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Abstract

In recent years, a significant amount of research efforts concentrated on adversarial
attacks on images, while adversarial video attacks have seldom been explored. We propose
an adversarial attack strategy on videos, called DeepSAVA. Our model includes both
additive perturbation and spatial transformation by a unified optimisation framework,
where the structural similarity index measure is adopted to measure the adversarial
distance. We design an effective and novel optimisation scheme which alternatively
utilizes Bayesian optimisation to identify the most influential frame in a video and
Stochastic gradient descent (SGD) based optimisation to produce both additive and
spatial-transformed perturbations. Doing so enables DeepSAVA to perform a very sparse
attack on videos for maintaining human imperceptibility while still achieving state-of-
the-art performance in terms of both attack success rate and adversarial transferability.
Our intensive experiments on various types of deep neural networks and video datasets
confirm the superiority of DeepSAVA.

1 Introduction
In the past decade, Deep Neural Networks (DNNs) have demonstrated their outstanding
performance in various domains, such as image classification [31], text analysis [24], speech
recognition [7], and object detection [7]. Despite their huge success in these tasks, recently
some researchers have shown that DNNs are surprisingly vulnerable to adversarial attacks
[1, 33, 49], e.g., adding a small human-imperceptible perturbation to an input image can fool
DNNs, enabling the model to make an arbitrarily wrong prediction with high confidence [33].
This is raising serious concerns about the readiness of deep learning models, especially on
safety-critical applications such as face authentication [25], surveillance systems [29], and
medical applications [31]. Hence, it is of vital importance to investigate the performance of
DNNs on adversarial examples and evaluate their robustness in an adversary environment.
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(a) SSIM=1,
l1,2=0

(b) SSIM=0.92,
l1,2 = 3.72

(c) SSIM=0.92,
l1,2=4.12

(d) SSIM=0.91,
l1,2=4.01

(e) SSIM=0.92,
l1,2=3.91

Figure 1: SSIM and l1,2 norm distance for: (a) original image; Perturbed images: (b) noise;
(c) scaling + noise; (d) rotation + noise; (e) rotation+scaling + noise.

As such, significant research efforts have emerged to assess the robustness of DNNs under
adversarial attacks, notable works include Fast Gradient Sign Methods (FGSM) [49], C&W
attack [1], DeepFool [26], and JMSA [43]. These attack strategies primarily concentrate on
image-related tasks, yet the adversarial robustness of deep learning models on videos has
not been comprehensively explored. Recently, a number of works [13, 27, 40, 47] are aware
of the values of the adversarial attacks on videos. Theoretically, attacking videos is more
challenging compared with images because videos contain temporal information. So video
attack not only requires to achieve minimal adversarial distance but also needs to perturb
as few frames as possible. As such, identifying the most effective frame(s) and generating
competitive perturbation upon those frame(s) are of huge importance to the success rate
of the attack. Another important consideration is the efficiency. As perturbing each frame
of the video is time-consuming, we expect to perform the influential-frame identification
and adversarial perturbation simultaneously so we can maintain human imperceptibility and
achieve high attacking success rate. In practice, DNNs processing videos are widely applied
in real systems such as video surveillance [29], and action recognition [15]. In particular,
most of those applications directly relate to the decisions concerning property security or
human health and safety. As a result, investigating adversarial samples on videos is urgently
needed. However, to achieve a high-performance adversarial attack on videos, the following
challenges need a careful treatment:

Maintaining the fidelity of the produced adversarial examples with real-world scenarios:
One important criterion for adversarial attacks is that the perturbed example should resemble
a real-world instance as close as possible. Current video attack strategies all adopt the lp-norm
metric to measure the fidelity of the perturbed examples. Although lp-norm is effective to
capture noise contamination, it is sensitive to naturally-occurred transformations such as
rotation, spatial shift, and scaling [51]. Taking Figure 1 as an example, a slight rotation
or scaling of pixels will lead to an obvious difference in lp-norm distance. Thus, attacks
constrained by lp-norm cannot capture some spatial transformations that naturally happen in
a real-world scenario such as the shaking, vibration, or rotation of a camera.

