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Abstract

Recently, Convolutional Neural Networks (CNNs) have been widely used to solve
the illuminant estimation problem and have often led to state-of-the-art results. Stan-
dard approaches operate directly on the input image. In this paper, we argue that this
problem can be decomposed into three channel-wise independent and symmetric sub-
problems and propose a novel CNN-based illumination estimation approach based on
this decomposition. The proposed method substantially reduces the number of parame-
ters needed to solve the task while achieving competitive experimental results compared
to state-of-the-art methods. Furthermore, the practical application of illumination esti-
mation techniques typically requires identifying the extreme error cases. This can be
achieved using an uncertainty estimation technique. In this work, we propose a novel
color constancy uncertainty estimation approach that augments the trained model with
an auxiliary branch which learns to predict the error based on the feature representation.
Intuitively, the model learns which feature combinations are robust and are thus likely
to yield low errors and which combinations result in erroneous estimates. We test this
approach on the proposed method and show that it can indeed be used to avoid several
extreme error cases and, thus, improves the practicality of the proposed technique.

1 Introduction
The human visual system is able to adapt to different lighting conditions to produce invariant
representations of the objects [12]. This ability to remove the illumination effect on the colors
is known as color constancy. Digital cameras try to mimic this ability in their preprocessing
pipelines and try to suppress the light source effect on the colors presented in the scene. The
central objective is to recover the true colors of the objects observed as if the light source
is a neutral illumination. This task in modern cameras is known as the computational color
constancy and several unsupervised [2, 9, 17, 32, 35, 36, 37] and supervised approaches [3, 4,
5, 22, 24, 25, 30, 39] have been proposed to solve it. Achieving an invariant representation
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of the objects regardless of the illuminant is critical for many other vision tasks such as
classification [18, 33] and scene understanding [13, 31, 38, 38].

Formally, RGB values of an image I at every pixel (x,y) are expressed as a function of
the illuminant e(x,y,λ ), the surface reflectance R(x,y,λ ), and the camera sensitivity S(λ ) as
follows:

I(x,y) =
∫

λ

e(x,y,λ )R(x,y,λ )S(λ )dλ , (1)

where λ is the wavelength. Computational color constancy approaches simplify the problem
by assuming a global uniform illuminant in the whole scene:

e = e(x,y) =
∫

λ

e(x,y,λ )S(λ )dλ . (2)

This leads to the following final equation:

I(x,y) = R(x,y)◦ e, (3)

where ◦ is element-wise multiplication. Based on this equation, computational color con-
stancy is typically achieved in a two-step process. In the first step, the global illuminant e
is estimated. Then, in the second step, the original colors R are restored by pixel-wise nor-
malization of the raw image I by the estimated e. As the second step is a straightforward
transformation, the computational color constancy problem is reduced to the first step, i.e.,
illuminant estimation. It can be seen that the latter is an ill-posed problem as it has one
known variable I and two unknowns, e and R. For example, given a yellowish pixel, it is
impossible to know if it is truly a yellow object under white illuminant or a white object
under yellow illuminant.

Recently, Convolutional Neural Network (CNN)-based approaches have been exten-
sively used to solve this problem [5, 20, 22, 27], given their strong abilities to generalize and
to regress directly from the input raw image to the desired target variable without needing
feature extraction or preprocessing. The main problem in using the CNN-based techniques
follows from the lack large datasets as even the largest publicly available datasets contain
only about 7000 images [28]. The models can be categorized either as patch-wise or single-
pass methods. Patch-wise approaches solve the data scarcity problem by training on small
patches of the original image [5, 6, 7, 8, 24]. In the test phase, the patch estimates are aggre-
gated directly using the average [5] or using a weighted combination [8] to obtain the final
estimate. Various other patch-based approaches using different combination techniques have
been proposed [6, 7]. Due to the limited amount of labeled data, an unsupervised pretraining
phase of an autoencoder using auxiliary data was proposed in [24]. The single-pass CNN
models are trained using the full image as input to estimate the illuminant [11, 19, 22]. Dif-
ferent methods have been proposed in the literature also in this category. Some of them rely
on pretrained classic CNN architectures, such as VGG16, to overcome the limited number of
training samples [22, 30]. A GAN-based approach was proposed in [11] and a Bag of Color
Features (BoCF) approach that discards the spatial information as it is not important in the
color constancy context was proposed in [25].

