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Abstract

3D point cloud segmentation provides a high-level semantic understanding of object
structure that is valuable in applications such as medicine, robotics and self-driving. In
this paper, we propose an Adversarial Graph Convolutional Network for 3D point cloud
segmentation. Many current networks encounter problems such as low segmentation ac-
curacy and high complexities due to their crude network architectures and local feature
aggregation methods. To overcome these problems, we propose a) a graph convolu-
tional network (GCN) in an adversarial learning scheme where a discriminator network
provides a segmentation network with informative information to improve segmentation
accuracy and b) a graph convolution, GeoEdgeConv, as a means of local feature aggre-
gation to improve segmentation accuracy and space and time complexities. By using
an embedding L2 loss as an adversarial loss, the proposed network is learned to reduce
noisy labels by enforcing the consistency between neighbouring labels. Preserving ge-
ometric structures over convolution layers by using both point and relative position fea-
tures, GeoEdgeConv helps learn fine details of complex structures, and thus improves
segmentation accuracy in boundaries and reduces label noise inside a class without in-
creased computational complexity. Experiments on ShapeNet Part demonstrate that our
model outperforms the state-of-the-art (SOTA) with lower complexity and it has strong
prospects in applications requiring low power but high segmentation performance.

1 Introduction

3D point clouds are one of the most popular 3D representations as they can preserve the
original geometric representation with minimal information loss and thus have applicability
in various fields such as orthodontics[30], robotics[13] and self-driving [9].

Recently, there has been considerable success in applying deep learning in many areas
such as computer vision and natural language processing, where it has outperformed tradi-
tional approaches, becoming a trendy area of research. In contrast, deep learning on point
clouds faces several challenges due to their unstructured and irregular nature, precluding the
use of grid convolutions directly onto raw point clouds. While previous research transformed
point clouds into other grid forms such as 3D voxel [17] to overcome this, they are inefficient
and can lead to a loss of geometric information due to quantisation effects.
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PointNet [1], a recently proposed pioneering work, solves the problem by performing
point convolution directly onto raw point clouds while achieving permutation invariance.
Since then, many papers[14, 19, 25, 26] have proposed different point convolutions, but most
of them still provide limited segmentation performance due to their crude learning architec-
tures or local aggregation methods. These works consist of a single segmentation network
that predicts labels for each point independently, and thus it tends to produce inconsistent
labels such as misclassification in boundaries, noisy label within a class or misclassification
of a class. Moreover, their convolution techniques are not designed to aggregate sufficient
local features to learn complex structures, resulting in poor segmentation accuracy. These
limit applicability in many practical tasks, such as orthodontics[30] and self-driving[9], that
require high segmentation performance.

This paper presents a novel neural network approach for 3D point cloud segmentation
to improve segmentation accuracy without extra computational burden. The proposed Ad-
versarial Graph Convolution Network (AGCN) trains two networks, a segmentation network
and a discriminator network, in an adversarial manner where the discriminator network cal-
culates a difference between two respective embedding features of ground truth map and
predicted label map from the segmentation network in its last convolution layer to train the
segmentation network. This adversarial training helps improve the segmentation accuracy as
well as the training stability of segmentation network by enabling the network to learn high
level features of ground truth labels that are smooth and consistent. Additionally, we propose
a new graph convolution, which is a geometry-preserving edge convolution, abbreviated as
GeoEdgeConv. It is designed to aggregate rich local geometric features such as geometric
shape or structure by explicitly incorporating both edge features and relative positions be-
tween a point and neighbouring points. This allows our network to reduce noisy labels as
well as improve segmentation accuracy in boundaries by enabling the network to learn fine-
detailed geometry of complex structures. The proposed network is evaluated on ShapeNet
Part [29], and the results show that it outperforms the SOTA with lower complexity. Our
contributions are:

• We propose a novel neural network approach for 3D point cloud segmentation by using
an adversarial learning scheme underpinning our new AGCN, where unlike previous
works, we present an embedding L2 loss as an adversarial loss to provide more infor-
mative feedback to segmentation network.

