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Abstract

We propose a method for discovery and segmentation of objects that are, or their
parts are, independently moving in the scene. Given three monocular video frames, the
method outputs semantically meaningful regions, i.e. regions corresponding to the whole
object, even when only a part of it moves.

The architecture of the CNN-based end-to-end method, called Raptor, combines se-
mantic and motion backbones, which pass their outputs to a final region segmentation
network. The semantic backbone is trained in a class-agnostic manner in order to gen-
eralise to object classes beyond the training data. The core of the motion branch is a
geometrical cost volume computed from optical flow, optical expansion, mono-depth
and the estimated camera motion.

Evaluation of the proposed architecture on the instance motion segmentation and
binary moving-static segmentation problems on KITTI, DAVIS-Moving and YTVOS-
Moving datasets shows that the proposed method achieves state-of-the-art results on
all the datasets and is able to generalise well to various environments. For the KITTI
dataset, we provide an upgraded instance motion segmentation annotation which covers
all moving objects. Dataset, code and models are available on the github project page
github.com/michalneoral/Raptor.

1 Introduction
Segmenting a dynamic scene into independently moving parts is a practical task with a wide
range of applications like video editing, autonomous driving or human-robot interaction. In
this paper we focus on an important subset of the problem, where only a single camera is
available (monocular vision), the camera is not necessarily static and the processing is re-
quired to be causal. The goal is to discover and segment all independently moving "objects".
We refer to the problem as moving object discovery and segmentation – MODaS.

Object definition. The crux of the MODaS specification is the definition of the instance
or the object. The commonly used definition (see Section 2) is geometrical – a group of
pixels which undergo the same rigid motion and are connected spatially. This definition
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(a1) Raptor (MO,FW) (a2) Raptor (b1) Raptor (MO,FW) (b2) Raptor

Figure 1: Failures of motion-only "object" definition. (a1) Non-rigid objects are over-
segmented and static parts missed with Raptor (MO,FW), i.e without the semantic branch.
(b1) Overlapping semantically meaningful objects with the same motion returned as one
component. In both cases, the proposed method, Raptor, produces the desired output (a2, b2).

fails in two important cases: (i) when the object is not rigid, and (ii) when two semantically
different but nearby objects move similarly (see Figure 1). For applications, both the over-
and under-segmentation cases are problematic. For instance, when a person moves her leg,
the entire person outline should be returned as it is the person whose position is going to be
predicted, not the leg. The moving object is thus defined both geometrically, its part moves
independent of the camera motion, and semantically, it is a semantically meaningful entity.

Object discovery is closely related to modern detectors, as they output not just the po-
sition, but also a segmentation of possibly hundreds of classes [18]. In this respect we go
one step further and use a detector trained in a class-agnostic way [14], where all classes are
merged into a single "object" class. This way, the detector generalises better to objects of
classes not seen during the training (e.g. a camel is detected when the training data contain
only horses). To distinguish it from the detection problem with known classes, we call it
object discovery.

Independent motion. An object (or its part) is considered moving independently when
its apparent motion is not a consequence of camera ego-motion. Recognising such motions
from a monocular camera is an ill-posed problem in general. As the optical flow itself is only
a 2D projection of the 3D scene motion, its interpretation is ambiguous. Recent advances
in the monocular depth estimation offer a possible way to overcome these ambiguities. For
scenes with statistics similar to the training dataset, the mono-depth serves as a useful prior
of the true depth and is able to disambiguate the observed motion [46].

Contributions. We propose a CNN-based architecture called Raptor, based on a novel
combination of semantic and geometrical processing. We show that the class-agnostic se-
mantic part leads to discovery of semantically meaningful objects, while the geometrical
motion cost volume processing resolves the apparent motion ambiguities. The network dis-
covers both rigid and non-rigid moving objects and their instance segmentation masks. Un-
like the most methods [14, 15, 20, 31, 33, 38, 46], the Raptor architecture uses three frames
for the MODaS. We are the first to extend the geometrical part beyond two frame processing.
We show that estimation of geometrical features in both directions (forward and backward)
increases the precision of both the discovery and the segmentation outputs of the Raptor.