Achieving a high attacking success rate without compromising the human imperceptibility:
Different to static images, videos contain sequential data structure and change dynamically
with the temporal dimension. Hence, the existing attack strategies designed for images are not
directly applicable to videos. Perturbing all frames of a video, although could achieve a high
fooling rate, is time-consuming and also potentially compromises human imperceptibility.
Thus, perturbing as few frames as possible while maintaining a high attacking success rate is
highly desired on adversarial video attacks, which can be tackled by sparse attacks.

Enabling the adversarial video attack to be effective across diverse types of DNNs: In a
real-world scenario, we may not be able to access the parameters, structures, or even datasets
of a pre-trained DNN. Thus, similar to adversarial attacks on images, a strong adversarial
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transferability that can work across diverse unseen models is desirable. However, unlike
DNNs for images that are without temporal structure, video models are more complicated and
include diverse neural units for recurrent operations. Hence, achieving a satisfying adversarial
transferability across unseen models is also a non-trivial challenge.

As a result, we provide a pioneering exploration to deal with the above challenges. We
propose an adversarial video attack for DNNs, called DeepSAVA, which can i) capture a
wide range of adversarial instances including both noise contamination and various spatial
transformations; ii) achieve sparse attack, i.e., only perturbing very few frames of a video
while still achieving a state-of-the-art attack success rate; and iii) obtain better adversarial
transferability across various recurrent models compared with baseline methods.

In summary, there are three key contributions in DeepSAVA:
Structural Similarity Index Measure (SSIM): instead of lp-norm, we adopt the SSIM

metric in the loss function to constrain the distance between adversarial and clean videos. As
demonstrated by the community of Image Quality Assessment, SSIM is an alternative signal
fidelity measure that is superior to lp-norm on some applications where human perceptual
criterion matters [51]. As Figure 1 shows, SSIM is less sensitive to both noise and spatial
transformations such as rotation and scaling, which is more resemble human perception.

Combination of additive perturbation and spatial transformation: we are the first
work to combine additive and spatial-transformed perturbation for video attacks. According to
the image attack used spatial transformation perturbation [46], changing the positions of pixels
could improve perceptual realism and make it locally smooth. In DeepSAVA, we introduce
a new term in the loss function for optimising both additive and spatial transformation
perturbation. With a proper SSIM-based constraint, we could produce strong perturbations
combined with additive and spatial transformation. Such combined perturbation enables
DeepSAVA to achieve successful attacks by just perturbing one frame.

Novel alternating optimisation strategy: we are also the first work that uses Bayesian
optimisation (BO) to choose the most critical frames of the video in attacks. To achieve a video
attack that can perturb as few frames as possible, we design an alternating optimisation strategy
that can effectively identify the key frames via BO and then initiate additive and spatial-
transformed perturbations on the selected key frames by stochastic gradient descent (SGD)
based optimiser. Such an alternating process happens in each iteration of the optimisation until
key frames are found. Combining the above two ingredients, the proposed novel optimisation
strategy could achieve a better fooling rate than baselines.

The flow chart of our method is illustrated in Figure 2. We anonymously release the code
of DeepSAVA 1 and generated adversarial videos across multiple models 2.

2 Related Work
Video Action Recognition Models: The video classification task primarily focused on action
recognition [18]. The works on video classification using DNNs are developed in two ways:
using 2D or 3D-based convolution neural networks (CNN). Since the CNNs have obtained
state-of-the-art performance on image classification, Karpathy et al. [16] first proposed to use
2D CNN to classify each frame of the video. Szegedy et al. then developed the Inception-
v3 [34, 35], which is commonly used as a baseline classification model. As 2D-CNNs use
incomplete video information, some works added layers containing temporal information such
as LSTM to integer CNN features extracted over time which is referred to as CNN+LSTM

1https://github.com/TrustAI/DeepSAVA
2https://www.youtube.com/channel/UCBDswZC2QhBhTOMUFNLchCg
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Figure 2: Overview of DeepSAVA: the key frame is alternatively identified by BO; the
additive and spatial-transformed perturbations are applied to the selected frame to generated
adversarial examples.