• We introduce GeoEdgeConv as local feature aggregation method, which helps our net-
work to efficiently and effectively learn complex local geometric structures. It enables
a large receptive field by adopting dilated convolution and the space and time com-
plexities are reduced by using additional group convolution.

• We propose a smaller AGCN, AGCN-S, that achieves the smallest time complexity and
second lowest space complexity compared to the SOTA, but still outperforming them.

2 Related work

2.1 3D Point Cloud Segmentation
Traditionally, many researchers used hand-crafted features, especially local feature descrip-
tors such as inner-distance [15] and geometry-based features [22, 23] for high-resolution
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tasks such as segmentation. However, these methods are computationally expensive and are
dependent on domain knowledge, being slow and difficult to process large point clouds.

Until [1] was introduced, many approaches transformed point clouds into grid forms such
as images [24] or voxels [17] to apply grid convolutions due to irregular and unordered prop-
erties of points clouds. However, they are constrained by data resolution and can encounter
problems such as quantisation effects, leading to a loss of information. The pioneering work
[1] performs convolution on raw point clouds directly by using permutation invariance mod-
ules such as shared MLP and max-pooling. However, it lacked in capturing local features,
so subsequent studies primarily focused on capturing local features using various methods
such as KNN or ball query. In [14, 26], KNN was used to construct local graphs and calcu-
lated relative point features or positions respectively to extract local features. However, [26]
dynamically updates graphs, increasing the computational cost, and [14] is not permutation
invariant. Many studies [7, 11, 31] developed networks based on [26] by using channel at-
tention, multiple receptive fields or residual connections, respectively, but the performances
were sub-par to SOTA. In [19, 25], ball query was used, which set a fixed size of radius to
create local graphs and select points within the radius. These studies somewhat improved
performance, but they either have a large model size or lack fine-grained segmentation. To
alleviate such problems, [9] focused on sampling strategy to increase inference speed and
used various handcrafted features for rich local feature aggregation, while [6, 33] used trans-
formers, which have a self-attention mechanism to place more weights on valuable features.
However, [9] used a raw point coordinate vector as one of the handcrafted features, lacking
in translation invariance, and [6, 33] have low inductive bias that makes the model to perform
poorly on small size dataset.

2.2 Generative Adversarial Networks

Since [4], there have been many studies applying GANs to different applications. While
many studies[10, 20, 34] focused on improving image generations, some studies[28, 32]
proposed hybrid loss functions where a discriminator network is used to improve segmen-
tation performance. Although there has been very little research that uses GANs for point
cloud segmentation, a few studies such as [30] and [12] proposed adversarial training for
point cloud segmentation. [30] constructed a discriminator inspired from T-Net [1] and fed
statistical data calculated from each segmented tooth into the discriminator to reduce training
time. However, their architectures are inspired from either [14] or [19], lacking in extracting
fine local features. Additionally, as [3] stated, they used binary cross entropy (BCE) for ad-
versarial training, which is not sufficient to train the network in stable and effective manners
as it only provides a single binary prediction. Since then, there has not been any other work
using different adversarial loss functions in 3D point cloud segmentation.

3 Methods

This section will first describe the general architecture of the proposed AGCN model, fol-
lowed by details of training such as adversarial loss and a graph convolution.
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Figure 1: Overall architecture of proposed network

3.1 Architecture
As shown in Figure 1, input point clouds are first fed into the segmentation network, which
outputs a predicted label map. The one-hot encoded label map is concatenated with the input
point clouds as an input for the discriminator. Being trained with BCE loss, the discriminator
network discriminates whether the label map is real or fake. The segmentation network is
trained to minimise a hybrid loss, its own point-wise cross entropy loss and an additional
adversarial loss that is defined as L2 difference between two respective embedding feature
vectors of the ground truth and the predicted label maps in the final convolution layer of the
discriminator. In this way, the two networks are adversarial, and the segmentation network
tries to deceive the discriminator network by predicting outputs that have the similar distri-
bution as the ground truth. As shown in Figure 2, the segmentation network adopts the shape