The method was evaluated on three standard benchmarks: DAVIS-moving [14, 28],
KITTI [23], and YTVOS-Moving [14, 43] and it achieved state of the art results, often
significantly surpassing other methods. The evaluation used an extended set of metrics and
Raptor is the top performer in all of them. Strikingly, the excellent performance of Raptor
was achieved despite being trained only1 on the COCO instance segmentation dataset [21]
and the synthetic FlyingThings3D dataset [22]. The diversity of the evaluation benchmark

1Individual modules used for motion cost volume computation were trained on different datasets.
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data and their difference from the training set makes it likely that Raptor will generalise well
to new environments.

As an additional minor contribution, for the KITTI dataset, we extended the official
independently moving instance segmentation ground truth to cover all moving objects, not
just a selection of cars and vans. We present results for a number of state-of-the-art methods
on this updated dataset.

2 State of the Art
The first monocular motion segmentation algorithms appeared already in the 90’s. Some of
them [4, 13, 19, 40] used robust but typically hand-crafted algorithms to separate the optical
flow into ’layers’ modelled by an affine motion. The problem was later given a more formal
treatment in [34]. In [19], motion segmentation was also already connected with tracking.
At about the same time, the first optimisation approaches using normalised graph cut were
proposed [30]. The focus of these approaches was usually the robustness to the imperfect
optical flow and the assumption of a simple geometrical motion model for the objects and
the scene. During this period, the first multi-body factorisation methods started to appear as
well [5, 12]

In the next decade, approaches built on Bayesian treatment of the problem [3], improved
on the multi-body factorisation [37], or proposed to integrate the motion segmentation into
the variational formulation of the optical flow estimation using level sets [8]. Going beyond
two frames only, feature trajectories clustering approaches appeared [7, 44] using geometry
and locality properties of the trajectories. Some approaches started to cluster pixels based on
simple appearance cues and region detectors [9, 10]. To reduce the computation, the frames
were also over-segmented into super-pixels [1].

Although there had existed checker-board multi-body factorisation datasets like Hop-
kins 155 [35], the first real-world dataset for evaluation was the BMS-26 dataset [7], which
was later extended into the FBMS-59 dataset [26].

Before the advent of the CNN approaches, a few more notable approaches appeared,
mostly re-iterating and improving on the previous ideas: e.g. detachable objects [2], more
advanced trajectory segmentation approaches [16, 25, 26], or a CRF-based approach [36].
Probably thanks to the FBMS dataset, the focus was mostly on the video segmentation. Later,
a few more datasets were introduced, most of them not directly for the MODaS problem, but
for related tasks [17, 27, 42]. All the above approaches focus on the geometrical aspect of
the task and completely ignore the semantic aspect. The approaches cannot compete with
the speed, robustness and performance of the modern CNN-based approaches.

The first CNN-based attempts explored their ability to learn the geometric segmenta-
tion in a fully convolutional way [33], used semantic object detector for video segmentation
proposal generation [15], but also introduced a two stream architecture with one branch
capturing the appearance and the other motion features, though applied to general object
detection only [20]. The SfM-Net approach [38] even attempted to train a do-it-all partially
unsupervised CNN. A motion segmentation MODNet [31] introduced a similar two-branch
architecture with two heads, one for bounding box regression and the other for segmentation.
However, the detection head ignored the motion cues altogether. In [47], a monocular depth,
ego-motion estimation and corresponding inlier mask are also integrated into a purely geo-
metrical and partially unsupervised pipeline. An alternative strategy is to train the trajectory
embedding using an RNN and use the trajectory clustering approach as before [41].
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Figure 2: Raptor architecture components: (a) the semantic branch (green), pre-trained on
the class-agnostic COCO dataset, outputs deep features for the current frame It , (b) the
siamese motion branch (brownish) which produces the motion cost volume using several ge-
ometric transformations of the three input frames, (c) the concatenated outputs of (a) and (b),
(d) the Hybrid Task Cascade (blue), which estimates instance motion segmentation from (c).

