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Abstract

Person re-identification (re-ID) aims to tackle the problem of matching identities
across non-overlapping cameras. Supervised approaches require identity information
that may be difficult to obtain and are inherently biased towards the dataset they are
trained on, making them unscalable across domains. To overcome these challenges, we
propose an unsupervised approach to the person re-ID setup. Having zero knowledge of
true labels, our proposed method enhances the discriminating ability of the learned fea-
tures via a novel two-stage training strategy. The first stage involves training a deep net-
work on an expertly designed pose-transformed dataset obtained by generating multiple
perturbations for each original image in the pose space. Next, the network learns to map
similar features closer in the feature space using the proposed discriminative clustering
algorithm. We introduce a novel radial distance loss, that attends to the fundamental as-
pects of feature learning - compact clusters with low intra-cluster and high inter-cluster
variation. Extensive experiments on several large-scale re-ID datasets demonstrate the
superiority of our method compared to state-of-the-art approaches.

1 Introduction
Person re-identification deals with matching the identity of a query image from a dataset
consisting of person images taken across a disjoint set of cameras. There has been consid-
erable research on this problem using supervised [3, 11, 36, 51, 55, 57], one-shot [45, 47],
transfer learning [5, 9, 32], unsupervised domain adaptation [12, 17, 18, 22, 49, 50, 56], and
unsupervised learning [6, 23, 24, 25, 38, 44] frameworks. Supervised approaches require a
labeled dataset having both identity and camera information, making them inherently biased
towards the dataset they are trained on and are therefore not generalizable. The unsupervised
counterpart does not assume the availability of any such labeled information making it more
deployment friendly in real-world scenarios.

Unsupervised domain adaptation (UDA) methods [12, 17, 18, 22, 49, 50, 56] tackle the
problem of domain generalizability by training on some available labeled source dataset and
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then adapting to the target unlabeled dataset. Though such methods have shown to yield
state-of-the-art results, they raise two important concerns: 1) labeled dataset is expensive to
obtain, restricting the scalability to real-world environments, and 2) there is no way to ascer-
tain the domain gap between the source and target datasets. Thus, one cannot ascertain the
ideal dataset that will yield the most superior domain transfer on target. Purely unsupervised
methods [6, 23, 24, 25, 38, 44] differ from UDA techniques as they delve one step further
into the complexity of the problem by being completely unaware of any identity information,
either in source or target dataset. In this work, we propose a novel discriminative clustering
approach for the purely unsupervised re-ID setup.

Learning without labels is challenging for any problem in general. For the re-ID task, this
involves learning discriminative features from the unlabeled dataset to identify query images
in the gallery set. Initially, we create pseudo labels by assigning each image its own unique
label. However, a simple re-ID training using pseudo labels as the supervisory signal fails
to learn any useful features. We thus seek to enhance the network’s discriminative ability
using a two-stage training procedure. We first take each image and generate similar looking,
pose-transformed images in the identity space. These are then assigned labels corresponding
to their original images. This helps project the image identity into different poses, thereby
yielding a set of more realistic augmentations, thus giving the model an insight into different
camera angles inherently present in the dataset. The base CNN is then trained on these
samples using the aforementioned pseudo labels as supervision. This is done in conjunction
with a metric learning loss to learn a latent space where data points belonging to different
identities are farther apart than those belonging to the same identity.

The second stage builds on the first stage by using the proposed discriminative clustering
algorithm. Plugging out the pose-transformed samples from the dataset, this step only lets the
network access the original unlabeled dataset. This not only eases the burden of training with
a large dataset but also helps in learning true distribution features. Our novel loss function
aims to explicitly move points in different clusters farther apart and the points inside a cluster
within a certain distance, thereby increasing the inter-cluster variation and decreasing the
intra-cluster variation. This helps the network achieve powerful discriminability.

Our contributions are summarized as follows:

• We design a pose-transformed dataset that does not require any identity information,
is non-parametric, and can be adopted to any person re-identification method.

