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Abstract

In this work, we propose a system for automatically extracting handwritten word em-
beddings, using the encoding module of a Sequence-to-Sequence (Seq2Seq) recognition
network. These embeddings are proven to be very discriminative, since they can be ef-
fectively used for Keyword Spotting, while they can also be fully decoded into the target
string following the Seq2Seq rationale. Architecture-wise, the proposed system incor-
porates several novel modules (e.g. auto-encoder path or non-recurrent CTC-branch)
that assist the training procedure and boost performance. Additionally, we also show
how to further process these embeddings/representations with a binarization scheme to
provide compact and highly efficient descriptors, suitable for Keyword Spotting. Numer-
ical results validate the usefulness of the proposed architecture, as our method provides
state-of-the-art results for both recognition and spotting.

1 Introduction
Handwritten Text Recognition (HTR) and Keyword Spotting (KWS) are two tasks of cen-
tral importance in the literature of document image processing. HTR deals with automatic
transcription of segmented lines of text [7] or isolated words [26, 35, 36], while in Keyword
Spotting the goal is to detect instances of specific keyword in a given digitized document.
Keyword spotting may be desirable over full text recognition, especially in cases where
recognition of the whole text is unnecessary or would likely be suboptimal [9, 31]. The two
problems are closely connected, and both have their analogous counterparts in speech and
audiovisual signal processing [13, 24, 25]. Yet, very often they are faced with different fam-
ilies of techniques. As is the case with most, if not all, tasks in computer vision, both HTR
and KWS are today dominated by neural network-based methods. In recognition, recurrent
neural networks have become the baseline [21, 29], as they naturally fit with the sequential
nature of handwriting, and especially after the introduction of a number of key elements
to the standard recurrent network paradigm [6, 7]. Such key advances include the Long
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Short-Term Memory model (LSTM) [12], that effectively dealt with the vanishing gradient
problem, and the Connectionist Temporal Classification (CTC) method and corresponding
output layer [10, 11], which allow simultaneous sequence alignment and recognition with a
suitable decoding scheme. Research on decoding schemes is also active [4], with the beam
search algorithm being a popular approach, capable of exploiting language models.

Regarding KWS, a number of recent deep learning methods have been inspired by the
attribute-based model of Almazán et al. [1]. In this model, character-level attributes are
learned as a Pyramidal-Histogram-of-Characters fixed-size vector (PHOC) and projected
along with string representations to a common subspace, allowing Query-by-Example and
Query-by-String word-level KWS. This base model has been further extended or adapted
[16, 33, 38] using convolutional neural networks to replace the whole or part of the pipeline.
These methods have been also used for word recognition, albeit lexicon-based, where the
rationale is to compare the common image attribute / string representations and return the
closest match in the lexicon. The attribute-based PHOC representation has been shown to
be decodable without the use of a lexicon, with some limited success [36]. The Sequence-
to-Sequence architecture, a component of the proposed method, has led to state-of-the-art
results in Natural Language Processing [41], involving translating an input sequence to an
output sequence of a different length in general. The use of the Seq2Seq architecture has
recently been used in HTR and KWS as well [40, 44], with notable results.

In this work, we present a Deep Neural Network (DNN) architecture that can tackle both
HTR and KWS, with the latter being in the spotlight of this paper. The main contribution
of this work is the extraction of discriminative holistic representations of handwritten words,
suitable for the KWS task. This is achieved through a Sequence-to-Sequence architecture,
where the encoder sub-module generates a fixed-size embedding of the initial image. Con-
trary to typical KWS approaches, which use a handcrafted attribute-based representation as
target, we translate input images into embeddings via training a Seq2Seq based recognition
system. Moreover, the generated embedding can be fully translated into a character sequence
through the decoder submodule, as opposed to attribute-based word representations, such as
PHOC [1, 38]. To accelerate Seq2Seq training, we propose an extra non-recurrent CTC-
based component, which acts in parallel to the Seq2Seq component and on top of a convo-
lutional backbone. Concerning KWS, we distinguish two categories: 1) Query-by-Example
(QbE), which can be addressed by simply comparing feature vectors, or 2) Query-by-String
(QbS), which can be implemented either by employing an extra encoder module that trans-
lates query strings to the Seq2Seq intermediate representation space, or by forced aligning
the query to the decoder. Furthermore, we show that the Seq2Seq-based representation can
be refined by binarizing it with an efficient Straight-Through Estimator-based (STE) retrain-
ing scheme [2]. This binary representation, aside from being very compact and economical
in terms of space, also allows for very fast KWS.