The most relevant approach to ours is that of [14]. Their architecture has two input
streams followed by a region proposal network and two heads, one for bounding box predic-
tion and the other for segmentation. The motion input branch takes the optical flow estimate
as input and is trained to detect all moving objects. The appearance branch is trained in a
class-agnostic way on the COCO dataset [21]. The main weakness of this architecture is
the reliance on the optical flow only in the motion stream. It is known to be ambiguous to
segment moving objects from a 2D projection of the true motion only.

The geometry ambiguities appearing in monocular motion segmentation were treated
in [46]. For every ambiguity they propose a cost which handles that particular case. All the
costs are packed into a motion cost volume which is passed to a rigid-body motion segmen-
tation CNN. This purely geometrical approach leads to a state-of-the-art scene flow when the
stereo depth is used, but struggles with the imperfect mono-depth. The motion segmentation
works relatively well for rigid-body motion, but over-segments articulated objects.

We take inspiration in the last two approaches and propose a method that combines the
strengths of both of them.

3 The Raptor Architecture
The proposed Raptor architecture is shown schematically in Figure 2. It has two input
branches: one producing semantic features, green, the other producing motion features using
the motion cost volume (MCV), orange. Their outputs are concatenated and sent to a Hybrid
Task Cascade (HTC) [11] head which produces the moving objects masks.

The semantic backbone (Fig. 2 (a)) is adapted from the DetectoRS architecture [29]. It
is built around a Recursive Feature Pyramid backbone (RFP) with Switchable Atrous Con-
volutions (SAC). We use the ResNet-50 variant of the backbone.

To transform the detection pipeline into an object discovery method so that it generalises
better to unknown classes, we follow the idea of class-agnostic training of [14]. We train
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both the backbone and a temporary HTC head on an object segmentation problem [21] with
all object categories merged into a single "object" category. The motion branch is not present
for this training. It has been show in [14], that this way the method predicts better unknown
classes. After this training, the HTC head is discarded and the semantic backbone weights
are fixed.

The motion branch (Fig. 2 (b)) is inspired by a recent rigid-body motion segmentation
approach [46]. It uses monocular depth Dt , optical flow Ft→t+1, optical expansion Et+1, and
ego-motion estimate, [Rt+1, tt+1], as inputs for the forward motion cost volume (MCV) con-
struction. We further compute the "backward" MCV using Ft→t−1, Et−1 and [Rt−1, tt−1]. As
in [46], we build a fourteen2 channel MCV for each direction consisting of: per-pixel Sam-
son error of the epipolar geometry, per-pixel rotational homography re-projection error, 3D
P+P cost, depth contrast cost, reconstructed 3D scene points from optical flow, rectified mo-
tion field, uncertainty of optical flow and optical expansion and 3D angular P+P cost. These
costs are designed to indicate inconsistency with the estimated ego-motion while dealing
with various ambiguities of co-planar or co-linear motion or the ego-motion degeneracy.

The motion branch backbone architecture is similar to the semantic backbone, but in-
stead of ResNet-50 it builds on the ResNet-18 DetectoRS architecture. The input is a 14
channel motion cost volume for each direction. Image features do not input directly to the
motion backbone. The MCVs for forwards and backwards directions pass-through motion
backbone one by one. The motion branch is pre-trained separately with another temporary
HTC head and without the semantic backbone on the MODaS problem. After this training,
the temporary HTC head is discarded again and the motion backbone is fixed.

Semantic + motion (Fig. 2 (b)) The outputs from the two branches are concatenated.
The semantic branch produces five feature tensors F1/4, F1/8, F1/16, F1/32, F1/64 with
decreasing spatial resolution and each with 256 channels.