• We introduce a novel radial distance loss that explicitly attends to inter and intra clus-
ter variations by maintaining a minimum radial distance between clusters while push-
ing dissimilar samples away. We also show that it helps discerning similar looking
identities.

• We achieve state-of-the-art results for the unsupervised person re-identification task
on the Market-1501 [53], DukeMTMC-reID [54], and MSMT17 [42] datasets.

2 Related Works

Traditional approaches using hand-crafted features [10, 23, 26, 28, 29], dictionary learning
[19], and saliency analysis [39, 52] did not implicitly extract relevant features invariant to
multiple factors of variations (viewpoint, illumination, background clutter).
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Unsupervised Person re-ID. Unlike traditional approaches, deep methods [6, 24, 25, 38]
instead give the network the freedom to learn discriminative features. [57] use camera-based
batch normalization that disassembles re-ID datasets and aligns each camera independently.
[24] propose a cross-camera encouragement term that relieves the issue of camera variance.
However, intra-camera identity or camera IDs knowledge is essential for such approaches,
which may not always be feasible. [38] use multi-label classification for label prediction and
a memory bank to store the updated image features. [40] assign camera-aware proxies for
dealing with intra-ID variance, thus assuming camera ID information. [44] use tracklet data
thereby assuming the availability of temporal information. In light of the above observation,
we formulate the solution to the unsupervised person re-ID problem in the simplest form
with no assumption of any form of identity related supervision.

Generative approaches. With the emerging popularity of generative adversarial net-
works, several recent works [8, 11, 16, 27, 33, 54, 55, 58] adopt a procedure to augment
the dataset by generating realistic looking training samples. The generative module in [55]
generates high quality cross-id images that are used to augment the dataset online. [22] dis-
entangle pose and appearance information using a labeled source dataset and adapt to target
dataset. However, all the above methods are either supervised in the target domain or in the
source domain for UDA approaches and are therefore unsuitable in an unsupervised person
re-ID scenario. On the contrary, we present a simple method for generating image-level sam-
ples by spatially transforming the images without leveraging any image identity information,
making the approach completely unsupervised.

Clustering-based methods. Clustering algorithms have been used to identify and group
similar features together for better discriminability. [6, 25, 38] initially assign each image
to belong to its own cluster and then progressively merge clusters. [25] use bottom up clus-
tering to automatically merge similar images into one cluster. However, they make a strong
assumption that images are evenly distributed between the identities which will almost never
be true for any dataset, and will fail to work when deployed to a real world scenario. [6]
explicitly take care of cluster compactness and inter-cluster separability using dispersion
based clustering by measuring the distance between all members between two clusters. [38]
propose to use multilabel classification to identify similarity between images. The method
inherently optimizes the inter- and intra- class distances. However, simply measuring the
distance between two points does not properly ensure cluster separability and compactness.

Unsupervised learning. There are several works that focus on learning discriminative
features. Center loss [43], for instance, tries to make every cluster compact by projecting the
cluster features at the center. DeepCluster [1] and SwAV [2] have been shown to be effective
for image classification tasks where both shape and appearance of an object play a role, such
as in large-scale datasets like ImageNet [4]. Recently, [14] highlight that reducing bias of
deep networks on texture helps improve ImageNet accuracy. However, learning discrimi-
native features for person re-ID requires the model to discern between different identities
of humans that frequently appear same due to similar apparel and/or occlusion. Though
such unsupervised techniques still work well for re-ID, they often do not explicitly tackle
the problem of inter and intra cluster variation. Those that do [6, 38, 43], fail to address the
challenging problem of distinguishing between similar looking identities.