Flickering
[27]

RL
[47]

Heuristic
[41]

Append
[3]

BlackBox
attack [13]

GAN-based
attack [22]

Sparse
Attack [40]

Deep
SAVA

Similarity metric lp lp l1 l∞ l∞ lp l2,1 SSIM
Spatial-transformed perturbation 7 7 7 7 7 7 7 3

Additive Perturbation 3 3 3 3 3 3 3 3

Identify Key Frames 7 3 3 7 7 7 7 3

Transferability Study 7 7 7 3 3 7 3 3

Sparse Attack 7 3 3 7 7 7 3 3

Table 1: Comparison with related work in different aspects.

model [5, 28]. As for the 3D CNNs [37], it can learn temporal features from videos by
inputting all frames in three dimensions directly. Vadis et al. [2] proposed a two-stream
inflated 3D CNN (I3D) to build the 2D kernel first and then merge the pooling layer and kernel
into a 3D network. By pre-training the I3D on Kinetics Dataset, it could reach state-of-the-art
performance on recognising UCF101 and HMDB51 action video datasets.

Adversarial attack on images: The adversarial attack on images has been explored
extensively recently. Szegedy et al. [33] first proposed to add visually imperceptible noise on
the images to mislead pre-trained CNN to give the wrong prediction label. Goodfellow et al.
[9] proposed to use a gradient-based approach, the fast gradient sign method (FGSM), to gen-
erate adversarial examples. DeepFool [26] is then proposed to find the minimal perturbation
by iteratively linearizing the loss function. Other gradient-based optimisation algorithms to
generate perturbation were also proposed [1, 23, 36, 45]. These works mentioned above only
apply additive perturbation on pixels. Some works [14, 20, 21, 44, 46] use a functional pertur-
bation which is non-additive-only perturbation like spatial transformation. These perturbation
slightly perturb the location of pixels. Some works such as [10, 14, 50] also utilize other
types of metrics such as SSIM to quantify the human perception, but none of them explored
the SSIM-guided spatial transformation.

Adversarial attack on videos: Wei et al. [40] claimed that they are the first to attack
videos. Instead of attacking each frame of a video, they apply additive perturbations on
randomly selected frames and use l2,1 norm to guide the gradient-based optimisation and
evaluated the performance on the CNN+LSTM model. Li et al. [22] used a GAN network to
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(a)
(b)

Figure 3: (a) The process to perturb one frame of a clean video X, where the first frame is
masked to be perturbed by spatial flow vector U and noise N. (b) The systematic optimisation
process by using Bayesian Optimisation and Adam Optimiser.

generate offline universal perturbations for each frame. Chen et al. [3] proposed to append
a noise frame to the end of videos, which is obtained based on all videos. Naeh et al. [27]
applied flickering temporal perturbations on each frame to generate universal perturbations for
the I3D model. Jiang et al. [13] were the first to propose a black-box approach to attack videos.
Wei et al. [41] proposed to use a heuristic method and Yan et al. [47] used a reinforcement
learning algorithm to select the key frames to perform black-box attack. However, these
works only applied additive perturbation based on lp-norm distance. In Table 1, we compare
our method with existing related works on video attacks in six aspects. Our work applies
the SSIM-guided non-additive perturbation on selected frames to generate adversarial videos
efficiently. We also propose a novel alternating optimisation strategy to select the key frames.