The original motion branch produced feature tensors with 256 channels for each di-
rection. Facing the memory limitation of the training device, we normalise the outputs to
128-channels by an extra 1x1 convolution layer. Then, the outputs for both directions are
concatenated with the features from semantic backbone and are fed to the HTC head (512
channels in total). As the MCV is designed for rigid body motion only, it reports part-only
inconsistency for articulated objects. It is the task of the HTC head to combine these partial
inconsistencies together with the semantic features and output the complete moving object
segmentation masks.

Both branches are fixed for the final training and only the final HTC head is trained for
moving object discovery. The motion branch normalisation 1x1 CNN layer is trained during
the final stage of training together with HTC.

Improvement of MCV components. The motion branch uses several external algo-
rithms to generate its inputs. We also took care to bring them to their most advanced versions
available in literature. We use RAFT [32] instead of the original older and weaker VCN [45]
optical flow estimator. We trained RAFT on a wide range of datasets (Robust Vision Chal-
lenge style as prior works [24, 39] demonstrate increased generalisation). Using this flow
estimate we also re-trained the optical expansion part.

Unlike the original VCN, RAFT does not output the out-of-range confidence which is one
of the channels in the MCV. We substitute it by a similar forward-backward consistency cost
which is computed for MCV as Ft→t+1 +warp(Ft+1→t ,Ft→t+1), where the warp operation
transforms the flow Ft+1→t to the frame t. We do not threshold this value.

2Note the paper [46] describes 12 channels. The published code uses two extra channels.
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4 Experiments
We first present Raptor preliminary settings and the training datasets. Then, we explain the
evaluation metrics and compare Raptor with state-of-the-art instance motion segmentation
algorithms. Finally, we present an ablation study of the Raptor configurations.

4.1 Preliminary Settings
Construction of the MCV requires intrinsic camera parameters and estimates of camera mo-
tion [R, t] for the decomposition of essential matrices. We choose NG-RANSAC [6] for
essential matrix estimation, since it allows possible end-to-end training in the future work.
For the datasets which do not contain intrinsic camera parameters we set the focal length to
1/max(Iwidth, Iheight) and the principal point is set to the middle point of the image.

4.2 Datasets
Training data. We trained the final stage of Raptor on the FlyingThings3D dataset [22]
only. We follow the training procedure of RigidMask [46] for fair comparison and to demon-
strate better generalisation over evaluated datasets. We computed instance motion segmen-
tation masks from ground truth depth, optical flow, object masks and camera positions.
While [46] already prepared such dataset for training, it is not publicly available. We made
our training dataset public. We pre-train the class-agnostic segmentation branch of Raptor
on the COCO object segmentation dataset [21].

Evaluation data. We test our model on the KITTI [23], DAVIS-Moving [14, 28] and
YTVOS-Moving [14, 43] datasets. These datasets reflect a wide range of conditions for
MODaS application, from autonomous driving (KITTI) to freehand camera motion (YTVOS,
DAVIS). All of the datasets contain both rigid and non-rigid moving objects of a various se-
mantic classes.

The original KITTI dataset [23] contains moving object segmentation ground truth, but
it is restricted to a subset of moving cars and vans only. Other types of moving objects
(buses, trains, pedestrians) are not part of the ground truth data. We manually labelled the se-
quences to complete the annotations. We refer to this extended motion segmentation dataset
as KITTI-MS+. For compatibility with previous evaluations we show results on both KITTI
and KITTI-MS+.

The KITTI dataset contains intrinsic camera parameters, which we use during the evalu-
ation for camera motion estimation. DAVIS and YTVOS datasets do not contain the camera
calibrations. Thus, we approximate them with the approach detailed in Section 4.1.

4.3 Metrics
To evaluate Raptor we consider all metrics used by previous methods and add a few more
object-centric ones. We re-evaluate also the other methods using this extended measure set.