Different from such works, we use clustering with the proposed radial distance loss that
addresses the twin goals of 1) maintainging high inter and low intra cluster variation, and 2)
discerning similar appearing identities.
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Figure 1: Pipeline of the proposed person re-id framework. PT Dataset: Poses and parts
corresponding to the original dataset are obtained. Parts are transformed spatially as per the
sampled poses, po

t to generate images, xp
i . PT dataset = original dataset + generated sam-

ples is used to train the initialization stage. Initialization Stage: Trained using triplet and
classification losses. Discriminative Clustering: Weights for F are taken from the Initializa-
tion Stage. F is trained only on the original dataset using triplet, classification losses and
the proposed radial distance loss. γ represents the minimum radial distance. The blue point
violates γ for Orange cluster, and thus, is pushed away.

3 Approach

In this section, we describe our proposed unsupervised learning framework for person re-ID.
Let the training set be denoted as Xo = {xo

i }N
i=1, where xo

i ∈ RH×W×3 with no associated
labels. Our goal is to learn a feature representation using a network F on this unlabeled
dataset. Initially each image is assigned its own unique label. The set of pseudo labels
are then defined as Y = {yo

i }N
i=1 where yo

i ∈ {1,2, ..,N}. We create an auxiliary dataset
Xp = {xp

j }
K×N
j=1 , where K is a constant integer scaling factor. The set Xp is constructed via

K different pose transformations applied on each image in Xo, where K is a hyperparameter.
For each xo

i , the corresponding K pose-transformed images are assigned the label yo
i . The

pseudo labeled Pose-Transformed (PT) dataset thus becomes D= {Xo∪Xp, Z}, where Z =

{yi}(K+1)N
i=1 and yi ∈ {1,2, ..,N}. For simplicity and future references, we denote the samples

in the Pose-Transformed dataset D as {xi, yi}. The pseudo labels, thus defined, enable us
to transform the unsupervised re-ID setting into a supervised one. We initially train a deep
network F on D in a supervised fashion. However, unlike the trivial augmentation functions,
such as flip, tilt, random erase, etc., the pose transformations result in a much larger diversity
for the data samples per class, akin to same exhibited by the target images observed across
a camera network. As a result, the proposed PT dataset can be utilized to provide a strong
supervision to the network and lay the groundwork for a better discriminative training.

Next, we seek to improve the discriminative power of F by further training it via cluster-
ing and the proposed radial distance loss. The aim is to pull similar features closer and push
dissimilar features further apart, the fundamental goal of any metric learning framework.
Evaluation is performed by measuring the Euclidean distance between the extracted features
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of query and gallery images using F .

3.1 Pose-Transformed dataset
Pose-Transformed (PT) dataset is modeled by spatially transforming the body parts of a
person in a re-ID image to a different random pose. We choose to transform each image into
K different poses. To achieve this, we extract the poses, P = {po

i }N
i=1 ∈R15×3 corresponding

to each person in Xo using the pretrained pose estimation model [20]. The aim now is to
transform the person in image xo

i from pose po
i , to a different randomly sampled pose, po

t ,
t 6= i from the set of poses P. We utilize the same set of poses extracted from the target
images to ensure that PT dataset adheres to a re-ID setup.

Body part masks. We propose to use two techniques for extracting body parts, repre-
sented by bo

i ∈ R10×H×W×3, 1) using the aforementioned pose estimation method [20], and
2) manually annotating the body parts of a single image and utilizing them throughout the
dataset. The latter has the advantage of not being restricted to use a method that estimates
human poses and body parts simultaneously. Through a quantitative comparison in Sec 4.4,
we show that the overall strategy is robust to using any of these techniques.

Parts transformation. The final step performs the alignment of the detected body parts
to the randomly sampled target pose, po

t . This is done by computing the parameters (rota-
tion, scaling and translation) of the spatial transformation, St , required for transforming the
detected pose, po

i to the target pose, po
t . We then get the transformed sample as, xp

i = St ◦bo
i .