Figure 2: Proposed segmentation and discriminator networks

of U-Net [21]. In the encoder, point clouds are down-sampled using Density-aware Ran-
dom Sampling (DRS), which is an extension of [5]. Random sampling (RS) can sub-sample
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points quickly, but it may lose important geometric features over sparse region. In contrast,
DRS estimates the density of each point by finding distances of neighbouring points and uses
this distance to weigh each point during random sampling, which has a computational cost
of O(N). The weight of a point can be computed as follows:

Wi = (
k

∑
j=1
‖xi− x j‖2)

n (1)

where k is the number of neighbouring points in KNN, xi and x j are centre and neighbour-
ing point respectively, and n decides how much to focus on the sparse regions to preserve
important geometric information over sparse data. Furthermore, since we compute KNN in
each convolution, there is no need to find the nearest neighbours again, reducing the com-
putational cost significantly. The decoder consists of three components: an up-sampling by
using Inverse Distance Weighted KNN Interpolation, a skip connection with the correspond-
ing feature map from the encoder and GeoEdgeConv.

The discriminator network resembles the encoder part of the segmentation network.
However, EdgeConv[26] is used instead of GeoEdgeConv as point coordinates of the ground
truth and the prediction are the same; using GeoEdgeConv could degrade the discriminating
ability by diluting informative local point features with unnecessary point coordinates.

3.2 Adversarial Loss
Adversarial training helps segmentation network to improve its performance by trying to
reduce the difference between two outputs of the ground truth and predicted label maps in
the discriminator. Typical adversarial learning-based segmentation networks are trained with
two losses, a point-wise loss Lpoint and an adversarial loss Ladv:

LS = Lpoint(S(x;θseg),y)+λLadv(S(x;θseg);x,θdisc) (2)

where x and y are an input and the corresponding label respectively, θseg and θdisc are the
parameters for the segmentation and the discriminator networks respectively, S(x;θseg)) in-
dicates the output from the segmentation, and λ represents the relative importance of the
adversarial loss term. The discriminator network is trained so that the ground truth and
predicted label inputs can be classified as true and fake respectively.

Existing works such as [12, 30] proposed adversarial learning for point cloud segmen-
tation, but they both used BCE loss between the two outputs of the discriminator as an
adversarial loss, resulting in unstable training as well as insufficient segmentation accuracy
with gradient feedback by a single binary prediction based on global average feature of in-
put labels. To overcome this drawback, we propose to use embedding features in the last
convolution layer of the discriminator, which contain richer structural features than the final
output of the input label map. Accordingly, our adversarial loss for the segmentation network
is expressed as follows:

Ladv(ŷ,y;x,θdisc) =
1

B×N×P

B

∑
i=1

N

∑
j=1

P

∑
k=1

(Di jk
emb(y;x,θdisc)−Di jk

emb(ŷ;x,θdisc))
2 (3)

where B is batch size, N is the number of channels, P is the number of points, and Demb(ŷ;x,θdisc)
illustrates an embedding from the discriminator network, given ŷ and x as inputs. We extract
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the embedding features Demb from the final convolution layer of the discriminator and the
discriminator is trained through minimizing the loss LD, which is expressed as follows:

LD = Lbce(D(S(x;θseg);θdisc),0)+Lbce(D(y;θdisc),1) (4)

where the first and second terms denote BCE for the predicted label map from the segmen-
tation network and the ground truth label map respectively.

As the segmentation network is trained so that the high level features of its predicted la-
bels resemble those of the ground truth labels, it will deceive the discriminator. By training
the two networks adversarially, the discriminator will also discriminate the plausible predic-
tion from the segmentation network from the ground truth. Compared with [12, 30], which
learn global average feature of the ground truth labels with BCE, our model improves the
training stability of the networks and the accuracy of label prediction by learning high level
features of the ground truth labels that are smooth and consistent.