The remainder of this paper is organized as follows. In section 2 we present the proposed
architecture and outline its use for word recognition. In section 3 we discuss how to use the
proposed architecture for QbE and QbS Keyword Spotting. Finally, we present numerical
experiments on both tasks in section 4 and conclude the paper with section 5.

2 Proposed Architecture and Word Recognition
As stated in the introduction, the main novelty of this work is the extraction of fixed-sized
embeddings by training a recognition architecture. In this section, we describe in detail the
proposed architecture for word recognition, while its subsequent extension to handle KWS
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Figure 1: Proposed architecture. The word image is processed through a 2D convolutional backbone,
leading to w×d-sized feature map. The model then branches to two components, a CTC branch and a
Seq2Seq (encoder/decoder) branch, combined through a multi-task loss.

will be described in the upcoming section.
Our architecture comprises three basic components, namely a convolutional backbone

which feeds a CTC-based branch and a Seq2Seq branch. The Seq2Seq module [41], i.e.
a Encoder/Decoder Recurrent network pair, which takes as input the output of the afore-
mentioned CNN module, encodes the word information into a fixed-sized vector and con-
sequently decodes it into a sequence of characters. The simultaneous use of these branches
was motivated by the difficulty of training a Seq2Seq architecture, i.e. slow convergence,
compared to CTC-based one. The proposed model architecture can be examined in Figure 1.
In what follows, we describe our architecture modules and their functionality in detail.

Convolutional backbone: The visual feature extraction task is performed by a CNN,
dubbed as the convolutional backbone. This part of the network produces a feature map
based on a word image input, that will be subsequently processed by two “heads”, the CTC
and Seq2Seq branches. A total of four convolutional stacks, separated by max pooling op-
erations, are used, where each stack consists of multiple residual blocks topped by ReLU
(Rectified Linear Unit) non-linearities preceded by Batch Normalization (BN) and Dropout
layers. To further promote simplicity we transform the output of the CNN backbone of size
h×w×d into a feature sequence of size w×d by column-wise max-pooling (see Fig. 1). The
reasoning behind max-pooling is that we care only about the existence of features related to
a character and not their spatial position [42].

CTC component: Contrary to the majority of existing CTC-based approaches, the pro-
posed CTC branch does not comprise any recurrent layers. Instead, a stack of three 1D
convolutional layers with kernel size equal to 7, along with BN, ReLU and Dropout are
used. Note that multiple 1D convolutional layers are capable of encoding context-wise in-
formation, which is the major goal of recurrent networks. The gain of replacing recurrent
networks with 1D CNNs is two-fold: First, LSTMs are known to exhibit convergence diffi-
culties, while CNNs with BN can converge very fast. Second, convolutions can be fully par-
allelized and thus considerably improve training and inference time, as opposed to LSTMs.
The output of the 1D CNN is of size w× nclasses, where nclasses is the number of possible
character classes. Applying the softmax function on the final output, we form a sequence of
probability distributions over the possible characters which is then propagated into the CTC
loss LCTC. Given the trained system and an input image, the recognized character sequence
can be generated by a CTC decoding procedure [10]. Note that we strive for simplicity for
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this component, since its aim is to assist the training of the Seq2Seq branch. Specifically,
overall convergence is assisted by quickly generating discriminative features at the top of the
CNN backbone, simplifying the Seq2Seq task. Due to its training-oriented assisting nature,
CTC head is omitted during evaluation.