Our aim here is to learn representative features from the dataset for each identity. During
spatial transformation, minute details from the face and body accessories may get distorted or
removed. But most importantly, we retain the body texture from the original image. This is
unlike the deep generative models [30, 31, 35] that attempt to reconstruct a person in different
poses. Even though they successfully reconstruct the person, the texture is comparatively
different than the original image. We thus seek to generate “a set of perturbations for each
original target”, that does not focus solely on image quality but on retaining most of the
features present in the original image. This is particularly useful for the re-ID task where
two different identities may look quite similar. Please refer Supp. for more details.

3.2 Initialization stage
The objective of the initialization stage is to build a groundwork for learning strong discrim-
inative features in the discriminative clustering stage.

Re-identification objective. Using the aforementioned pseudo labeled dataset, D, the
network F optimizes for identity classification using a cross entropy loss,

Lcls =
1

(K +1)N

(K+1)N

∑
i=1

log p(yi|xi) (1)

Metric learning objective. We use the softmax-triplet loss for learning discriminative
features early in the training. The loss is defined as,

Ltri =
(K+1)N

∑
i=1

e||F(xi).F(xi+)/τ||

e||F(xi).F(xi+)/τ||+ e||F(xi).F(xi−)/τ|| (2)

where, for any target image xi, xi+ is a positive sample taken from the same cluster, and
xi− is a negative sample taken from a different cluster (Initialization Stage, Fig. 1). This
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step helps the network learn discriminative features for each image, xo
i . Also, τ denotes

temperature parameter and ||.|| implies L2 distance unless specified.

3.3 Discriminative clustering
Fig. 1 shows the discriminative clustering stage. Although the pose transformed dataset
provides a strong supervisory signal, the learned features may not be discriminative enough
for accurate re-identification. We next describe the discriminative clustering strategy which
strongly boosts the discriminative power of the network.

At this stage, all the pose-transformed samples used in the initialization phase are dropped
from the training data, D. This not only reduces the computational overhead while comput-
ing clusters during training but also lets the network concentrate on learning features present
in the original dataset, Xo. We perform hierarchical clustering [48] to partition the dataset
Xo into C clusters. We also find the centroid, cl and radius, rl for each cluster Cl obtained
from the clustering algorithm. While a centroid is estimated as the mean of all the fea-
tures in the cluster, a cluster radius is defined as the Euclidean distance between features
of data-sample from the same cluster farthest from its centroid, and that of the centroid it-
self. Thus, a cluster centroid is computed as cl = mean{F(xo

j) |xo
j ∈Cl} and a cluster radius

as rl = max{‖cl − xo
j‖,∀xo

j ∈ Cl}. These estimated cluster parameters are further used in
enforcing the radial distance, discussed below.

Radial distance loss. At this stage we want to encourage large inter-cluster distance
while maintaining high similarity among features of data points belonging to the same clus-
ter. We propose to maintain a minimum radial distance for each image from all but the parent
cluster in the space. The radial distance between a cluster Cl and a feature from any sample
xo

i ∈Ck(l 6= k) is defined as, dl
i = ‖cl−F(xo

i )‖. To ensure strict separation between any two
clusters, this distance must satisfy the following condition: dl

i ≥ rl + γ , where γ is a margin
that ensures a minimum expected separation in terms of the radial distance.

We define the radial distance loss as

Lrd =
N

∑
i=1

C

∑
l 6=k

max(0, rl + γ−dl
i ) (3)

where γ is the minimum radial distance or margin that needs to be maintained. Thus, if
the point F(xo

i ) lies inside the minimum radial distance, i.e. breaches the minimum margin,
for any cluster Cl , except its own, it is assigned a penalty. Cluster assignments rl and cl are
calculated once every epoch and assumed to be the same throughout the epoch. This prevents
the network from training on adversely changing cluster radii and centroids, and makes the
cluster sizes robust to changing features. For instance, the cluster radius, rl may actually
shrink if the corresponding F(xo

j) comes closer to the centroid, cl . However, the minimum
radial distance will still prevent any point from coming closer to Cl as rl is kept constant for
the epoch. Similarly, the cluster radius may increase if the corresponding point F(xo

j) moves
away from cl . Even though the outlier point may now flout the minimum radial distance,
it may become a part of a cluster it is closer to, at the next assignment. Thus, the cluster
assignment for the data points to Cl , and the corresponding cluster radius, rl is updated in
the epoch.

