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Abstract

Grid cells enable the brain to model the physical space of the world and navigate ef-
fectively via path integration, updating self-position using information from self-movement.
Recent proposals suggest that the brain might use similar mechanisms to understand the
structure of objects in diverse sensory modalities, including vision. In machine vision,
object recognition given a sequence of sensory samples of an image, such as saccades, is
a challenging problem when the sequence does not follow a consistent, fixed pattern - yet
this is something humans do naturally and effortlessly. We explore how grid cell-based
path integration in a cortical network can support reliable recognition of objects given
an arbitrary sequence of inputs. Our network (GridCellNet) uses grid cell computations
to integrate visual information and make predictions based on movements. We use local
Hebbian plasticity rules to learn rapidly from a handful of examples (few-shot learning),
and consider the task of recognizing MNIST digits given a sequence of image feature
patches. Extending beyond the current literature, we show that GridCellNet can reliably
perform classification, generalizing to both unseen examples and completely novel se-
quence trajectories. Furthermore, by utilizing grid cells for an internal reference frame
derived from sensory inputs and internal motor information alone, the classification pro-
cess represents an important step towards enabling translation invariance in sequential
classifiers. In addition, we demonstrate that GridCellNet is able to predict unsensed re-
gions of the input, that inference can be successful after sampling a fraction of the input
space, and that a natural benefit of the proposed architecture is robustness in the context
of continual learning. We propose that agents with active sensors can use grid cell repre-
sentations not only for navigation, but also for robust and efficient visual understanding.

1 Introduction

When exploring a visual scene, primates sample the world in a serial sequence by performing
rapid eye movements known as saccades [27]. For the purpose of recognising objects, it is
non-trivial that this sampling can follow an arbitrary sequence order, and begin on any part
of the object. For example, one might selectively attend to the most salient parts of a face
rather than performing a raster scan across the image. While many previous efforts to model
primate object recognition have focused on massively parallel processing of a single input,
the challenge of dealing with the necessarily sequential nature of sensory inputs has received
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less attention [3]. Recurrent-neural networks can perform complex tasks with sequential
inputs, and might seem like a natural candidate for such a challenge, yet they struggle to
learn when provided with sequences that do not follow a fixed order during training and
inference. In the natural world there are additional challenges that can present themselves.
Often only a handful of object examples are available, learning should be rapid (i.e. requiring
limited training on the few examples given), and representations should be robust in the
face of future learning. These are all constraints that humans are able to handle effortlessly.
Understanding how learning and inference under these conditions might be achieved has two
appealing aspects. As well as potentially uncovering the basis for human performance in this
domain, the flexibility to operate under such a regime could also enable artificial agents to
explore the world in a more principled and adaptive manner.

While recurrent neural networks do not have explicit mechanisms for dealing with this
challenge, grid cells might provide a neurally plausible solution. Together with place cells
in the hippocampus [20], grid cells in the entorhinal cortex enable the brain to model space
during navigation. In particular, grid cells fire in repeating patterns as space is traversed [6].
Using multiple grid cells of different scale and orientation, the location of an animal can be
uniquely encoded [5]. Importantly, this location representation can be updated to support
path integration - that is, given information about self-movement, an agent can determine its
new location by reading out from grid cell activity [6, 17]. The role of such cells in spatial
navigation is widely established, but recent experimental evidence has also uncovered the
presence of grid cell-like activity in visual space [11, 12, 19]. Theoreticians have argued that
grid cell-like computations might be used to build object representations in diverse sensory
modalities [8], including vision [3]. This is an intriguing solution to our opening problem,
but the demonstration of object recognition with such computations has so far been limited
to either synthetic objects [15], or visual tasks requiring the recall of a memorized example
[3], rather than generalization to unseen examples of an object class.

Neurally-motivated systems that can solve rapid object learning and recognition given
saccade-like visual inputs are therefore lacking. We set out to address this by implementing a
biologically plausible network, called GridCellNet, based on cortical columns and grid cell-
like computations. The system uses rapid Hebbian-style learning to associate sensed features
and their spatial location in the reference frame of an object, while dendritic segments enable
the system to encode predictive states. Locations are encoded by activity in grid cell modules
that are updated with self-movement.