We adopt the standard precision (P), recall (R) and F-measure (F) introduced in [26].
However, these metrics do not penalise for false positive detections. Following [14] we thus
evaluate methods also with updated precision (Pu), recall (Ru) and F-measure (Fu) metrics,
which do penalise FPs.
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KITTI’15
exp. method bg obj P R F Pu Ru Fu AO FN FP AP

a Rigid mask (mono) [46] 397.43 390.73 384.31 488.19 485.57 368.73 489.41 374.47 486.66 26.03 6400 724.30
a Towards [14] 696.19 684.47 578.41 685.05 581.29 567.74 684.38 570.97 585.55 629.47 3155 531.80
a Towards w/o tracking [14] 794.58 779.79 774.12 779.68 776.43 659.64 782.00 764.51 780.62 736.43 5194 626.00

a+b Raptor 198.40 194.33 284.90 194.09 288.93 278.15 292.30 182.18 192.46 418.56 195 254.30
b Raptor (SEM) 596.44 489.77 188.12 293.78 190.40 758.24 195.00 667.69 292.18 11.16 71106 155.30
b Raptor (MO, FW) 497.18 588.26 677.16 586.27 680.80 468.41 586.37 473.59 684.19 524.36 2133 441.90
b Raptor (SEM+MO, FW) 298.28 293.17 482.70 391.60 386.56 178.17 391.29 281.56 389.97 317.63 4162 352.30

KITTI’15-MS+
exp. method bg obj P R F Pu Ru Fu AO FN FP AP

a Rigid mask (mono) [46] 398.39 379.32 676.56 675.29 675.13 379.75 483.82 379.32 768.28 240.66 6284 620.00
a Towards [14] 597.51 674.73 480.77 482.06 381.17 577.46 678.95 674.73 378.28 659.23 3101 524.50
a Towards w/o tracking [14] 796.71 769.13 773.92 774.73 774.00 769.57 776.99 769.13 671.80 763.33 5146 620.00

a+b Raptor 199.07 186.82 190.03 193.79 191.61 190.06 286.58 186.82 187.18 353.08 134 241.90
b Raptor (SEM) 696.96 576.31 381.90 580.83 480.73 671.05 192.70 576.31 475.44 124.37 7868 146.80
b Raptor (MO, FW) 498.18 478.16 579.20 383.50 580.53 479.00 581.89 478.16 574.55 556.72 283 429.80
b Raptor (SEM+MO, FW) 298.96 284.97 284.54 288.51 286.12 289.29 384.49 284.97 281.83 453.64 4103 338.60

DAVIS-Moving
exp. method bg obj P R F Pu Ru Fu AO FN FP AP

a Rigid mask (mono) [46] 692.68 750.78 766.59 754.63 754.55 759.98 750.50 750.78 747.68 750.41 73199 74.20
a Towards [14] 196.40 179.37 381.71 285.34 282.31 178.65 282.65 179.37 273.97 318.89 1549 433.00
a Towards w/o tracking [14] 294.90 572.57 579.96 480.31 478.35 569.11 382.12 572.57 570.11 218.25 63075 520.80

a+b Raptor 494.87 375.93 282.74 382.11 380.84 275.90 479.67 375.93 373.16 420.99 21638 240.80
b Raptor (SEM) 594.25 276.13 184.25 187.86 185.00 472.73 185.38 276.13 177.59 114.80 52979 145.40
b Raptor (MO, FW) 792.48 655.34 668.93 658.73 658.72 664.78 654.39 655.34 652.63 649.22 31852 614.00
b Raptor (SEM+MO, FW) 394.88 474.17 480.45 578.49 577.80 374.73 577.38 474.17 470.49 523.62 42339 337.30