Following the method from [2], the optimal value for λ can be estimated automatically
by calculating homoscedastic uncertainty during back-propagation. Hence, the final loss for
our segmentation network becomes:

LS =
1

σ2
1
Lpoint +

1
2σ2

2
Ladv +R(σ) (5)

where each σ indicates the uncertainty of each task and R(σ) = logσ1σ2 is a regularisation
term to prevent the uncertainty parameters from becoming too large.

3.3 GeoEdgeConv

Figure 3: Proposed local feature extraction methods: GeoEdgeConv and GeoEdgeConv-S

To perform convolution onto raw point clouds, it is essential to satisfy permutation in-
variance and to extract local features. Previous works[1, 14, 19, 26] introduced various
approaches to deal with these issues, but they still carry limitations in capturing rich local
features.
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Consider raw point clouds X with n points as {x1...xk...xn} where xk has x,y,z coordi-
nates. DGCNN[26] proposed EdgeConv as a method of local feature aggregation, which can
be expressed as follows:

xnew = max
j:(i, j)⊆E

hθ ( fi, f j− fi) (6)

where E denotes a local neighbourhood point set for convolution, hθ is a nonlinear function
with learnable parameters (e.g. ReLU with MLP) and f j − fi is a relative point feature
between a centre point i and a neighbouring point j.

However, EdgeConv is likely to lose local geometric information if points are down-
sampled in intermediate layers, specially when a large receptive field is set. Eventually the
drawback can result in poor segmentation accuracy such as misclassification in boundaries.
This motivated us to propose GeoEdgeConv, which uses relative point coordinates explicitly
in addition to edge features as point features. The GeoEdgeConv can be expressed as follows:

xnew = max
j:(i, j)⊆E

CA(hθ3(hθ2( fi, f j− fi),hθ1(x j− xi,‖x j− xi‖2))) (7)

where CA denotes channel-wise attention, x j− xi and ‖x j− xi‖2 are relative positions and
the Euclidean distance respectively, and hθ1, hθ2 and hθ3 are mish[18] with shared MLP. By
incorporating the two relative position features, the local geometry can be preserved over the
convolution layers regardless of sub-sampling and the size of receptive field. This advantage
improves segmentation accuracy significantly by enabling the network to learn fine-detailed
geometry of complex structures.

GeoEdgeConv first constructs local graphs using dilated KNN as shown in Fig 3, en-
larging the receptive field with no added computational cost. Then, each local point and
relative position features are fed into shared MLPs, hθ1 and hθ2, to lift the features into
the same number of channels to carry same importance. The outputs are then concatenated
and fed into another MLP to fuse information. A channel-wise attention by squeeze-and-
excitation[8] is added to perform feature recalibration to suppresses unnecessary features
and place more weights on important features, and thus improve the segmentation accuracy.

To design a lighter model, we propose GeoEdgeConv-S, where it uses group convolution
for the shared MLPs, hθ1 and hθ2, with group size= 4 to reduce the model size and complex-
ity as shown in figure 3. The size of a kernel is also halved to k = 8 from 16 to reduce the
computational cost, while the dilation rate is increased to maintain the same receptive field.
The full procedure of GeoEdgeConv is summarised in Algorithm 1.

Algorithm 1 GeoEdgeConv
Input: xpos,x,k,r . position vectors, point features, size of neighbours, dilation rate
Output: Fout
Fc,Fn,Pc,Pn . Centre and neighbouring point features and point coordinates

1: idx← DilatedKNN(xpos,k,r)
2: F,P← x[idx],xpos[idx] . Construct local neighbourhood graphs
3: Fedge,Pgeo← [Fn−Fc,Fc], [Pn−Pc,‖Pn−Pc‖2] . Find edge and relative position features
4: Fedge,Fgeo←MLP(Fedge),MLP(Pgeo) . Lift each feature into same dimension
5: Fout ←CA(MLP([Fedge,Fgeo])) . Fuse the features and feed to the channel attention
6: return Fout

We summarise the uniqueness of our method in comparison with existing methods in
table 1. Among our proposed modules, adversarial loss, features including channel atten-
tion, Dilated KNN and DRS are the modules incorporated to improve the accuracy. Also,
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Group MLP and Dilated KNN reduce space and time complexities and DRS decreases time
complexity.