GridCellNet addresses the challenge of arbitrary sequence inputs, and due to the use of
an internal reference frame for representing space, marks an important step towards classifi-
cation that is translation invariant. Furthermore, the system includes predictive capabilities,
enabling completion of an image given partial inputs. Finally, GridCellNet’s properties nat-
urally confer rapid learning (functioning with both few training examples and few weight
updates), and robustness to learning additional classes, while retaining classification perfor-
mance on older classes (continual learning). We evaluate the performance of GridCellNet in
these task settings, and compare it to typical machine-learning approaches. While our eval-
uation is limited to MNIST [14], robustness on this simplest of visual data-sets is far from
resolved [18, 23, 25]. In accordance with human capabilities, our system outperforms more
traditional machine learning approaches in the challenging setting we explore.

To summarise, our primary contributions are to:

* Implement a biologically-motivated architecture that uses arbitrary sequences of local
visual features across space to learn objects and recognize them. We provide evidence
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that this ability is dependent on integrating self-movement for sensory predictions.

* Demonstrate the ability of our network to successfully generalize to unseen objects
given a series of sensations with arbitrary starting positions and sequence order, a
necessary element for translation invariance, and a form of out-of-distribution gen-
eralization. We show that other machine learning systems, such as recurrent neural
networks, struggle by comparison on limited training examples (few-shot learning).

* Demonstrate additional benefits of the proposed architecture, such as robustness under
continual learning, and the ability to predict unsensed regions of the input.

1.1 Related Literature

As noted, the demonstration of object recognition using grid-cells has so far been limited
to either synthetic stimuli [15], or the recall of memorized examples [3], rather than gen-
eralization to novel samples of an object. Related work in robotics that uses sensory and
self-movement information has also been limited to the recall of training examples [4, 21].
This is where our work most significantly builds on the prior state-of-the-art.

We also contrast our approach to previous methods in multi-view object recognition in
machine learning. These systems often assume that there is no spatial structure to the dis-
parate sensory inputs, instead aggregating them in an agnostic manner [22, 24]. Alternative
approaches that do make use of spatial information do so using an external reference frame
(such as coordinates in the input space) [13, 16, 26], which constrains their ability to gen-
eralize to out-of-distribution locations. By using an internal reference frame to perform
inference, our approach makes use of spatial information while avoiding the limitations of
relying on a fixed, external reference frame. An extended discussion of work related to our
approach is provided in the Supplementary Material (Related Literature).

2 Methods

2.1 Overview

Our work builds on the sensorimotor system implemented in Lewis et al. [15], which in turn
uses many of the algorithms employed in Hawkins et al. [7]. In this paper we address two
limitations of the network in Lewis et al. [15]. First, they used synthetic objects and features
rather than those derived from natural data-sets. Second, their system was designed to only
recall previously seen objects and did not generalize to other examples of an object class. In
order to remove those limitations, we make two primary changes:

* We implement a sparse convolutional feature detector, trained on images, where the
extracted features approximate a series of foveations across an image. When the sen-
sorimotor system moves to sample an image patch, the corresponding subset of sparse
feature outputs is sent from our convolution based pre-processing.

* We modify the main classification step, using multiple learned location representations
as features for object recognition. Classification then operates on the set of active grid
cells using a linear transformation followed by a normalization process.

Except where noted, the sensorimotor network is mathematically as described in Lewis
et al. [15], and we advise readers interested in those details to refer to that work. The details
of the alternative models we evaluate are provided in the Supplementary Material (Methods).