Training large CNNs requires a large amount of data which is not available in the current
illuminant estimation datasets. Moreover, CNNs are typically over-parameterized and, thus,
expensive computationally and in terms of energy and time which restricts their usage in
low computational power devices such as mobile phones. Therefore, reducing the number of
parameters is critical for a deployable color constancy model. Most CNN-based illuminant
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estimation approaches [5, 20, 22] operate directly on the input image I without exploiting
the specificities and characteristics of Eq. (3) defining the problem. We argue that this is
not optimal and show that the problem presented in Eq. (3) can be decomposed channel-
wise into three symmetric independent sub-problems. Based on this decomposition, we
propose a novel CNN-based computational color constancy approach, named Channel-Wise
Color Constancy (CWCC), which leverages the problem characteristics. The introduced
dynamics are not only in full corroboration with the color constancy theory, i.e., Eq. (3),
but they also enable us to substantially reduce the number of the required parameters by
up to 90% while achieving comparable experimental results to previous state-of-the-art ap-
proaches. This makes our approach energy and time-efficient and, thus, suitable for low-cost
devices.

Furthermore, illuminant estimation approaches typically fail for some samples and yield
very high errors. For the practical use of these techniques, it would be important to be able
to identify these extreme error cases to know when the model prediction for a given scene is
not reliable and a different algorithm should be preferred. This can be seen as an uncertainty
estimation problem. Recently, Monte Carlo dropout was proposed in the illuminant estima-
tion context to predict the model uncertainty [27]. However, this requires multiple forward
passes of the same image to produce an uncertainty estimate which is problematic as it fur-
ther increases the energy and time costs of the process. In this work, we propose a novel
computational color constancy uncertainty estimation approach that augments the trained
model with an auxiliary branch that learns to predict the error based on the feature represen-
tation. Intuitively, the model learns which feature combinations are robust and, thus, likely
to yield low errors and which combinations result in erroneous estimates. Our approach is
efficient as it requires only a single forward pass of the input.

To summarize, our main contributions are as follows:

• We propose a channel-wise decomposition of the illuminant estimation problem into
three independent sub-problems.

• We propose a novel CNN-based illuminant estimation approach, called Channel-Wise
Color Constancy (CWCC), which leverages the decomposition enabling us to reduce
the number of parameters up to 90%

• We propose a novel efficient uncertainty estimation approach that augments the trained
model with an auxiliary branch that learns to predict the error based on the feature
representation.

2 Channel-wise color constancy
We note that the problem defined in Eq. (3) can be divided into three problems using the
color channels (r,g,b):

Ir = Rrer, Ig = Rgeg, Ib = Rbeb. (4)

As it can be seen, the system composed of the sub-equations of Eq. (4) is equivalent to the
problem defined in Eq. (3). Moreover, we note that the sub-equations in Eq. (4) are sym-
metric, i.e., the problem defined in each equation is similar. Typically, CNN-based methods
operate directly on the input image and optimize the filters of the first layers jointly without
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exploiting this symmetry in Eq. (3). In this paper, we argue that this might not be optimal,
because it can lead to learning some non-intuitive cross-channel correlations from the scarce
training data. Thus, exploiting the symmetry can improve the performance of the CNN-
based approaches for illuminant estimation. To this end, we propose a channel-wise CNN,
which solves the sub-equation in Eq. (4) disjointly. Moreover, we note that our formulation
of the illuminant estimation task lifts the non-linearly of the problem. In fact, as it can be
seen, in the sub-equations of Eq. (4), the connection between the inputs Ii and the unknown
ei is linear as opposite to the standard formation which contains a non-linear operator, i.e.,
element-wise multiplication.

The proposed model is presented in Figure 1. It is composed of two blocks, the disjoint
block and the merging block. The disjoint block learns to solve each sub-equation separately.
To this end, each color channel has a separate CNN sub-model. Moreover, we exploit the
symmetry of the sub-problems by sharing the weights of ’filter blocks’ of the three sub-
models. In the merging block, we concatenate the outputs of each channel of the first block.
Then, we use a model which acts on this mixed representation and aims to learn the optimal
way to merge the feature maps of each channel and approximate the illuminant e.