Sequence-to-Sequence Component: The main branch of the proposed network archi-
tecture involves a Sequence-to-Sequence component [41]. It consists of two recurrent neural
networks, the encoder, which projects a sequence into a fixed-sized vector, and the decoder,
which is responsible for decoding the encoded fixed-sized feature vector into the target se-
quence. The encoder network generates the fixed-sized vector by extracting the last hidden
vector of the recurrent operation as a holistic representation. The decoder network, given a
hidden vector and the previous element of the sequence, predicts the next element. Concern-
ing the problem of Handwriting Recognition, the input sequence is the sequence of visual
features, generated by the backbone CNN, as described. The output sequence is, as ex-
pected, the target sequence of characters. For our system, both the starting and ending tokens
(of a word) are selected to be the same space token (SP), which naturally separates words.
Architecture-wise, the encoder is implemented by a multi-layered bidirectional GRU [3]
module, while the decoder consists of a single-layered unidirectional GRU module. Imple-
mentation details as well as detailed formulation of the decoding process can be found in
Section A.1 of supplementary material. State-of-the-art Seq2Seq models typically use an
attention module [27], which directly propagates information from the input sequence to
the output sequence, circumventing the intermediate representation. However, such an addi-
tional module would result in decreasing the significance of the intermediate vector between
the encoder and the decoder and thus no such attention mechanisms are used in this work.
Specifically, for attention-based approaches, the character encoding information is mostly
propagated through the attention module while the intermediate feature vector usually assists
the spatial correspondence of the attention module. As we mentioned in the introduction, our
main goal it to generate unique word embeddings. The intermediate feature vector is ideal
for this task and thus adding an attention path would greatly affect the ability of generating
discriminative representations, despite the potential increase in recognition performance.

Training Scheme: The full model is then trained with a multi-task loss, defined as a
weighted sum of the loss for the two branches:

L(wcnn,wctc,ws2s) = LCTC(wcnn,wctc)+λLS2S(wcnn,ws2s), (1)

where LCTC and LS2S are the CTC and the Seq2Seq loss functions respectively and hyper-
parameter λ controls the contribution of each loss. LS2S loss is the average cross-entropy
loss across all the per-character predictions produced by the decoder. Since CTC head is
only used for faster convergence, while Seq2Seq is responsible for generating the proposed
embeddings, we expect a larger value of λ (we set λ = 10). The parameters of the backbone
CNN wcnn are jointly trained by both losses, while the parameters of the 1D CNN wctc and
the parameters of the Seq2Seq ws2s are optimized by their corresponding losses. In inference
mode, each branch can provide a (different) predicted character sequence, following either
the CTC or the Seq2Seq rationale. In practice, joint training offers an improved decoding for
either of the two inference options, compared to having trained the two branches separately.

3 Keyword spotting using the Seq2Seq encoding
In this section, we focus on the KWS task. Specifically, we describe how we can use the
proposed architecture, already trained for the recognition task, to tackle both QbE and QbS
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scenarios. Regarding QbS, we present two alternative schemes, one involving adding an
autoencoder module to the main network, and the other involving using a forced alignment
scheme on the Seq2Seq branch. Finally, we explore the effectiveness of training binarized
holistic word embeddings with the use of Straight-Through Estimator [2], significantly com-
pressing the generated representations.

Query-by-Example: The idea behind the proposed word spotting extension is to utilize
the architecture to generate descriptive holistic representations for each word image and the
query image. The intermediate feature vector of the Seq2Seq system, generated between the
encoder and the decoder module, is ideal for this task, as it readily produces a fixed-sized
descriptive word descriptor. Query-by-Example KWS is then straightforward, as it suffices
to compare descriptors with a suitable distance measure (cosine distance).

Query-by-String with an Autoencoder Module: As we have described, the existing
system can perform QbE spotting straightforwardly. Nevertheless, the QbS variation cannot
be executed with the current pipeline. To this end, we add an extra encoder module which
translates the target sequence (i.e. the string query) into an intermediate representation space
(following the rationale of [34]). This character encoder module along with the decoder
module of Seq2Seq branch form an autoencoder path, aiming to encode and subsequently
decode the exact same sequence. Training of the extra character encoder module is per-
formed by extending the loss for the Seq2Seq branch (replacing the corresponding term in
the full model multi-task loss of Eq. 1) in order to simultaneously train the decoder while im-
posing the same embedding space to both encoders. The detailed formulation of the updated
loss is included in section A.3 of supplementary material.

An additional interesting consequence of adding this autoencoder path is that a word
corpus (a collection of word transcripts) can be used to aid training. So far, we took into
account only the words existing in the training set, even though Seq2Seq system is capable
of learning an implicit language model of valid consecutive characters. The intuition behind
this variation is to assist the underlying implicit language model of the Seq2Seq system,
by feeding it with valid words that may not exist in the training set. Implementation-wise,
at each optimization iteration and after updating weights by backpropagating the multi-task
loss w.r.t. the standard training set, we fine-tune the autoencoder path with words drawn
from the word corpus. Note that this approach is not equivalent to imposing an external
n-gram language model at decoding time. Instead, we solely aim to improve the internal
representations during training, refining the existing implicit language model, without adding
any size or time inference overhead. Such implicit LM could assist the system to better
generalize when considering out-of-vocabulary (OOV) words.