Citation
Citation
{Lewis, Purdy, Ahmad, and Hawkins} 2019

Citation
Citation
{Bicanski and Burgess} 2019

Citation
Citation
{Browatzki, Tikhanoff, Metta, Bulthoff, and Wallraven} 2014

Citation
Citation
{Pezzementi, Reyda, and Hager} 2011

Citation
Citation
{Ranzato} 2014

Citation
Citation
{Seeland and M{ä}der} 2021

Citation
Citation
{Larochelle and Hinton} 2010

Citation
Citation
{Mnih, Heess, Graves, and Kavukcuoglu} 2014

Citation
Citation
{Wong and Yuille} 2015

Citation
Citation
{Lewis, Purdy, Ahmad, and Hawkins} 2019

Citation
Citation
{Hawkins, Ahmad, and Cui} 2017

Citation
Citation
{Lewis, Purdy, Ahmad, and Hawkins} 2019

Citation
Citation
{Lewis, Purdy, Ahmad, and Hawkins} 2019


4 LEADHOLM, LEWIS, AHMAD: GRID CELL BASED VISUAL OBJECT RECOGNITION

2.2 Sparse Feature Extraction

In order to handle realistic images, we use a trained convolutional neural network to generate
sparse binary features at multiple image locations. Intuitively, this approach is intended to
create a map approximating how a fovea might represent the input at different regions. Note
this pre-processed input to our downstream classifiers is therefore not treated as a retinotopic
map. A k-Winner Take All (k-WTA) layer [1] is used to enforce sparsity in the middle-
layers of this encoder network, and these representations are binarized before being passed
to the downstream classifiers (i.e. both GridCellNet and the classifiers we compare to). The
encoder network is described in more detail in the Supplementary Material (Methods).

2.3 Sensorimotor Network

The sensorimotor network consists of two layers, one representing the sensory input, the
other the location of the sensor. Cells in both layers can be either on or off, and activity in the
network proceeds through a series of discrete time steps. The sensory layer receives the input
features, as well as modulatory input from the location layer. The location layer receives
movement information, as well as input from the sensory layer. The connections between
the sensory and location layers are modelled via dendritic segments, the small branches on
biological neurons that integrate multiple synapses [2]. A dendritic segment is deemed active
if there is a significant match between the sending layer’s sparse activity and sparse, learned
weights. This match must exceed a user-set threshold, after which these dendritic segments
enable a given layer’s activity to predict representations in the other layer. For classification
in our task, we use the term ‘object’ when referring to a particular instance of a hand-written
digit, and ‘class’ when referring to the identity of the digit.

The basic intuition for inference is that at the outset, a sensory feature is likely to be
ambiguous as to the nature of the object, and so the network should encode this ambigu-
ity with a representation that corresponds to a union of all the objects compatible with this
given feature. For example, a curved contour at the top of an image might represent a 9 or a
0 (Figure 1a). The object-representation is encoded by the activity in the location layer (as
each learned object uses a unique location space), and so this union of multiple objects will
correspond to multiple cells being active in each grid cell module. In our example, the active
location representation will correspond to both where a curved contour was learned for a 9
and where it was learned for a 0 (Figure 1b). As additional features are sensed, the network
will use its current representation of candidate objects to predict the next feature, with only
those that are compatible with the subsequent sensation persisting. Notably, these predic-
tions rely on the presence of a feature at a given location, and not simply a bag-of-features
detector. If the sensor was to move to the bottom of the image, the learned 9 representa-
tion and O representation will predict different features. As GridCellNet experiences more
sensations, its location representation should converge to a more limited number of learned
objects. The object is categorized when the representation in the location layer corresponds
predominantly to a particular class, and not any others. This class-correspondence is deter-
mined by a learned linear transformation of the active grid cells, described in the following
section. We provide additional details on the sensorimotor network architecture and its im-
plementation of Hebbian learning in the Supplementary Material (Methods).
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Figure 1: Overview of GridCellNet’s classification algorithm. a) The algorithm’s concept
at a high level. A single sensation (f}) is likely to be ambiguous as to the nature of the
object. Correct inference requires integration over several features, such as a movement to
the location of f,. b) Sparse feature vectors extracted from a CNN feature map (upper row)
represent an approximation of 5 x 5 foveations of the input. These sensations and associated
movements are sequentially provided to GridCellNet’s sensorimotor network (bottom row).
When the sensor moves to its first location (<1>, under Movement 1), there is no location
representation on which to base sensory predictions (<2>). As a result, the first sensation (f}),
activates all the cells in columns that receive input (<3>). This activity then activates location
representations which are consistent with that feature input (<4>). This will be a union of
multiple object representations, some of which are consistent with the target class (shades
of yellow), and some of which are not (textured shades of green). As multiple class nodes
receive active input, with no clear winner, the class identity of the object is ambiguous. With
the next sensor movement (<1>, under Movement 2), the location representations of the grid
cells are updated using path integration. The active grid cells then provide a prediction (via
the modulatory impact of dendritic segments) to the sensory layer (<2>). The next sensory
input (<3>) is consistent with two previously learned examples of 9’s, i.e. with that feature
representation at that location given the previous feature representations at their locations.
The remaining active location representations (<4>) now drive a single target class above a
threshold relative to the activity of the other class nodes. Note that Movement 1, Sensation
1, Movement 2, and Sensation 2 indicate the same two-layer network over the temporal
progression of the algorithm. Figure adapted with permission from Lewis et al. [15].