Figure 1: The full illustration of the proposed approach

Formally, given an image I = [Ir,Ig,Ib], the outputs of the disjoint block are obtained as
follows:

Fr = f 1
θ (Ir), Fg = f 1

θ (Ig), Fb = f 1
θ (Ib), (5)

where f 1
θ

is a fully convolutional CNN-model with parameters θ . Fr, Fg, and Fb are the
output feature maps for the red, green, blue channels, respectively. Using the same model
f 1
θ
(·) over all the three channels reduces the number of trainable parameters of the total

model. Intuitively, the model learns a feature extractor which is independent of the color
channel. This constraint is inspired by channel-wise symmetry of the illuminant estimation
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task. Next, the illuminant estimate is computed as follows:

e = f 2
θ ′(GAP(Fr _ Fg _ Fb)), (6)

where _ denotes the concatenation of the feature maps of the different channels, GAP is
the global average pooling operator compiling a global feature representation of the input
image. Finally, the predicted illuminant is obtained through a second model, namely f 2

θ ′ ,
with parameters θ ′. This model takes a vector-representation of the scene and learns to
approximate the illuminant and is formed of fully connected layers. The parameters θ and
θ ′ of the inner models f 1 and f 2 can be jointly optimized in an end-to-end matter during the
back-propagation.

For f 1
θ

, we use a SqueezeNet-like [23] fully convolutional architecture composed as fol-
lows: First, we have a convolutional layer with 64 3× 3 kernels, then a 3× 3 maxpooling
layer. Next, we use two fire modules [23] with a size of 64 followed by a 3× 3 maxpool-
ing layer. At the end, we have two fire modules with a size of 128 followed by a 3× 3
maxpooling layer. For the second inner-model of the merging block f 2

θ ′ we use a fully con-
nected model containing a fully connected layer with 40 units and ReLu activation and a
dropout regularizer with rate of 10%. The output of this layer is connected to the output
layer composed of 3 units.

3 Uncertainty estimation block

For the practical use of illuminant estimation techniques, it is important to be able to identify
when the model will fail and when its prediction for a given scene is not reliable. This can
be seen as an uncertainty estimation problem [16, 29]. We propose to augment our trained
illuminant estimation model to predict the model uncertainty. We add an additional branch
linked to the last intermediate layer which aims to learn to predict the error based on the
feature representation. Intuitively, the model learns which feature combinations are robust
and are thus likely to yield low errors and which combinations result in erroneous estimates.
The predicted error can be seen as an uncertainty estimate as it directly quantifies to expected
loss. Similar to an uncertainty measure, it is expected to have high values in the case of high
errors and lower values in the case of low errors. Compared to the existing uncertainty
estimation approaches in color constancy [27], we note that our approach requires only a
single forward pass of the same image to produce an uncertainty estimate, which enables us
to save time and energy. The proposed approach can be incorporated also inside any other
illuminant estimation method to measure uncertainty.

The full illustration of the proposed scheme is presented in Figure 2. Given an input im-
age, we generate two outputs: the main illuminant prediction and the predicted error using
an auxiliary branch. As we have access to the ground-truth illuminations of our training sam-
ples, we can construct a training set for the additional branch by computing the true errors
obtained by the trained illuminant estimation model. While training the uncertainty estima-
tion block, we freeze the prediction part of the network to ensure a ’fixed’ representation of
every input sample and fine-tune only the additional branch of the network. As the topology
of this additional model, we use two fully connected layers with Relu activation of sizes
40 and 15, respectively, and one-dimensional fully connected output layer. This additional
model is trained using the mean square error to approximate the error, namely the Recovery
error errorrecovery.
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4 Experimental evaluation

4.1 Experiments on channel-wise color constancy
In this section, we validate the performance of our proposed approach empirically. To this
end, we use INTEL-TAU dataset [28], which is the largest publicly available dataset for
computational color constancy with 7022 total images split to 10 folds. As in prior works
with this dataset [1, 26, 27], the models are evaluated using 10-fold cross validation and the
average performance is reported.