3 Methodology
Problem Definition: The video classifier is defined as J(·;θ) with pretrained weights θ . The
input clean video is defined as X = (x1,x2, ...,xT ) ∈ RT×W×H×C, where T is the length of the video
(number of frames), and W,H,C represents the width, height, and the number of channels of each frame;
its adversarial video generated is represented as X̂. In order to obtain the adversarial example, the
original video is perturbed by a spatial transformer S , and additive noise D. Given that the ground truth
label of input video X is y, the objective function is:

argminλ`similar(X̂,X)− `adv
(
1y,J(X̂;θ)

)
, (1)

where 1y is the one-hot encoding of y; `similar is the similarity loss function to measure the distance
between generated adversarial and original video; `adv is the loss function to measure the difference
between ground truth and prediction label. The parameter λ is set to balance these two loss terms.
Additionally, the cross-entropy is used to calculate the `adv, which is proved to be effective in [40].

3.1 Sparse Spatial Transform Adversarial Attack
Structural Similarity Index Measure (SSIM): The SSIM was first proposed in [38], and is detailed
in [39]. It measures the local similarities between the local pixels on three aspects: structures, contrasts,
and brightness. As we mentioned before, the SSIM is less sensitive to the combined perturbation and
more similar to human perception than lp-norms [51]. As the SSIM is differentiable with respect to
the input variable (the definition and derivation process of SSIM are shown in Appendix A), we apply
SSIM to calculate the similarity loss to constrain the perturbation during the optimisation process. The
overall SSIM score for the video is calculated by summing up the SSIM loss over all frames.

Sparse Attack: The mask indicator M = (m1,m2, ..,mT ) ∈ RT is used to choose the key frames in
the video, where mt ∈ {0,1} indicates whether the t-th frame is masked to be perturbed. The masked
video Xm is formed through the map function M(M,X), and then fed into the spatial transformer S.
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Spatial Transformed Perturbation: Given the t-th frame xt ∈ RW×H×C of input video X, xt
n

denotes the n-th pixel of xt and its location in the frame can be represented by a 2D coordinate
(ht

n,v
t
n). The spatial transformer [12] S is a differentiable model composed by flow displacement

vectors U = ((∆H1,∆V1),(∆H2,∆V2), ...,(∆HT ,∆VT )) ∈ RT×2×H×W (where Ht = (ht
0,h

t
1, ...,h

t
n),

Vt = (vt
0,v

t
1, ...,v

t
n) ∈ RH×W ), which is used to synthesize the 2D coordinate of adversarial videos.

Suppose x̂t
n with location (ĥt

n, v̂
t
n) is the adversarial example transformed from xt

n, given its correspond-
ing spatial displacement vector (∆ht

n,∆vt
n), the new location of original pixel xt

n can be represented as
(ht

n,v
t
n) = (ĥt

n +∆ht
n, v̂

t
n +∆vt

n). Considering the sparse attack mask indicator M, we can represent the
transformed adversarial video as X̂S = S(U,X,M).

Additive Perturbation: The additive perturbation is the most common way to generate adversarial
examples [1, 9]. We define the additive model as D with parameter N ∈ RT×W×H×C. We combine
spatial transformation and additive perturbation to generate adversarial videos as (illustrated in Figure 3
(a)): X̂ =D(N, X̂S,M) = N ·M+ X̂S.

3.2 Novel Alternating Optimisation Strategy
In this paper, we utilize the Bayesian Optimisation (BO) to select the most critical frames. As the frame
selection is a discrete variable optimisation problem, we also tried other discrete optimisation techniques
such as simulated annealing (SA) [8] and genetic algorithms (GA) [42], but both spent about 200s to
find the final result which is much longer than about 16s taken by BO. In Appendix D, we also showed
the performance of BO and the brute force search (i.e., selecting the most effective frame by perturbing
each frames in a video).