2.4 Classification Method

In order to enable classification of unseen objects, we extended the classification algorithm
in Lewis et al. [15]. The original algorithm required the location representation of the object
to be a subset of the target representation, where the target was a single learned example.
In contrast, we treat inference as the location representation driving the activity of a class
node via locally learned weights. Classification takes place when the activity of a class
node exceeds a user-set threshold relative to the activity of other class nodes. In short, the
classification step serves as a linear classifier with the active location representations as the
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input features, and with weights learned via a Hebbian-like, supervised signal, rather than
gradient descent. The location representation itself is determined as described in Section 2.3.

Learning During learning of the objects, whenever a particular location representation
occurs (i.e. pattern of active grid cells), their identity is recorded. At the end of learning an
object’s local feature-location associations (described in detail in Supplementary Materials -
Methods) all of the grid cells that were active during the learning of that object strengthen an
associative weight with the neuron representing the class identity. This simple Hebbian-like
associative learning is the only supervised signal in the system. Note that these weight up-
dates are additive. More concretely, let the binary vector o/°° indicate the trace (i.e. history)
of all grid cells that were active at some point during the learning of a particular object. a'*
is a vector of length n? xm, where n is the width of a module, and m is the number of grid cell
modules. W is the associative weights learned between the grid cells and the class nodes,
of which there are a total of K, one for each class, such that W is a K x n? x m matrix. All
weight values are initialized at zero. During learning, if the object being learned is of class &,
and letting j index the values of ¢'°°, then the weight updates that take place are as follows:

A+ Lale =1
W= {0t % M
Wy, otherwise

Inference The system classifies an object once the activity for a given class is signifi-
cantly higher than for the other candidate classes. Specifically, all active grid cells after a
sensation, vec(Al%, ), feed on to the class nodes via the learned weights W. During infer-
ence, the activity vector of class nodes at time 7 is

vy =Wvec (A}?:ense) 2

The activity of the maximally activated class node is processed via divisive normalization
(a biologically plausible operation [9]). Classification takes place if this value exceeds a user
set threshold 7, i.e.

=7 3

Classification is successful if the index of the maximally active class neuron matches the
true class. Finally, to prevent occasional false confidence early in inference, the system is
constrained to only perform classification when ¢ > 5, out of a total of 25 sensations.

3 Experiments

We now demonstrate the advantages of GridCellNet for operating in environments like those
experienced by intelligent, biological agents. Our experiments consist of:

* The performance of a variety of classifiers, including GridCellNet, on a classification
task given sequential sensory inputs. These sequences can follow arbitrary or fixed
orders across training and evaluation.

 Evidence of GridCellNet’s ability to rapidly develop predictive representations of vi-
sual space.


Citation
Citation
{Heeger} 1992


LEADHOLM, LEWIS, AHMAD: GRID CELL BASED VISUAL OBJECT RECOGNITION 7

* Empirical evidence that GridCellNet’s performance is dependent on integrating self-
movement information with sensory data (Supplementary Material - Experiments).

¢ A demonstration of GridCellNet’s ability to frequently perform inference with only a
subset of the input sequence (Supplementary Material - Experiments).

* An evaluation of GridCellNet’s robustness in a continual learning setting, in compar-
ison to a long short-term memory (LSTM) classifier [10] (Supplementary Material -
Experiments).

3.1 Translation Invariance and Inference Given Arbitrary Sequences

Vision in embodied agents, such as primates, faces the reality that a stimulus often cannot
be sampled in its entirety through a single fixation, and so some mechanism must exist for
integrating multiple foveal inputs. The first time an object is seen, a particular sequence of
eye movements will be followed. The next time this object is observed, however, there is
little-to-no guarantee that the eyes will sample it by beginning at the exact same location
they did the first time it was seen, nor that they will subsequently follow the same sequence
after this. As the stimulus can move in the real world, and the starting position of where
classification begins can vary (i.e. translate), translation invariance represents a considerable
challenge for sequential classifiers. Two requirements for translation invariance are therefore
1) the ability to integrate features from arbitrary starting positions and sequence inputs, ii)
the use of an internal reference frame for classification. The following section provides em-
pirical evidence that GridCellNet satisfies (i), while it satisfies requirement (ii) by definition.
In particular, no information about the absolute position of features in the external world is
provided, and instead GridCellNet relies entirely on sensory inputs and self-movement in-
formation. Additionally, the following results demonstrate that GridCellNet can generalize
to novel examples of MNIST that it has not seen in the training data.

