNN with bounding
box regression and segmentation masks [53]. Methods exist to identify the lying behaviour
of group-housed pigs as a function of temperature [33] and the movement patterns of indi-
vidual pigs and the entire herd have been extracted through optical flow to detect abnormal
behaviours [17]. Most of these approaches are either computationally expensive during in-
ference, lack robustness to change in environment condition and occlusion or are incapable
of identifying individual animals. Thus, current approaches fail to mitigate the problems of
farmers which includes continuous real-time behaviour mentoring and re-identification of
animals.

3 PIGTRACE Dataset
To encourage researchers to participate and benchmark their approaches against this chal-
lenging task, we provide a unique dataset we call PIGTRACE of videos from real-world
animal farms along with detailed instance-level mask and action annotations.

PIGTRACE consists of around 30 video sequences collected from five different farms in
Europe. Each video is about five seconds long, and we are able to identify typical behaviours
such as eating, drinking, laying, standing and walking in these videos. Seven videos are
annotated at 6 frames-per-second (FPS) resulting in 30 annotated frames per video, and 23
other videos are annotated at 3 FPS resulting in 15 frames per video. In total there are 540
frames in this dataset. The dataset also includes all the annotation which are instance (pig)
mask for each animal, a unique ID associated with each animal in a video along with a label
of the actions the animals are performing. Code will also be provided to ease the use of this
dataset on custom models along with APIs for evaluation metrics.

4 Proposed Method

4.1 STARFORMER

STARFORMER is a multi-task transformer model designed to perform segmentation, track-
ing, action recognition and re-identification (STAR) in livestock by extending the popular
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DETR object detection model [8, 56]. DETR introduced the concept of object queries –
a fixed number of learned positional embeddings. These embeddings can be extracted as
representations for possible object instances in an image. Motivated by this, STARFORMER
extends DETR to learn individual embeddings that are more discerning of an instance via
the STAR multi-task learning.

The base model for STARFORMER is a DETR model with detection and segmentation
heads pretrained on COCO detection and panoptic segmentation dataset. Since pigs are not
part of the 80 classes of the COCO dataset, we trained a new classification head through
re-training the base DETR 2 architecture by unfreezing both its encoder and decoder.

Figure 2 represents the architecture of STARFORMER – a ResNet-101 backbone followed
by a transformer comprising 6 encoder-decoder layers with fixed size positional encodings
(object queries). Based on a priori knowledge of the number of pigs, the transformer module
generates N latent embeddings, each corresponding to an individual pig. The key idea of
STARFORMER is to improve the embeddings by designing four heads, each optimizing a loss
function of the STAR tasks.

For segmentation, STARFORMER uses a multi-head attention layer and a feature pyramid
network (FPN) - style CNN. The detection head consists of a Feed Forward Network (FFN)
that is a 3-layer perceptron with ReLU activation function and a linear projection layer. The
detection head FFN predicts a bounding box, and the linear layer assigns a label to each pig.
Actions are detected by parsing the instance level embeddings through another FFN which
in turn augments the instance level embeddings (output of Decoder), to classify each object
(pigs) into "Active" (standing) or "Inactive" (sitting/lying) classes. As shown in figure 2,
for the tracking head, we devise a spatio-temporal contrastive training approach which aims
to increase the similarity of an individual pig across the temporal direction while making
sure the embeddings for pigs within the same frame are dissimilar. To further enhance these
embeddings for long-term pig re-identification, we extend the spatio-temporal contrastive
training approach on non-continous frames. Frames are taken pairwise from a batch of K
frames, resulting in KC2 possible combinations. Such a training strategy can extract mo-
tion patterns and shape variations in pigs, making the model to implicitly learn individual
representations even for long-term scenarios.

4.2 Multi-objective formulation for embedding enrichment
We discuss here briefly the loss functions associated with the different heads of our STAR-
FORMER network.

Detection loss – following the DETR strategy, we employ the Hungarian loss LD [8],
but with only one class (pigs). This loss primarily combines the classification loss (cross-
entropy loss training the model to classify as pig or background) and the bounding box loss
(linear combination of L1 loss, and generalised IoU loss).

Segmentation loss – we pass the feature embeddings to the instance segmentation head,
and simply use an argmax over the mask scores at each pixel, and assign the corresponding
categories to the resulting masks. The final resolution of the masks has stride of four and
each mask is supervised independently using the DICE/F-1 loss [31] and Focal loss [26].