As error metric, we use the Recovery angular error errorrecovery [21] which measures the
cosine similarity between the ground truth and prediction:

errorrecovery(egt ,eest) = cos−1
(

egteest

‖egt‖‖eest‖

)
(7)

For more quantitative insights, we also use the Reproduction angular error ereproduction [15]
defined as follows:

errorreproduction(egt ,eest) = cos−1
(

r(egt ,eest) o
‖r(egt ,eest)‖

)
, (8)

where egt is the ground truth illumination, eest is the estimated illumination, r(egt ,eest) =
egt/eest is the element-wise division of egt by eest , and o is the normalized unit vector, i.e.,
n = [1/

√
3,1/
√

3,1/
√

3]T . For both error metrics, we report the average of the best 25%,
the average, the median, the trimean, and the average of the worst 25% of the test errors.

In Table 1, we provide the results for the following unsupervised approaches: White-
Patch [34], Grey-World [9], Color-PCA [10], Shades-of-Grey [14], Weighted Grey-Edge
[17], Greyness Index 2019 [32], Color Tiger [2], PCC_Q2 [26], and the method reported in
[37]. For the supervised approaches, we report the results of Fast Fourier Color Constancy
(FFCC) [4] and the following five CNN-based approaches: Fully Convolutional Color Con-
stancy (FC4) [22], Bianco [5], C3AE [24], and BoCF [25] along with our approach CWCC.

As can be seen, the supervised approaches consistently outperform the unsupervised
methods across all metrics. This is due to the fact that unsupervised approaches typically
rely on strong assumptions regarding the content of the scene. Thus, when these assump-
tions are violated, the methods fail. On the contrary, to learning-based approaches where
the illuminant estimation is learned end-to-end without any prior assumptions lead to better
performance.

Figure 2: The full illustration of the proposed uncertainty estimation scheme
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Table 1: Results of benchmark methods on INTEL-TAU dataset using cross-validation pro-
tocol.

errorrecovery errorreproduction
Method Best25% Mean Med. Tri. W.25% Best25% Mean Med. Tri. W.25%
Grey-World 1.0 4.9 3.9 4.1 10.5 1.2 6.1 4.9 5.2 13.0
White-Patch 1.4 9.4 9.1 9.2 17.6 1.8 10.0 9.5 9.8 19.2
Grey Edge 1.0 5.9 4.0 4.6 13.8 1.2 6.8 4.9 5.5 13.5
Grey Edge 2 1.0 6.0 3.9 4.8 14.0 1.2 6.9 4.9 5.6 15.7
Shades-of-Grey 0.9 5.2 3.8 4.3 11.9 1.1 6.3 4.7 5.1 13.9
Cheng et al. 2014 0.7 4.5 3.2 3.5 10.6 0.9 5.5 4.0 4.4 12.7
Weighted GE 0.8 6.1 3.7 4.6 15.1 1.1 6.9 4.5 5.4 16.5
Yang et al. 2015 0.6 3.2 2.2 2.4 7.6 0.7 4.1 2.7 3.1 9.6
Color Tiger 1.0 4.2 2.6 3.2 9.9 1.1 5.3 3.3 4.1 12.7
Greyness Index 0.5 3.9 2.3 2.7 9.8 0.6 4.9 3.0 3.5 12.1
PCC_Q2 0.6 3.9 2.4 2.8 9.6 0.7 5.1 3.5 4.0 11.9
FFCC 0.4 2.4 1.6 1.8 5.6 0.5 3.0 2.1 2.3 7.1
Bianco 0.9 3.5 2.6 2.8 7.4 1.1 4.4 3.4 3.6 9.4
C3AE 0.9 3.4 2.7 2.8 7.0 1.1 3.9 3.3 3.5 8.8
BoCF 0.7 2.4 1.9 2.0 5.1 0.8 3.0 2.3 2.5 6.5
FC4 (VGG16) 0.6 2.2 1.7 1.8 4.7 0.7 2.9 2.2 2.3 6.1
CWCC 0.7 2.4 1.9 2.0 4.9 0.8 3.0 2.3 2.7 6.3

Table 2: Number of parameters of different CNN-based approaches
Method # parameters
Bianco 154k
Fc4(SqueezeNet) 1.9M
FC4 (AlexNet) 3.8M
DS-Net 17.3M
CWCC 155k