YTVOS-Moving
exp. method bg obj P R F Pu Ru Fu AO FN FP AP

a Rigid mask (mono) [46] 783.62 718.70 732.77 718.21 719.71 729.88 717.48 718.70 734.42 779.94 62096 71.60
a Towards [14] 192.06 274.41 381.27 277.55 277.98 277.74 374.97 274.41 375.89 322.11 2543 333.50
a Towards w/o tracking [14] 588.83 369.24 282.32 376.36 377.05 368.73 276.83 369.24 570.54 217.98 72990 520.20

a+b Raptor 390.47 460.35 467.51 463.50 464.10 464.43 460.94 460.35 276.20 436.37 4760 240.00
b Raptor (SEM) 291.33 178.95 186.19 183.70 183.45 179.21 183.56 178.95 178.58 112.37 51363 157.00
b Raptor (MO, FW) 685.02 622.46 633.49 621.39 623.58 632.74 620.05 622.46 645.74 678.55 3752 64.90
b Raptor (SEM+MO, FW) 489.28 548.00 553.09 550.20 550.55 551.33 548.08 548.00 475.35 550.16 1415 431.90

Table 1: Raptor performance (exp. a) and ablation study (exp. b) on several datasets.
Results are coloured from best (green) to worst (red). See the description of the metrics in
Section 4.3. The left upper index shows the rank of the method. (Best viewed in colour.)

We also adopt background (bg) intersection over union (IoU) and objects IoU (obj) met-
rics used by [46]. For obj, first the best match between the ground truth and predicted
segmentation is found, then IoU is computed for all objects and averaged. To see better
the segmentation precision of successfully detected objects (IoU with GT greater than 50),
we introduce the average overlap (AO) measure which computes average IoU over these
detections only.

The above measures focus on the segmentation quality, so we present also classical false
positive (FP) and false negative (FN) measures to see the number of falsely detected or
missed GT objects. We further compute the average precision (AP) adopted from the COCO
evaluation [21] as a single number summary of the previous two metrics.

4.4 Results
For comparison we choose the two best performing methods for the instance motion segmen-
tation task. Both state-of-the-art methods, "Towards" [14] and "RigidMask" (mono) [46],
which we compare to, have shown results outperforming other prior work. As they did not
originally evaluate on the same datasets and using the same metrics, our evaluation also
shows their relative strengths and weaknesses on top of comparing them to Raptor. To-
wards [14] uses offline tracking of the whole sequence, both forward and backward in time,
as the final stage of the estimation process. For a fair comparison with Raptor and other state-
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GT Raptor RigidMask [46] Towards [14] Towards [14],
w/o tracking

Figure 3: Sample results on KITTI (rows 1-4), DAVIS-Moving (rows 5,6) and YTVOS-
Moving (rows 7,8) datasets. RigidMask fails to detect non-rigidly moving objects and pro-
duces high number of FPs even on parts of rigid scenes. Towards [14] fails in forward mov-
ing camera scenes, where it often detects static semantically meaningful objects. Without
tracking, Towards outputs FPs on all datasets. Raptor does not suffer from these problems.

of-the-art methods we evaluate also a versions of Towards without tracking (w/o tracking in
the tables).

We show results on individual datasets in Table 1. Figure 3 presents examples segmenta-
tions for Raptor and the compared methods. The KITTI dataset tests a forward camera mo-
tion through a structured environment, DAVIS-Moving contains a variety of object classes
and the camera is usually following the main subject, while YTVOS-Moving is composed of
rather difficult sequences with partially visible objects and background which is sometimes
barely visible and often difficult for the geometrical approaches.

Clearly, Raptor works well on all metrics across all datasets. In particular, it excels in AP
and AO measures which shows its ability to discover objects (AP) and its ability to segment
well the correctly (IoU > 50) found objects (AO).

Towards is the best on both DAVIS-Moving and YTVOS-Moving, but it used the training
parts of these datasets for training and uses the offline tracking. Without tracking, the ranking
swaps on DAVIS-Moving and the gap between Raptor and Towards reduces on YTVOS-
Moving. The tables also show how much is Towards relying on the tracking for FP reduction.
Towards is significantly worse on both KITTI datasets, demonstrating its inability to cope
with complex camera motion and to generalise beyond the training datasets.
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SEM MO, FW SEM+MO, FW Raptor GT

Figure 4: Ablation of Raptor component. We refer to Section 4.4 for details.