Spatio-Temporal Contrastive Loss – to ensure that our tracking model works well
against the strong visual similarity among the pigs, we introduce a customized contrastive
loss term that trains the model to better differentiate between the multiple pigs within the

2https://github.com/facebookresearch/detr
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Figure 2: Schematic representation of STARFORMER typically designed for livestock mon-
itoring. The four losses corresponding to the four heads namely detection (LD), segmenta-
tion (LS ), action (LA) (red - active, yellow - inactive) and spatio-temporal contrastive losses
(LSTC) are shown.

same frame, as well as improves the motion flow across subsequent frames for any individ-
ual pig. To compute the spatio-temporal contrastive loss LSTC, we use the embeddings ψ

(i)
t

obtained from the last decoder layer for every individual pig from two closely spaced frames
of the video. Here, i ∈ N denotes the index of the pig, and N denotes the total number of pigs
as well as the number of embeddings per frame. We define LSTC as

LSTC = λsLs +λdsLds, (1)

where, Ls and Lds denote similarity and dissimilarity loss terms, and λs and λds are the
respective weighting terms.

To compute the measures of similarity and dissimilarity, we employ the cosine distance
metric. Further, the similarity loss Ls is computed for each frame individually, and for the
t th frame, it can be stated as

Ls = ∑
i, j

ψ
(i)
t ·ψ( j)

t

∥ψ
(i)
t ∥∥ψ

( j)
t ∥

∀ i, j ∈ {1,2, . . . ,N} and i ̸= j. (2)

To compute Lds, we choose τ subsequent frames of the video and compute the loss for each
frame pair for all N objects or animals. Based on this, we define

Lds =
N

∑
i=1

∑
t1,t2

(
1−

ψ
(i)
t1 ·ψ(i)

t2

∥ψ
(i)
t1 ∥∥ψ

(i)
t2 ∥

)
∀ t1, t2 ∈ τ and t1 ̸= t2. (3)

Action loss. We conjecture that basic activity such as sitting or standing can help in
augmenting the learned embeddings ψ

(i)
t ∀i ∈ N with useful information about a pig’s shape

and size. This is important as one of the most discerning factor in pigs are their shapes and
sizes. We place an action classification head which classifies each pig into 2 classes i.e.
active (standing) or inactive (sitting) using a binary cross entropy loss, and is denoted as LA.
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5 Experiments
STARFORMER uses a ResNet-101 DETR model pre-trained on COCO dataset as backbone.
We train STARFORMER on 280 videos, each consisting of 15 frames in the format stated
in Section 3. During training, the backbone DETR transformer is re-trained by unfreezing
both the encoder and decoder and learning new set of object queries. All experiments are
run on 8 V100 GPUs. Details on optimization can be found in the supplementary material.
We evaluate the performance of STARFORMER on each of the 4 STAR tasks on a validation
set consisting 84 videos, with 15 frames each. In total there are 4200 frames in the training
set and 1260 frames in the validation set. We further provide benchmark scores on the
PIGTRACE dataset. Table 1 summarizes the training, validation and PIGTRACE datasets.

Dataset No. of Videos Average frames Frame Rate (FPS) Average Number of Pigs
PIGTRACE 30 18.6 ± 1.2 6 28.8 ± 8.8
Training 280 15 3 31.3 ± 8.7
Validation 84 15 3 32.1 ± 9.2

Table 1: Table summarizing the PIGTRACE dataset (publicly available) and the training and
validation dataset used.

5.1 Baseline and Evaluation Metrics

To understand and benchmark how different heads of STARFORMER contribute towards its
performance, we introduce multiple baselines and evaluated metrices and we discuss them
below with respect to the 4 tasks.

Segmentation. The performance of STARFORMER on instance level segmentation is com-
pared with state-of-the-art implementation of MaskR-CNN [20] as in [54] and DETR whose
decoder and object queries are fine-tuned using our training dataset. Note that, while evalu-
ating STARFORMER and DETR, we fix the number of predictions to be equal to the number
of pigs in that video. This can be beneficial in livestock setting as the number of animals in
closed environment will remain fixed over the course of a video. This constrains the model
to not allow over or under predicting the number of embeddings. We report the mean average
precision (mAP) over different IoU thresholds, from 0.5 to 0.95 (written as ‘0.5:0.95’) and
also mAP at 0.5 threshold.