The generated adversarial video is formed as X̂ = N ·M +S(U,X,M). In this paper, the sim-
ilarity loss `similar and adversarial loss `adv in problem (1) can be expressed as `similar(X̂,X) =
1− SSIM(X̂,X) = Ls(N,U,X,M) and `adv

(
1y,J(X̂;θ)

)
= La(N,U,X,M). Therefore, problem (1)

can be simplified as: argminM,N,U λLs(N,U,X,M)−La(N,U,X,M).
As M is a discrete binary vector, which makes problem (4) non-differentiable, we solve it systemat-

ically by a novel alternating optimisation strategy: at each iteration, we optimise M by BO first; and
then by fixing M, the problem becomes differentiable, which can be solved by Stochastic Gradient
Descent (SGD) based optimisation. We choose the Adam optimiser [17] because of its robust and fast
convergence performance. This process repeats for a fixed number of iterations, continuously improving
the solution via both techniques alternatively.

BO proposes sampling points from the search space through acquisition functions to obtain the
reward of previous points. Expected improvement (EI) is applied as acquisition function F , which is
widely employed in BO: E[max

(
L(M)−L

(
M+

)
,0
)
] , where L(M) is the loss from Adam by fixing

M; L
(
M+

)
is the best value obtained so far and M+ is its location.

During the BO process, we will find the best mask indicator through several iterations. In the k-th
iteration of BO, we first sample a candidate Mk according to the acquisition function F . Then, the
corresponding loss Lk will be computed by the Adam, which will then affect the next sampled point
Mk+1 for the next iteration. When the BO reaches the maximum exploration number, the best M with
minimum loss will be fed into the Adam optimiser to generate the final adversarial video. The process
is illustrated in Figure 3(b).

Algorithm 1 and 2 detail the BO selection and adversarial videos generation algorithms respectively.
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UCF101 HMDB51
Models CNN+LSTM I3D Inception-v3 CNN+LSTM I3D Inception-v3

Accuracy 74% 94.9% 71.2% 43% 80% 47%

Table 2: Training accuracy of the classifiers to be attacked.

In Algorithm 1, the next sampling point M is obtained by maximizing the acquisition function F based
on previous sampling data set D1:k−1 (Line 3). After adversarial Generator (G) is optimized, the loss
L for M is calculated. Then the M with its corresponding L are appended to the sampling pool D to
propose the next sampling point. In Algorithm 2, according to the optimised mask indicator M, the final
flow vector U and additive noise N are optimised via Adam.

4 Experiments
Dataset: As action recognition video datasets are widely used in adversarial video attack studies, we
choose two popular benchmark action recognition datasets to evaluate the performance of our method:
UCF101 [32] and HMDB51 [19]. Both datasets are realistic action recognition datasets. The UCF101
contains 13,320 videos with 101 categories such as playing instruments, body movements, human-
object interaction. Similarly, the HMDB51 has around 7,000 videos within 51 categories related to
body-motion and facial actions.

Action Recognition Models: We evaluate DeepSAVA on three classifiers: Inception-v3, a 2D-
CNN based model [35], which is widely used in the image recognition task with high accuracy; I3D, a
3D-CNN based model, pre-trained on Kinetics [2]; CNN with LSTM, which is pre-trained on ImageNet
to extract features from videos and then input these features to train the LSTM network. The training
accuracy of all classifiers is shown in Table 2.

Baseline methods: Two baseline methods are used for comparison, the Sparse [40] and Sparse
Flickering. For the works shown in Table 1, only [40] is the white-box sparse attack; [41][47] are
black-box sparse attack methods. As our work is a white-box sparse attack, we choose the most related
one, Sparse [40], as the main baseline. We perform perturbation directly on the frame, while [3]
appended additional frame in the end of video, which is more visible to human. So we did not include it
as a baseline due to its compromise on the similarity of human perception. In [22], GANs are used to
attack real-time video, which is not comparable to our method. We modified Flickering [27], which
perturbs all frames, into a sparse one as the Sparse Flickering baseline, but we still show the performance
of perturbing all frames.