Model Adversarial Feature Learnable parameter Graph Sampling

PointNet[1] x fi MLP, ReLU x x
PPSAN[12] BCE f j ,xi− x j MLP, ReLU Ball query FPS
DGCNN[26] x fi, f j− fi MLP, LReLU KNN x

RandLA-Net[9] x fi,xi,x j ,xi− x j ,‖xi− x j‖2 MLP, LReLU, SA KNN RS
AGCN Embedding L2 fi, f j− fi,x j− xi,‖x j− xi‖2 Group MLP, Mish, CA DKNN DRS

Table 1: Comparison with existing methods where LReLU denotes Leaky ReLU, SA is
spatial attention and DKNN is dilated KNN

4 Experiments and Results
Our model was trained on NVIDIA Tesla T4 by Adam optimizer with an initial learning
rate of 0.005 and a cosine annealing schedule[16] for 300 epochs. We also used group
normalisation [27] with batch size= 2.

4.1 Dataset

We evaluated AGCN using ShapeNet Part[29], which has 16881 shapes of 16 categories,
where each category has a different number of parts ranging from 2 to 6. The dataset has
raw point clouds in 3-dimensional vectors with labels for each point. For a fair comparison,
we used the same training/test splits as [14, 26], and for each epoch, we augmented the data
by sampling 2048 points randomly using DRS.

4.2 Evaluation on ShapeNet Part

The proposed model was evaluated against the models introduced in Chapter 2 including the
current SOTA [25]. Instance average IoU and class average IoU are used as metrics, where
the former is calculated by the average IoU of every samples and the latter is calculated by
averaging the mean IoU of each object. They are measured in mIoU, which is defined as
mean IoU of each sample.

Table 2 shows that both AGCN and AGCN-S outperform the current SOTA [6, 25] in
both metrics of instance average IoU and class average IoU by large margins with much
lower space complexity. Especially, AGCN performed worse on only 3 out of 16 objects,
Cap, Lamp and Skateboard and achieved exceptional performances in Aeroplane, Bag, Car,
Earphones and Mug, outperforming the SOTA by 1.3 - 2.6 IoU. However, our models per-
formed relatively poorly in Skateboard, ranking 2nd and 4th in the table. Since the number
of points for wheels is very small compared to board, it gives a greater penalty for IoU, if the
predictions made were wrong for wheels, which may have caused the our models to perform
badly.

Although AGCN achieves exceptional performances with very small space complexity,
it has relatively high time complexity. This may limit AGCN in a situation where fast pro-
cessing time is required in low powered devices. To alleviate this, we introduced AGCN-S
employing GeoEdgeConv-S in Chapter 3. Table 2 shows that our AGCN-S model has the
smallest MAC and the second smallest model size, where the model size is only marginally
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Shape/Model POINTNET [1] DGCNN [26] PointCNN [14] KPConv [25] PPSAN [12] PCT [6] AGCN-S AGCN

No. of Parameters 7.9M 1.5M 8.5M 15.0M 1.8M 2.9M 1.7M 2.3M
Model size 35.8MB 6.2MB 32.7MB 56.5MB 22MB - 6.7MB 8.9MB

MAC 4.8G 4.9G 4.5G - 4.9G - 4.4G 20.0G
Instance avg. IoU 83.7 85.2 86.1 86.4 85.2 86.4 87.0 87.9

Class avg. IoU 80.4 82.3 84.5 85.1 82.6 83.1 85.6 86.7
AERO 83.4 84.0 84.1 84.6 82.9 85.0 86.4 87.6
BAG 78.7 83.4 84.4 86.3 82.7 82.4 90.5 92.3
CAP 82.5 86.7 86.0 87.2 86.4 89.0 86.6 87.3
CAR 74.9 77.8 80.8 81.1 78.9 81.2 81.1 82.4