Query-by-String with Forced Alignment: Even though holistic representations of fixed
size greatly simplify the upcoming matching step, we also consider the case of using the de-
coder model of the proposed Seq2Seq system as a scoring function for the representation xenc
constrained to produce a target word string s. This constrained decoding, usually referred to
as forced alignment (FA), is a popular QbS alternative based on character lattices [43], where
a specific sequence of character is scored according to a pre-computed character graph (con-
sisted of the probability of the character at each node, as well as the transition probability
from one node to another). The alignment term refers to the case of several possible align-
ments of the sequence of features to the desired sequence of characters.

However, considering the Seq2Seq rationale, query-constrained scoring can be efficiently
performed according to ∑i LCE(c′i,ci), where s = {ci} the query sequence and s′ = {c′i} the
predicted one. Specifically, we assume that the input of the decoder is the requested query s
and thus it is straightforward to predict the next character c′i+1, given the previous one ci and
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the hidden vector computed this far. Consequently, the score is the average cross-entropy
of the predictions and thus if the score is low, the query is similar to the representation
xenc. A more detailed description of the proposed force-alignment scheme is included in
supplementary material (section A.4).

Binary Word Representation: One noteworthy variation is the binarization of the in-
termediate feature vector, which can greatly reduce storage requirements for storing large
collections of documents, as well as time requirements of comparing such binary represen-
tations. Computational requirements and details about the binarization scheme can be found
in Section A.4 of supplementary material. The binarization of the word representation can
be simply performed by a sign operation on the already trained embeddings. Nevertheless,
binarizing the already trained embeddings by using a sign operation may significantly af-
fect performance (especially recognition). To address this problem we proposed a training
scheme for binarized vectors based on the Straight-Through Estimator (STE) [2]. Specif-
ically, we retain the exact same architecture and framework with the exception of a sign
operator between the encoder and the decoder of the Seq2Seq branch. Back-propagating
through the sign function is not feasible and thus we employ STE in order to effectively train
the proposed binary-inducing framework.

The Straight-Through Estimator works with discontinuous (threshold) functions which
are non-differentiable and uses them for the forward pass “as is”, while it allows the error
to be propagated without change through the backward pass, effectively ignoring them as
if they were the identity. Although STE has been used for training binary CNNs [30], it
is rather crude to be straightforwardly applied on the generated representations. One main
difference is that STE was applied on the network weights that are steadily updated, while
we apply STE to a feature vector with considerable variations for each image/word at the
same iteration. This problem was resolved by simulating a tanh activation based on the
following observation: xbin = sign(xenc) = lima→∞ tanh(axenc). We therefore distinguish two
cases: In the forward pass, we simply use the binarized vector sign(xenc) as decoder input;
in the backward pass, we treat the signed vector as if a tanh operation was applied, namely
tanh(xenc), and compute gradients and backpropagation error accordingly. Following the
STE reasoning, the a value is not important as long as we distinguish one hard operation at
the forward pass and a corresponding soft differentiable one for the backward pass.

4 Experimental Evaluation
Experimental Setup: We have run numerical trials on four different datasets, namely the
George Washington (GW) [6], Botany [28], Konzilsprotokolle [28] and IAM datasets [23].
The most widely used is the IAM dataset [23], consisting of a total of 13,353 handwritten
lines or 115,320 words, written by 657 writers, and for which both line and word level seg-
mentations are available. As IAM is a large and multi-writer dataset, it is very challenging
and typically used as the standard benchmark of comparison for either Handwriting Recogni-
tion or Keyword Spotting methods alike [5, 9, 18]. As evaluation metrics, we use the standard
metrics that are used in the related literature: Character Error Rate (CER) and Word Error
Rate (WER) for recognition, and mean average precision (MAP) for KWS. All experiments
follow the same setting: Training is performed assuming a word-level recognition system.
We train the proposed architecture using the Adam optimizer [37] for 80 epochs along with
a cosine annealing scheduler restarted every 20 epochs [22]. The pre-processing steps are:
1) All images attain a resolution of 64×256 pixels before used by the proposed framework.
Arbitrary-sized original images are padded, preserving the existing aspect ratio, in order to
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Figure 2: Overview of the different setups of the proposed system. Evaluation can be categorized to
recognition and three spotting cases: QbE, QbS and QbS by force-alignment (FA).