Experiments Setting: The length of all input videos is crafted to be the same (40 frames). We
randomly select 200 videos from different categories in the test dataset. For those experiments without
saying the specific constraint, the maximum allowed search iteration (100 iterations) is applied; all
experiments use Adam optimiser with 0.01 learning rate. The parameter λ is set to 1.5 for the
CNN+LSTM model, and 1.0 for the I3D and Inception-v3 models. For λ , values that can balance the
fooling rate and perturbation strength are used (please see our full experimental results in Appendix B).

Metrics: Fooling Rate (FR): the percentage of generated adversarial videos that are misclassified
successfully. Average Number of Iterations (ANI): the average number of iterations taken to generate
adversarial examples successfully based on the same original videos, which is used to measure the
efficiency when we set a constraint on the maximum allowed iteration.

4.1 Comparison with baseline methods
In this section, we will show the comparison results between DeepSAVA and baselines. Since running
BO will add extra time to choose the frame, to make the comparison more complete, we also take the
DeepSAVA without BO selection into account.

Limited iterations: Since each method uses a different metric, in order to control the maximum
allowed perturbation we limit the number of search iterations for all methods. Each iteration only allows
a small amount of perturbation (controlled by the learning rate of Adam optimiser), following the same
setup used by the baselines. The results in Table 3 show that the ANIs are much below the maximum
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Models Attack Method UCF101 HMDB51
FR ANI FR ANI

CNN+LSTM

Sparse 52.77%±2.44% 16.45 95.2%±1.8% 16.4
Sparse Flickering 48.48%±1.67% 23.55 91.94%±2.93% 8.4

DeepSAVA(without BO) 56.22%±1.65% 8.32 99.27%±0.34% 8.42
DeepSAVA(BO) 57.22%±1.36% 8.77 100% 6.6

I3D

Sparse 10.12%±1.19% 44 5.74%±1.25% 25.1
Sparse Flickering 1.15%±0.68% 13 0% -

DeepSAVA(without BO) 47.57%±2.64% 12.15 46.39%±3.86% 12.2
DeepSAVA(BO) 99.89%±0.11% 6.47 99.92%±0.08% 5.35

Inception-v3

Sparse 42.25%±4.30% 33.70 45.82%±1.56% 22.06
Sparse Flickering 21.73%±1.39% 35.4 27.55%±0.98% 27.25

DeepSAVA(without BO) 68.86%±1.83% 13.29 68.98%±3.19% 11.84
DeepSAVA(BO) 70.39%±2.78% 10.52 74.74%±0.82% 9.07

Table 3: Comparison with baselines, DeepSAVA without BO and with BO on different models by only
perturbing one frame. ’-’ means that there is no successful attack. Gray cell shows the best results.

(a) CNN+LSTM (b) I3D

Figure 4: Fooling Rate of attacking different number of frames across different models.

allowed iteration (100), and we also found that even when it reaches the maximum iteration, the l p-norm
and SSIM distances are still acceptable (in Appendix G). We also show the results of average absolute
perturbation distance in Appendix C. Given that, setting a constraint on the maximum search number to
100 will not lead to large distortion.

We run the experiments 10 times, and show the average results with a 99% confidence interval. For
the methods without frame selection, the first frame is perturbed.As shown in Table 3, BO selection
is more efficient than the one without BO. This happens because it is able to select the most critical
frame, which can improve the efficiency on most of the cases. For the CNN+LSTM model, DeepSAVA
increases the FR slightly compared with the baselines; while for the I3D model, we can see that the FR
grows significantly. The BO selection process is also essential for I3D. Without BO, only about half
of the test videos can be attacked successfully; after applying BO, the FR increases to nearly 100%.
As for the Inception-v3 model, the FR increases when applying DeepSAVA. It can be concluded that
the CNN+LSTM is the most robust classification model among the three classifiers. Although the I3D
has the highest classification accuracy, it is more vulnerable to attacks, even when only one frame is
modified. That might happen because the I3D model relies heavily on the integral structure of the video
itself and some frames may be more important.