Tracking. The segmentation masks obtained from the segmentation models are used to
perform multi-object tracking by matching these masks temporally. Pig tracking is con-
strained such that the number of pigs remains same throughout the video. We use this con-
straint and fix the number of predictions to the number of pigs N in the video which is known
a priori. For each video, we consider only the top N predictions out of all object queries.
Note that, we can also get an initial estimate of the number of pigs. This can be done in
different ways such as by using the mode of the number of masks estimated over a period of
time (burn-in period, before we start the tracking), which we have seen is a robust estimator
of the number of pigs (pig counting). For the first frame, we form a one-to-one mapping
between the ground truth instances with the predicted instances by greedily matching the
pairs with maximum mask IoU at each step. Using this mapping and the mapping between
the predicted instances across time frames, we match the ground truth instance of each frame
with its corresponding predicted instance.
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Although there are many methods available for tracking using segmentation masks or
embeddings [6, 23], but in livestocks monitoring since the animals (there number and in-
stances) are fixed, the camera is not moving and no animal leaves or enters the scene. These
restrictions enables us to perform tracking with a rather straightforward matching strategy.
For a proper analysis of how the tracking module performs, we use 2 different matching al-
gorithms and compare the performances for each. Brief descriptions of these follow below.

1. Matching by mask. Similarity between pigs is computed as IoU of their segmentation
masks. We match the pigs by greedily matching the pair of pigs that exhibit highest
IoU among all the pairs.

2. Matching by Embedding. To compute the extent of similarity between embeddings
corresponding to different pigs, cosine distance measure is used. For every pig being
matched, the distance in the Euclidean space should be less than R.

We propose constrained multi-object tracking and segmentation accuracy (cMOTSA) as
a metric to evaluate problems of tracking with constraints. Due to the constraint of fixed
count of livestock throughout the video, there will be no false negatives (FN) since 1-1
mapping exists now between the ground-truths and the respective instances obtained from
prediction. We hope that this evaluation metric can accurately assess the capability of STAR-
FORMER in learning unique representations for each pig instance. It is defined as the ratio of
the number of true positives TP (matched instance pairs with a mask IoU greater than 0.5)
to all the positive predictions (|TP| + |FP|). False positives (FP) are the instance pairs with a
mask IoU less than or equal to 0.5. Further, we also evaluate the tracking performance using
scMOTSA, a soft variant of cMOTSA defined as scMOTSA = T̃P/(|TP|+ |FP|), where T̃P
denotes soft true positives. See details in the supplementary material.

The standard evaluation metrics of MOTS, as stated in [48], cannot be used for our study
since these metrics require that there exists no overlap between masks of any two objects in
the ground-truth as well as in the predictions. In other words, every pixel is allowed to be
assigned to a maximum of one object. In our dataset, this is not the case and there occur
frequent cases of pigs overlapping. Clearly, this property adds the instances of labelled
occlusions in our dataset. Occlusion among the hard challenges of tracking [18, 24], and we
hope that model training on such datasets could also introduce invariance to a certain extent.

Action Classification. The efficacy of STARFORMER for the action classification task is
evaluated through comparison with a ResNet-101 inspired model (Ac-ResNet) [19] trained
specifically to classify each pig into two classes - inactive (sitting) or active (standing). De-
tails related to this baseline are provided in the supplementary material. We use area under
the curve in receiver operating characteristic (AUC-ROC) curve as the evaluation metric.

Pig Re-Identification. We use Cumulative Matching Characteristics (CMC) scores [16]
to compare re-identification between STARFORMER and DETR. CMC curves are the most
popular evaluation metrics for re-identification methods. CMC-k, also referred as Rank-
k matching accuracy, represents the probability that a correct match appears in the top k
ranked retrieved results. Ranking, in our case is done by calculating embedding distances
between pigs of different frame. CMC top-k accuracy is 1 if correct match appears among
the top k values, else 0. We plot CMC top-k accuracies for discrete inter-frame intervals, i.e,
the time interval between the two frames for which re-identification is being done.
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Method Loss mAP IoU: Match masks Match embeddings
LD LS LA LSTC 0.5:0.95 0.5 cMOTSA scMOTSA cMOTSA scMOTSA

Mask R-CNN - - - - 0.598 0.860 0.617 - - -
DETR - - 0.600 0.866 0.621 0.534 0.604 0.522

STARFORMER - - 0.663 0.920 0.743 0.642 0.714 0.611
STARFORMER - 0.666 0.920 0.792 0.691 0.785 0.676
STARFORMER 0.668 0.920 0.805 0.704 0.793 0.686

Table 2: Performance scores for STARFORMER and other baseline models for the tasks of
segmentation and tracking obtained on validation set of pig livestock.