CHAIR 89.6 90.6 90.6 91.1 90.6 91.9 91.6 92.8
EARPHONES 73.0 74.7 79.7 76.5 76.5 71.5 82.3 82.3

GUITAR 91.5 91.2 92.3 92.6 91.0 91.3 93.1 93.4
KNIFE 85.9 87.5 88.4 88.4 85.7 88.1 88.5 89.1
LAMP 80.8 82.8 85.3 82.7 84.3 86.3 85.4 86.2

LAPTOP 95.3 95.7 96.1 96.2 96.1 95.8 96.5 96.5
MOTOR 65.2 66.3 77.2 78.1 74.4 64.6 76.4 80.4

MUG 93.0 94.9 95.3 95.8 95.1 95.8 97.3 97.9
PISTOL 81.2 81.1 84.2 85.4 81.8 83.6 86.8 86.2

ROCKET 57.9 63.5 64.2 69.0 58.2 62.2 67.6 69.0
SKATE BOARD 72.8 74.5 80.0 82.0 75.5 77.6 76.8 80.0

TABLE 80.6 82.6 83.0 83.6 82.2 83.7 83.5 84.4

Table 2: Comparison results on ShapeNet Part against the SOTA

larger than that of the smallest model. These results indicate that our models are ideal for
applications that require high segmentation accuracy in low-powered devices.

4.3 Model Analysis

Table 3 evaluates the effects of modules proposed in this paper. The evaluation shows that

Version Adversarial Convolution Instance Avg. IoU Class Avg. IoU

Baseline x EdgeConv 85.2 83.0
AGCN (No adv.) x GeoEdgeConv 86.3 84.4

AGCN (Full) Embedding L2 GeoEdgeConv 87.9 86.7

Table 3: Effects of the modules on performance

applying GeoEdgeConv to the baseline model with EdgeConv resulted in 1.1 mIoU and 1.4
mIoU gains in the instance average IoU and the class average IoU respectively. The results
exhibit that the relative position features incorporated into GeoEdgeConv played an impor-
tant role in improving the accuracy. The additional application of the adversarial learning
produced 1.6 mIoU and 2.3 mIoU gains from the model with GeoEdgeConv in the instance
average IoU and the class average IoU respectively. They also prove that the proposed ad-
versarial learning affected the accuracy significantly. We can also see that total IoU gain in
the class average are bigger by 0.7 mIoU than that in the instance average. This suggests that
our model is especially effective when there is only small training data available.

Figure 4 shows that the baseline has many incorrect labels, including misclassification on
boundaries and within a class, while AGCN has less errors in general with only few boundary
errors. This demonstrates the effects of using our proposed modules, GeoEdgeConv and the
adversarial loss, where GeoEdgeConv helps reduce boundary errors as well as noisy labels
by providing fine-detailed information of geometric structures and the adversarial training
helps the model to predict more smooth and consistent labels, reducing both boundary and
noise errors. Finally, we performed hypothesis testing on AGCN and the baseline; the p-
value was 1.81e−11, confirming that the improvements are statistically significant.
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Figure 4: Visualisation of segmentation results of different models (From left: Ground truth,
AGCN, AGCN (Baseline), DGCNN, PointNet. From top: Aeroplane, Bag, Earphones,
Rocket)

5 Conclusion

In this paper, we presented a novel neural network approach for point cloud segmentation.
The method of training the GCN in the adversarial learning scheme using an embedding
L2 loss tries to reduce noisy labels by learning high level features of the ground truth labels.
The proposed GeoEdgeConv preserves geometric features over convolution layers by explic-
itly using relative position features in addition to edge features, and also enlarges receptive
field without increase in computational cost by incorporating dilated KNN. Being benefited
from the proposed approaches, AGCN outperforms the SOTA significantly. With the aid
of efficient modules such as a small kernel size, DRS and group convolution, AGCN-S be-
comes more efficient and light, achieving lower space and time complexities, and therefore
can be extended to various applications, particularly for low-powered devices requiring high
segmentation performance.
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