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5: Example of Raptor failure cases. The left of the image pairs shows GT and the
right the estimated segmentation. The most common failure cases are due to a small apparent
motion (a,b,c). Others problems include: obstacles (d,e), merging moving object instances
(f,g,h), false-positive detection for semantically meaningful objects (i) and optical flow fail-
ure (j). Sometimes, the GT is incomplete and we discover missing objects (k).

The RigidMask performs reasonably well on the original KITTI annotations containing
only rigidly moving objects, but the performance degrades on the extended KITTI where
pedestrians and buses are annotated as well. It fails on the other two datasets, where the high
FP values indicate that it over-segments the scene into rigid parts (see Figure 3).

The commonly used pixel-based measures (bg, obj, P, R, F, Pu, Ru, and Fu) are influ-
enced not only by the good detections as AO or AP, but also the "quality" of FPs and the
number of FNs. A slightly weaker values of these measures on DAVIS and YTVOS com-
pared to Towards indicate the problem of the motion branch to generate reasonable MCV
when the scene is covered almost completely by the object or the background is not static
(water, trees, ...). Being trained on the FlyingThings3D dataset only, the network has never
seen such scenes. However, the success of Towards on such sequences indicates that adding
similar data to training may improve results in such cases.

Interestingly, the class-agnostic instance semantic detector Raptor (SEM) is top ranked
in almost all metrics on the YTVOS-moving dataset. This indicates that only a minority
of semantically meaningful objects in the dataset are marked as “non-moving”, which we
consider a weakness of the dataset not noticed before. We also found that many objects
marked as “moving” do not move between some frames of the sequence, which results in a
higher number of FNs for all methods.

Raptor failure cases. (see Figure 5) The most common problem are slowly moving ob-
jects, objects far from the camera or objects close to the point-of-expansion. Their detection
would probably require longer temporal integration. Another problem observed is merging
of ambiguous object instances (a person with a bag, motorcycle and its driver, etc.). Rap-
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tor also struggles with significantly occluded objects (behind leafs, bars, ...) and sometimes
returns static but semantically meaningful objects.

Ablation study. Table 1 shows in its bottom parts the results of the ablation study. To
demonstrate the effectiveness of the combination of the semantic and motion branches, we
tested also a motion branch alone (MO, FW). It works reasonably well for the KITTI dataset,
similarly to the RigidMask method, but fails on non-rigid motion datasets like DAVIS and
YTVOS as expected. The tables also show that the backward MCV improves performance
compared to the forward version only (SEM+MO, FW) across the datasets. Typical results
of individual configurations are shown in Figure 4.

Time complexity. Currently, Raptor (including all individual modules) runs 3.1s3 per
KITTI-size image on average and needs about 5GB VRAM. The training took 12 days for
12 epochs for class-agnostic branch4. Pre-training of the motion backbone on the MODaS
problem took 2 days with 6 epochs and final Raptor stage training took 3 days with 6 epochs.

5 Conclusions

We proposed Raptor, a novel CNN architecture for the MODaS problem. It has both semantic
and geometrical components. That allow Raptor outputs semantically meaningful moving
object segmentation from a monocular video. Raptor shows a strong generalisation ability
across a range of environments and datasets. It achieves state-of-the-art results on standard
benchmarks using an extensive set of measures. We show that it benefits from using not
only forward, but also backward motion information. The network discovers both rigid and
non-rigid objects. We see this result as a first step towards monocular scene understanding.
For instance, in the autonomous driving scenario it is not enough to discover moving objects,
but it is also necessary to estimate their 3D trajectories. Given a monocular video, this is the
next challenge to be considered.
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