Method Seg. Track(M) Track(E) Action Re-Identify (CMC)
mAP cMOTSA cMOTSA AUC R1 R5 R10

Ac-ResNet - - - 0.768 - - -
Mask R-CNN 0.627 0.550 - - - - -
DETR 0.639 0.600 0.569 - 0.678 0.846 0.904
STARFORMER 0.690 0.778 0.756 0.985 0.771 0.895 0.939

Table 3: Performance scores obtained for STARFORMER and the baseline models on the 4
STAR tasks. Here mAP is computed for 0.5:0.95. Further, Track(M) and Track(E) corre-
spond to cases of matching by masks and matching my embeddings, respectively, and Action
implies action recognition.

5.2 Results

We discuss here briefly the results of our experiments and present the important insights. Ta-
ble 2 presents the results for segmentation and tracking of pigs on a validation set obtained
with STARFORMER as well as our baseline models. We observe that STARFORMER consis-
tently outperforms the two baseline models for all the evaluation metrices of segmentation
and tracking. While the improvements for segmentation are approximately 6%, absolute im-
provements of up to 20% are observed for the task of segmentation. We also retrained our
network with a Swin-Transformer backbone [27] and achieved a result of 0.76 mAP on the
PIGTRACE dataset for the segmentation task. This was indeed a significant improvement in
segmentation performance. Further, for action classification, STARFORMER obtains an AUC
score of 0.98 compared to 0.742 obtained for the Ac-ResNet baseline. These results clearly
demonstrate that training the model simultaneously over multiple tasks provides accurate
performance over individual tasks themselves.

To further understand the effect of having multiple task heads, we also analyze a few
cases where one of more task heads are removed from the original STARFORMER model.
These cases are also reported in Table 2. As can be seen, the head with spatio-temporal
contrastive loss when removed, has no adverse impact on segmentation performance but
reduces the tracking performance by approximately 1%. No change on segmentation is
expected since contrastive loss primarily focuses on temporal flow of information in our
case, while segmentation treats objects in every frame independent of each other. Similarly,
when removing the action classification loss, tracking performance is significantly affected.

We further studied how well STARFORMER performs for the task of re-identification and
the results are presented in Fig. 3. We see that both DETR as well as STARFORMER perform
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(a) DETR Embeddings (b) STARFORMER Embeddings

Figure 3: CMC curves for pig re-identifcation. Here, inter-frame interval implies the number
of frames to be skipped to test the efficacy of re-identification, and rank k implies the number
of top predictions among which the desired target falls to be deemed as correct.

equally well for large values of k. However, large values of k are not very suited for practical
purposes, and performance at lower values of k is more important. For lower values, we see
that performance of DETR drops significantly for all choices of inter-frame intervals. On
the contrary, STARFORMER is more stable with very small drops for lower values of k. This
implies that for long-term tracking, STARFORMER is expected to be more reliable.

PIGTRACE. We further analyzed the performance of STARFORMER on PIGTRACE dataset
and the results are presented in Table 3. STARFORMER provides significant performance
gains for all evaluation metrics across all the four STAR tasks.

6 Conclusions and Future Scope

In this paper, we presented STARFORMER, a tranformer-based framework for behavioural
monitoring of livestock. Using multi-task optimization, STARFORMER outperforms baseline
methods for the individual tasks by significant margins. We further presented PIGTRACE,
the first benchmark dataset for behavioural monitoring of livestock in closed environment.
We are working towards a semi-automated way of labelling to increase the volume of frames
in the dataset. Initial results using the Swin-Transformer were promising and we continue
to explore using the Swin-Transformer as the backbone for future research. Our current
approach to tracking is rather simple. One clear research direction would be to incorporate
modern data association methods between frames into our framework. For example, the
constraints of livestock farming lends itself to the use of graph based tracking methods [7].
We hope that our proposed method along with the densely annotated dataset will pave the
groundwork for future research and evaluation of methods for livestock monitoring.
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