We find that the position of key frames is related to the classifiers evaluated: for CNN+LSTM, the
frames in the front are more often selected, and for other CNN networks, the position is variant. Thus,
it is reasonable that the BO cannot improve the FR for CNN+LSTM model as much as the I3D, as
we attacked the first frame when not selecting. We also show the results in Figure 4 for attacking a
different number of frames across I3D and CNN+LSTM models (for inception-v3 model is presented in
Appendix F). It can be seen that the more frames attacked, the higher the fooling rate obtained.

Fixed l2,1 norm and SSIM: For the purpose of a fair comparison, we also present the results under
fixed l2,1 and SSIM budgets for perturbing only one frame. The maximum allowed iteration is set to be
500 to limit the time. As the baseline methods are based on lp-norm and our method is on SSIM, we
take experiments under the same lp-norm constraint and SSIM constraint, respectively. Based on the
results of fixed iterations, we randomly select 200 videos from different categories to attack the I3D
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l2,1-norm
Constraint l2,1 budget = 0.08 l2,1 budget = 0.09

Method Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA
FR 40.51% 48.1% 88.61% 41.77% 54.43% 93.67%

Time (s) 8018.9 2629 1535.8 14001 3729 1573.82
SSIM

Constraint SSIM budget = 0.98 SSIM budget = 0.96
Method Sparse DeepSAVA(no BO) DeepSAVA Sparse DeepSAVA(no BO) DeepSAVA

FR 8.06% 16.56% 35.44% 10.1% 51.9% 96.20%
Time (s) 5842.32 1285.1 1424.4 13789.23 5633.28 1545.5

Table 4: Attack I3D model on UCF101 dataset under l2,1 and SSIM constraint separately.

(a) apply eye
makeup

(b) apply-lips
(DeepSAVA)

(c) apply-lips
(Sparse)

(d) ParallelBars (e) Haircut
(DeepSAVA)

(f) Haircut
(Sparse)

Figure 5: Original, and adversarial examples generated by DeepSAVA and Sparse [40] when only one
frame in the video is perturbed. The red labels are the wrong predictions.

model on the UCF101 dataset. During the experiments, the Sparse Flickering spent days to achieve the
constraint, thus we will only compare with the Sparse [40] attack. In [6], the SSIM budget for attacking
image is set to 0.95, thus we choose the SSIM constraints above 0.95. In [48], it states that the difference
between the images is imperceptible when the l2,1 score is 4, given that, we also set the l2,1-norm budget
to below 0.1 (since 0.1∗40 = 4, as we have 40 frames). As we can see in Table 4, under small fixed
budgets, DeepSAVA outperforms the Sparse [40] in both cases in terms of FR and total time (more
experiment results are presented in Appendix E).

Visualization of results: The generated adversarial frames by DeepSAVA are presented in Figure
5. Because of the spatial transformation, the frame looks a little bit shaky but not obvious in human eyes.
In fact, in the real world, it is normal to see that there are a few frames with instabilities during video
shooting and transmitting. That’s why we apply the spatial transformation in video attacks to improve
the efficiency and fooling rate. In practice, a distortion in one frame of a video is less noticeable than a
static image since this specific frame only appears for 0.047 seconds in human eyes [45]. We could also
see that it does not lead to a noticeable perturbation as shown by our video demos.

When transmitting the videos in the real world, the generated frames need to be compressed into
videos first and then decompressed to frames. We found that for the additive-only perturbed frames,
they may not remain adversarial examples after such transmission. Our experiments demonstrate that
DeepSAVA can be immune to short video compression due to the fact that perturbation based on spatial
transformation can be well preserved during compression while additive perturbation may disappear.