On similar lines, triplet loss aims at maximizing the positive sample distance from the
negative sample distance, i.e., it works at point level. On the other hand, sd loss works at
cluster level, where the distance of the centroid (anchor) to the positive sample (radius) does
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not change throughout the epoch. All samples therefore inside the radius are considered
as belonging to the positive class for one learning epoch. Unlike in triplet loss, a slight
movement in the feature space, inside the radius, ensures that cluster assignment does not
change for a positive sample. A drastic change signifies an incorrect assignment which
is corrected during re-assignment at the next epoch. This makes the algorithm robust to
changing cluster assignments and cluster sizes.

Finally, the network is trained using the triplet loss, the classification loss, and the radial
distancing loss. The overall loss function is thus given by

L= Lcls +λtriLtri +λrdLrd (4)

where λtri and λsd are balancing hyperparameters. Triplet loss is now computed using
positive samples from the same and negative samples from a different cluster while the num-
ber of samples for both classification and triplet loss change to N.

Table 1: Comparison of our proposed method with state-of-the-art unsupervised person re-
ID methods on Market-1501, DukeMTMC-reID and MSMT17. * number taken from [25].

Methods
Market-1501 DukeMTMC-reID MSMT17

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP
LOMO [23] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8 - - - -
BOW [53] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3 - - - -
OIM [46]* 38.0 58.0 66.3 14.0 24.5 38.8 46.0 11.3 - - - -
BUC [25] 61.9 73.5 78.2 29.6 40.4 52.5 58.2 22.1 - - - -
TAUDL [21] 63.7 - - 41.2 61.7 - - 43.5 28.4 - - 12.5
DBC [7] 69.2 83.0 87.8 41.3 51.5 64.6 70.1 30.0 - - - -
TSSL [44] 71.2 - - 43.3 62.2 - - 38.5 - - - -
SSL [24] 71.7 83.8 87.4 37.8 52.2 63.5 68.9 28.6 - - - -
HCT [48] 80.0 91.6 95.2 56.4 69.6 83.4 87.4 50.7 - - - -
MMCL [38] 80.3 89.4 92.3 45.5 65.2 75.9 80.0 40.2 - - - -
CycAs [41] 84.8 - - 64.8 77.9 - - 60.1 50.1 - - 26.7
Ge et al. [13] 88.1 95.1 97 73.1 - - - - 42.3 55.6 61.2 19.1
CAP [40] 91.4 96.3 97.7 79.2 81.1 89.3 91.8 67.3 67.4 78.0 81.4 36.9
Ours 93.6 97.2 98.3 81.6 86.3 92.4 94.7 70.1 69.9 80.3 85.4 40.7

4 Experiments

4.1 Datasets and Evaluation Metrics
Experiments are conducted on three large-scale datasets - Market1501 [53], DukeMTMC-
ReID and MSMT17 [42] datasets. The Cumulative Matching Characteristic (CMC) curve
and mean Average Precision (mAP) evaluation metrics are reported on these datasets.

Market1501 [53] dataset consists of 32,668 images from 1,501 identities captured using
6 cameras. The training set consists of 12,936 images from 751 identities. The gallery and
query set consist of 19,732 images and 3,368 images respectively from 750 identities.

DukeMTMC-ReID [34] [45] dataset is a subset of the DukeMTMC [34] tracking dataset.
It consists of 36,411 images from 1,404 identities captured using 8 cameras. The dataset is
split into 16,522 images from 702 identities for the training set, 17,661 images from 702
identities for the gallery set, and 2,228 images from 702 identities for the query set.