For the unlikely situation of a fixed input sequence, we evaluate our classifiers given a
fixed starting position and sequence of samples across the space of 5 x 5 features. In partic-
ular, the sequence follows the same order for all objects during both training and evaluation.
With arbitrary starting positions and sequences, the input order is randomly determined for
every object, and is not fixed between training and testing. As GridCellNet performs only a
single weight update per feature of an object during learning, we compare to LSTMs with
both 1 epoch of training as well as 50 epochs. Note therefore that our few-shot setting consid-
ers not only exposure to a limited number of training examples, but also limited opportunity
for weight updates with each training example.

We begin by evaluating the classifiers on the standard task of learning and generalization
given a fixed input sequence. As expected, all of the classifiers do reasonably well (Figure
2a), with the exception of the LSTM constrained to only one weight update per set of input
features. GridCellNet’s learning takes place using rapid Hebbian style weight updates, and
so unlike the LSTM, it can form robust representations in-spite of only having observed each
training object once.

We next assess performance in the setting of arbitrary starting positions and sequence
inputs. As predicted, only GridCellNet maintains its performance (Figure 2b). Despite also
being given self-movement information, the LSTM does not attain the same performance of
GridCellNet in the few-shot setting.

GridCellNet achieves its robustness by use of the path integration properties of grid cells,
enabling the network to represent the spatial location of features in a manner that can han-
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dle arbitrary and previously unseen movements through space. After perceiving a feature
at a given location, path integration uses self-movement to meaningfully update the active
location representation. This in turn predicts the learned features at the new location. The
particularities of the path that was taken is irrelevant to this process, and so the system is
robust to arbitrary feature sequences.

This ability to handle arbitrary sequence paths can be viewed as a form of out-of-distribution
generalization. Specifically, any particular path is astronomically unlikely to be experienced
more than once. With 25 total locations, there are a total of 25! possible feature sequences,
or around 15 million billion billion. Even assuming that 10 of 25 sensations is sufficient
for classification, this represents 25!/15! possible sequences, or around 12 trillion. Thus,
with any reasonable amount of training data, the classifier cannot rely on having previously
observed a particular path for a particular object class.

We highlight that GridCellNet’s inference operates entirely on sensory inputs and self-
movement information (i.e. an internal reference frame). On the first sensation, the network
initializes an internal representation based on previously learned objects, and uses subse-
quent movements in their reference frames to iteratively narrow down the candidate objects.
As a consequence, the starting position of inference is irrelevant. If the entire stimulus was
shifted in an external coordinate frame, such as the absolute location in a room, inference
would be unaffected and as such, GridCellNet’s classification system is an important step
towards enabling online translation invariance in sequential classifiers. In practice, an end-
to-end translation invariant system also requires that the actual sensory inputs (our ‘foveal
responses’) satisfy certain levels of translation invariance and equivariance, a requirement
we elaborate in further detail in the Supplementary Material (Experiments and Discussion).

Finally, we note that our same architecture, without modification, is also capable of re-
calling a specific learned example from the training data. This replicates the functionality of
older biologically plausible models in the literature, but using an entirely internal reference
frame (Supplementary Material - Experiments).

3.2 Predictive Representations

In the Supplementary Material (Experiments), we demonstrate that GridCellNet can often
perform classification before the entire input sequence is experienced. This carries an addi-
tional advantage beyond efficiency. Due to the predictive nature of the network, GridCellNet
can represent features in unsensed parts of the image. In particular, at any given time, Grid-
CellNet predicts the sensory input(s) it will receive after a movement. These predictions are
based on the currently active representations, which can be viewed as GridCellNet’s working
hypotheses about the object being sensed.

To visualise GridCellNet’s representations during inference, we extract the sequence of
sensed and predicted features at each progressive movement. As the sensor passes over the
sequence of inputs, we accumulate the ground-truth sensations previously experienced, as
well as the prediction for the next movement. Importantly however, once the system has
converged to the representation of a single object, all future accumulated representations are
based solely on predictions from the inputs received up until the time of convergence. The
totality of these representations are then fed to a decoder network to visualise the output
at different stages of inference. Additional details of this experiment are provided in the
Supplementary Material (Experiments).