The proposed approach CWCC outperforms the state-of-the-art unsupervised approaches.
For example, in terms of the worst 25%, CWCC yields better results compared to the method
in Yang et al. 2015 by 2.7◦. Compared to learning-based approaches, we note that CWCC
outperforms Bianco and C3AE across all metrics and achieves comparable results compared
to FFCC and FC4. In fact compared to FFCC, which is not a CNN-based approach our meth-
ods performs better in the extreme cases. This is clear in terms of the worst 25% metric where
our approach yields 0.7◦ and 0.8◦ improvement in the Recovery and the Reproduction errors,
respectively. Compared to the CNN-based approach FC4, we note that our achieves compet-
itive results across all the metrics while using less than 10% of the number of parameters,
as illustrated in Table 2. This supports our assumptions that channel-wise decomposition is
reasonable in the illuminant estimation context. Figure 3 illustrates some visual result of our
approach on four different test samples from INTEL-TAU. As it can be seen, our approach
generalizes well for different environments.

To further illustrate the usefulness of exploiting the symmetry between the sub-equations
of our problem formulation in Eq. (4) via weight sharing, we perform an ablation study by
comparing the performance of our method CWCC to a variant of our model, called CWCC*,
that uses a different feature extractor for each channel. Formally, the shared model f 1

θ
in

Eq. (5) is replaced as follows:

Fr = f 1
θr
(Ir), Fg = f 1

θg
(Ig), Fb = f 1

θb
(Ib), (9)

The empirical result of this model on INTEL-TAU are presented in Table 3. As can be
seen, even though removing the weight sharing constraint gives the model more flexibility,
the performance of the model declines in all metrics. This is clear in terms of the worst
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Figure 3: Visual results on four samples of INTEL-TAU. From left to right: Input image,
CWCC output, and ground truth image. The corresponding errorrecovery errors from top to
down are: 2.95, 3.53, 1.41, and 5.92.

25%, where CWCC* yields a higher error by 0.5◦ compared to the standard CWCC. This
can be explained by the data scarcity. In fact, removing the weight sharing constraint almost
triples the number of trainable parameters to be optimized. As the training data is limited,
this leads CWCC* to overfit to the training data and to fail to generalize well for the unseen
test samples.

Table 3: Ablation study results of CWCC on INTEL-TAU dataset using cross-validation
protocol.

errorrecovery errorreproduction
Method Best25% Mean Med. Tri. W.25% Best25% Mean Med. Tri. W.25%
CWCC 0.7 2.4 1.9 2.0 4.9 0.8 3.0 2.3 2.7 6.3
CWCC* 0.8 2.7 2.1 2.2 5.4 0.9 3.3 2.6 2.8 6.9

4.2 Experiments on uncertainty estimation
The results for uncertainty estimation on the test samples of the different INTEL-TAU folds
are presented in Figure 4. For most of the samples, the predicted error correlates well with
the true error and the model is able to tell how confident it is about its illuminant prediction.
However, it is worth noting that for some extreme examples, the model is over-confident,
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i.e., predicting low error even though the true errors are high (> 6◦). Eliminating these cases
can be achieved by setting a lower threshold on the predicted loss. For example, we could set
our threshold on when to rely on the model at 2.5◦ predicted error. Then, we can guarantee
with a high probability that the true errors will not exceed 5◦. However, using this strategy
can lead to many false negatives, i.e., deciding not to rely on the model because the predicted
uncertainty is higher than the threshold while the model prediction is actually good. So there
is a trade-off to be made depending on the application.

Figure 4: Predicted loss vs true loss using the proposed approach on the different folds of
INTEL-TAU. The correlation coefficients from fold 0 to 10 are: 0.47, 0.34, 0.24, 0.25, 0.34,
0.30, 0.45, 0.28, 0.33, and 0.31.

5 Conclusion

In this paper, we proposed a channel-wise decomposition of the color constancy problem into
three independent sub-problems. Based on this decomposition, we proposed a novel CNN-
based illuminant estimation approach, called Channel-Wise Color Constancy (CWCC), which
leverages this formulation. The proposed method substantially reduces the number of param-
eters needed to solve the task by up to 90% while achieving competitive experimental results
compared to state-of-the-art methods. Moreover, we proposed a novel efficient color con-
stancy uncertainty estimation approach that augments the trained model with an auxiliary
branch that learns to predict the error based on the feature representation. We showed em-
pirically that the proposed technique can indeed be used to avoid several extreme error cases
and, thus, improves the practicality of the proposed technique. Our future research directions
include improving the uncertainty estimation approach to generalize better on the extreme
cases.
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