MSMT17 [42] dataset consists of 126,411 images from 4,101 identities captured using
15 cameras (12 outdoor and 3 indoor). The training set consists of 32,621 images from 1,041
identities. The gallery and query set consist of 82,161 and 11,659 images respectively.
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4.2 Implementation details
We adopt ResNet-50 [15] pre-trained on ImageNet [4] as the backbone network for a fair
comparison with other works. It is then trained on PT dataset for 40 epochs using classi-
fication and triplet losses. The Adam optimizer is adopted with a weight decay of 0.0005,
and the learning rate is set to 3.5×10−4. For each identity from the generated training set, a
mini-batch of 64 is sampled with P = 16 randomly selected identities and M = 4 randomly
sampled images for computing the softmax triplet loss. Next, before each epoch, we perform
hierarchical clustering [48] on the extracted features from the initialization stage, followed
by the computation of cluster centroids and radii. The labels obtained from the clusters are
used to train the model along with the classification, triplet, and radial distancing losses. We
use the PyTorch library for implementation and train the model on a single RTX 2080 GPU.

4.3 Comparison with State-of-the-Arts
We compare our proposed approach with prior arts including LOMO [23], BOW [53] that are
based on hand-crafted features, TAUDL [21], TSSL [44], and CycAs [41] that use tracklets,
among other unsupervised learning methods [7, 13, 24, 25, 38]. Table 1 shows the Rank-1
and mAP results on Market-1501 [53], DukeMTMC-reID [54], and MSMT17 [42] datasets.
We achieve state-of-the-art performance on Market1501 dataset with 93.6% R-1 and 81.6%
mAP, improving on the prior art [40] by 2.2% in R-1 and 2.4% in mAP. Similarly, for the
DukeMTMC-reID dataset, we report 86.3% R-1 and 70.1% mAP, an improvement of 5.2%
in R-1 and 2.8% in mAP over [40]. Our method also outperforms the state-of-the-art [40] by
2.5% in Rank-1 accuracy and 3.8% in mAP on the more challenging MSMT17 dataset.

Table 2: Ablation study compar-
ing traditional augmentation tech-
niques AUG with PT dataset and
the importance of radial distance
loss (Lrd) on Market-1501 dataset.

Xo AUG PT Lsd R-1 mAP

8 8 8 8 7.8 2.6
3 8 8 8 28.2 10.5
3 3 8 8 34.9 14.6
3 3 8 3 42.2 19.9
3 8 3 8 58.7 27.7
3 8 3 3 90.3 76.1
3 3 3 3 93.6 81.6

Table 3: Ablation study
showing the effective-
ness of the PT dataset
when integrated with re-
cent state-of-the-arts for
Market-1501 dataset.

Method R-1 mAP

MMCL [38] 84.2 51.6
Ge et al. [13] 90.1 77.4

CAP [40] 92.7 80.3

Table 4: Ablation on us-
ing intuitive and easy to
obtain single image body
parts annotation (SIA) vs
body parts cum pose esti-
mation (PE [20]) method
on Market-1501.

SIA PE Lsd R1 mAP

3 8 8 59.1 28.5
8 3 8 58.7 27.7
3 8 3 90.1 76.8
8 3 3 90.3 76.1

4.4 Ablation Study
Effectiveness of PT dataset. We perform an extensive evaluation on Market-1501 dataset
under different settings as shown in Table 2. We refer to traditional image-level augmentation
techniques such as flip, tilt, jitter, random crop etc. used in re-ID methods as AUG. The
first row shows direct evaluation on ImageNet pre-trained ResNet50 which fails miserably.
Second row shows results for training only on original dataset, Xo. Next, employing AUG
provides the network a better discriminative ability. Using PT dataset as a replacement to
AUG shows a significant boost in performance of the re-ID model. This establishes the
effectiveness and importance of using highly diverse and non-trivial augmentations which we
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Figure 2: t-SNE visualization for A. 5 clusters with similar ap-
pearing but different identities, represented by images in the top
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Figure 3: Ablation
on the Market-1501
by varying the margin
γ , and sample scaling
factor K.