Figure 3 shows examples of GridCellNet restoring from memory examples that closely
match the input. In the early stages of inference, the internal representation consists of a
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Figure 2: Performance of Classifiers Given Fixed or Arbitrary Sequences of Input. Clas-
sification accuracy on 1000 examples of the MNIST test set as a function of the number of
training examples per-class. a) Accuracy when an identical sequence of passes over the input
space is used for both training and inference. b) Performance when the starting point and
subsequent sequence over the input space can be arbitrary (i.e. different) between training
and inference. Error bars show the 95% confidence interval of the mean across three random
seeds.

small number of previously perceived features, and the next predicted feature. While Grid-
CellNet’s prediction is only queried for a single location (centred at the yellow highlighted
patch), the decoder naturally attempts to reconstruct the entire input. Furthermore, any given
feature vector is an abstract representation of a 16 x 16 pixel region. As such, un-queried
regions are not completely empty. At the point at which single-object convergence occurs,
enough features have been sensed that the decoded image often appears recognizable to a hu-
man. After then evaluating predictions at every unseen location, we observe that GridCellNet
can recall an example from memory that is similar to the input.

Note that although there will be overlap in the receptive fields of the different sensed in-
puts (each feature vector covers 25% of the input space including padding), reconstructing a
detailed representation of the object requires GridCellNet to predict the abstract representa-
tion at a particular foveation, given only the abstract representations at other foveations, i.e.
without direct access to the representation at a pixel-level. Despite this, one might wonder if
there is sufficient data in the initial ground-truth sensations before convergence to accurately
reconstruct the input. In particular, it might be possible to pad out the unsensed, predicted
regions with random vectors of the same sparsity as the ground-truth features, and yet still
achieve accurate reconstruction. To rule out this possibility, we provide a random predic-
tions control, where the ground-truth features up until convergence are still provided, but
predicted representations are replaced with such random vectors. These are included for the
two demonstrative digits in Figure 3a, as well as for an array of additional digits in Fig-
ure 3b. As can be seen, these control reconstructions are almost entirely meaningless, and
so GridCellNet’s predictive functions are crucial to the plausible reconstructions observed.
While some examples of GridCellNet’s representations are far from perfect (in particular the
2’ and ‘4’), the results provide evidence that these feature-level predictions could support
additional downstream tasks other than classification.
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Figure 3: Predicting Unsensed Parts of the Object. a) We use the sensed and predicted
features of GridCellNet and a decoder network to visualise the system’s representations.
We show two example prediction sequences (top). GridCellNet predicts its next sensation
(centred at the yellow highlighted patch) based on prior input. After converging to a single
representation, we visualize the system’s predictions of the entire image (purple border). A
diagram of the correspondence between past sensations and upcoming predictions is given
at the bottom, matching the representations seen for the ‘6’ in the middle row. At each
sequence step, the entire 5 x 5 grid of feature representations (each a vector of length 128)
is fed to a separately trained decoder. We also show a random predictions control (orange
border), where predictions are replaced by random binary vectors of the same sparsity. Note
"Sensation 1" is not shown, as at this time, there is no prediction for the network to make. b)
Several randomly-selected examples from the other classes. GT = ground truth.

4 Conclusion

We have presented a novel approach to the challenge of visual object recognition given
an arbitrary sequence of feature inputs sampled across space, a form of out-of-distribution
generalization. Robustness to a novel sequence trajectory is achieved through the use of
grid cells to model the location of features in the reference frame of an object. This robust
classification is often rapid, occurring after only a fraction of the total input space is sampled.
Finally, GridCellNet takes advantage of rapid Hebbian-style weight updates to enable few-
shot and continual learning robustness, and predictive components to enable the completion
of partially sensed images. Further discussion of our results and their context is provided in
the Supplementary Material (Discussion).

We believe that this work supports the notion that the brain may use grid cell computa-
tions when performing visual object recognition, and that this might underlie some of the
visual tasks in which humans still outperform engineered systems. Future versions of the
proposed architecture that enable a complete integration of back-propagation and rapid Heb-
bian learning will likely be important to realising its full potential.
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