Ablation study: We perform ablation experiments to study the effects of combined perturbation
for a different number of attacked frames by comparing with additive noise only and spatial transform
only perturbations, and the effects of BO selection. Table 5 shows the FR for three classifiers on the
UCF101 dataset. Four approaches are taken to attack the model: 1) only noise (D), 2) only spatial

Approach CNN+LSTM Inception-v3 I3D
Mask1 Mask4 Mask1 Mask1

Fixed the frame (first n-th)
D 52.77%±2.24% 91.28%±1.95% 42.45%±4.30% 10.12%±1.19%
S 55.27%±1.82% 91.89%±1.45% 63.91%±5.61% 29.99%±2.36%
D+S 56.22%±1.65% 92.99%±1.85% 68.86%±1.83% 47.57%±2.64%
Using BO to choose frame
D+S 57.22%±1.36% 93.51%±1.33% 70.39%±2.78% 99.89%±0.11%

Table 5: Effects of combining noise (D) and spatial transformation (S) by modifying a different number
of frames on UCF101; Mask N means that N frames are modified.
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Models CNN+LSTM CNN+Vanilla RNN CNN+GRU
Sparse DeepSAVA Sparse DeepSAVA Sparse DeepSAVA

CNN+LSTM 100% 100% 34.42% 41.38% 64.35% 85.34%
CNN+Vanilla RNN 100% 100% 100% 100% 100% 100%

CNN+GRU 79.34 % 84.75% 40.70% 56.03% 100% 100%

Table 6: Fooling Rate across recurrent models on UCF101.

transformation (S), 3) combination of additive perturbation and spatial transformation (D+S), and 4)
combined perturbation with BO selection. To make more comprehensive evaluations on the superiority
of combination, we attack a different number of frames for the CNN+LSTM model as it has the lowest
FR when only perturbing one frame. All experiments showed the combination power to increase the
FR; using BO selection is also useful, especially for the I3D model.

4.2 Transferability across recurrent models
The transferability across models is an important evaluation of adversarial attacks, which can be treated
as a black-box problem without accessing parameters of the target model. In our work, the I3D and
Inception-v3 only contain CNN, while the recurrent neural networks (RNN) like CNN+LSTM contains
the time-related network. Due to the unique time-related structure of videos, we mainly present the
transferability across time-related networks here (for the transferability across other CNN models, please
refer our experiments in Appendix H). We perform the transferability experiments on the UCF101
dataset for different RNNs. The features of original videos are extracted firstly by CNN (Inception-v3)
model and then are fed into vanilla RNN [30], LSTM [11], and GRU [4] networks respectively. The
training accuracy for vanilla RNN and GRU are 65.16% and 73.05% respectively.

As Figure 4 shows that the Sparse [40] performs better than the Sparse Flickering in terms of FR,
we choose the Sparse [40] as the baseline method. The fooling rates (FR) of the generated videos across
models are presented in Table 6. The models in rows are used to generate adversarial videos and the
models in columns are the target attack classifiers. Here we disturb seven frames of a video to enlarge
the attacking success rate. We use the adversarial examples generated from the white-box attack for the
transferability, which leads to the FR in the diagonal being 100%. These adversarial examples are then
used to attack other models (like a black-box attack) as detailed in Table 6. Comparing with the baseline,
our approach has a higher FR which indicates a better performance in terms of transferability. The
difference between vanilla RNN and the other models is that vanilla RNN has no memory component,
so it shows a weak performance on the video classification task. As we observed, adversarial videos
generated from LSTM and GRU models can fool the vanilla RNN successfully. Additionally, the FR
across GRU and LSTM are around 85%, which shows good transferability between the recurrent models
with memory.

5 Conclusion
In this paper, we apply spatial transformed perturbation and additive noise to attack as few frames as
possible to obtain the sparse adversarial videos. We run experiments on the UCF101 and HMDB51
action dataset and three models. The most influential frames to be attacked are selected by a joint
optimisation strategy with Bayesian optimisation (BO) and SGD-based optimisation. Additionally, the
quality of generated adversarial examples is measured by SSIM instead of lp-norm. We obtain better
results than state-of-the-art sparse baselines in terms of both fooling rate and transferability. Our most
significant results are for the I3D model, by only attacking one frame of the video to obtain 99.5% to
100% attack success rate.
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