perform using pose space transformations. We also demonstrate this in Table 3 by using PT
dataset with state-of-the-art methods, reporting an improved performance on the respective
original baselines. Lastly, Table 4 compares the performance of our approach when using
the two techniques of extracting body parts of a person as described in Sec. 3. One can
easily obtain body parts from a single image annotation (SIA) which can then be used for
the complete dataset. This method fares favorably to the one used for obtaining both poses
and body parts [20] but has the advantage of not requiring a body part estimator. One can
then freely choose from any of the abundantly available off-the-shelf pose estimation models.

Effectiveness of radial distance loss. We hypothesize, a well-learned feature space will
learn similar features closer together than dissimilar features. However, in some cases, even
the similar features may belong to different identities and therefore must be strictly separable.
This would enable the method to distinguish between the small yet relevant differences often
existing between similar identities. The sd loss, Lsd maintains a strict separability of clusters
owing to the cluster radius and margin distances. This ensures that points from neighbor-
ing clusters do not overlap, making them well separable. Furthermore, because the penalty
outside the minimum distance is zero, this lets features from similar-looking identities re-
side close by in the feature space. We illustrate this in the next subsection. Table 2, shows
that Lsd enables the model to learn powerful discriminative features on both AUG and PT
datasets, yielding state-of-the-art results on benchmark datasets. We obtain best results (see
last row Table 2) when using augmentations along with our PT dataset for our discriminative
learning strategy.

Effectiveness of our discriminative learning method. To verify that the proposed
method does indeed maximize inter-clusters distances and minimize intra-cluster distances,
we plot the t-SNE [37] visualization shown in Fig. 2. Panel A shows the plot for 5 different
identities that appear similar due to their clothing patterns. The first plot represents the clus-
ters when plotted using ImageNet initialized weights. The highlighted ID in yellow shows
that images of the same identity are not separable. The second plot depicts the results from
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our initialization stage. The network has started to identify the discriminative features. Im-
ages from the highlighted ID are seen to have come together, whereas a small number of
images of the same ID have clustered at some distance. Finally, the last plot depicts the clus-
ters obtained after training finishes. The clusters have become more distinguishable showing
the high discriminative nature of the learned features. Though the final goal is not to ob-
tain perfect clusters, nevertheless, the model is able to distinguish between different similar
looking identities. Similarly, Panel B illustrates results on 20 randomly chosen identities.

Analysis on minimum radial distance margin γ . The minimum radial distance margin
ensures that clusters are at least a minimum distance γ from one another. A small margin
may lead to images being close in the feature space, and thus being misclassified. A high
margin on the other hand may lead to clusters themselves having a large radius. This would
mean that images of the same cluster can move far away from each other within the cluster.
An optimum margin keeps the clusters compact enough while keeping the adjacent clusters
at least preset distance away. Fig. 3 shows the ablation on selecting the best γ value.

Analysis on sample scaling factor K. It may intuitively seem that a high value of
K will give better results. Fig. 3 gives the evidence that the performance improvement
with increasing K is only up to a certain value and post that the performance stagnates.
We provide a simple reason for this. PT dataset is created using randomly sampled poses
which are all plausible. However, a pose estimation model may not always be effective
against occlusion, missing body parts or background clutter. This leads to inaccurate pose
and body part detection. Any random pose transformation applied to this image will become
contaminated with source errors, leading to the generation of noisy samples.

5 Conclusion
We present an expertly designed, identity independent pose-transformed dataset. This con-
stitutes spatially transforming images in the pose space for generating a realistic and diverse
set of images. We show this can be easily adopted to other person re-ID methods. Fur-
thermore, the novel radial distancing criterion introduced attends to the fundamental goal
of feature learning, i.e., low intra-cluster and high inter-cluster variation, thereby learning
strong discriminative features as established by extensive experimental analysis.
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