attain the aforementioned fixed size. If the original image is greater than the predefined size,
the image is rescaled. 2) A global affine augmentation is applied at every image as in [38]. 3)
Each word transcription has spaces added before and after only during training. This opera-
tion aims to assist the system to predict the marginal spaces that exist in the majority of the
images. Simultaneously, these spaces act as start and end tokens for the seq2seq approach.
More detailed description of architectural/training settings and recognition/spotting proto-
cols are provided in the supplementary material along with additional experimental results.
For the upcoming experiments, the intermediate embedding dimension equals to 512. Note
that no architecture exploration was conducted. We designed a compact DNN system, aiming
to minimize the required resources, which performs adequately well. Therefore it is possible
to observe further (minor) improvements, if a thorough architecture exploration is performed.
Code is publicly available at https://github.com/georgeretsi/Seq2Emb.

Proposed System Overview: First, we present a brief recap of training and evaluation
setups, focusing on clarifying which network modules are used at each case and clearly stat-
ing the different evaluation modes. As Figure 2 suggests, we can distinguish the training
setup and four distinct evaluation scenarios. Training procedure, as expected, includes every
proposed module, namely CNN backbone, CTC head, Seq2Seq head and the character en-
coder of the autoencoder path. As we have already mentioned, CTC head assists the faster
convergence of the proposed framework and thus it is used only during training. Since the
training setup assumes a recognition system, the evaluation of recognition task is straight-
forward: use the Seq2Seq head to predict an output sequence. We should highlight that the
main focus of this paper lies on generating discriminative embeddings and thus maximizing
recognition performance is sidelined. In fact, design choices of the proposed method do not
favor recognition performance (no attention mechanism is used in order to attain discrimina-
tive embeddings/ convolutional-only CTC head aims to faster training).

Using the proposed embedding space, keyword spotting can be performed by straight-
forwardly comparing the extracted feature vectors. QbE relies on the CNN and the encoder
modules for transforming both images into the embedding space, while QbS uses also the
character encoder module to transform the query string into the same embedding space.
Force-alignment QbS spotting mode requires the full Seq2Seq head (encoded/decoder) and
thus is closely related to recognition mode. In fact, a well-performing force-alignment
scheme is an indication of an effective recognition system.

Recognition and CTC Branch Impact: We start by exploring the word recognition task
with the full set of existing characters, i.e. letters of either, digits and punctuation, following
the line-level recognition setting. Recognition results, using a greedy decoding procedure,
are summarized at Table 1(upper-right). We distinguish the training scheme to alone, where
each branch is trained separately, and joint, where both recognition flows are trained together
as a multi-task problem (see Eq. 1). Experimental results suggest that the Seq2Seq approach
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has convergence difficulties when trained alone. Nevertheless, when used alongside the CTC
branch, Seq2Seq has a notable increase in performance for the exact same number of epochs.
This is in line with our initial suggestion of a fast converging CTC pipeline, which helps the
generation of meaningful visual features at the CNN output in only a few epochs. We further
validate this behavior through the results of Table 1(left), where joint training achieves faster
convergence with consistently lower loss values despite using an additional loss term.

Moreover, we should highlight that Seq2Seq variation gives the best word error rate. This
behavior can be attributed to the implicit language model learnt by the Seq2Seq approach,
which can generate more plausible sequences of characters. To further examine this obser-
vation, we present examples of decoding errors from the two different recognition branches
in Table 1(bottom-right). We can deduce from these errors that the two branches almost con-
sistently lead to somewhat different decodings, while Seq2Seq errors show that this branch
has learned a language model (character n-grams) to an extent, as we expected.

Keyword Spotting: Having established the functionality of the recognition system, we
focus on exploring the proposed variations for the Keyword Spotting task. Spotting ap-
proaches usually use a different character set, consisted only of lowercase letters and digits,
and thus we follow the same setting, both for word spotting as well as the reported recogni-
tion results from now on. Ablation studies are performed on the challenging IAM dataset.

A simple, yet interesting, preliminary spotting experiment is to use the recognition sys-
tem in order to generate string predictions and then evaluate the QbS performance by com-
paring these predictions with the text queries (using the Levenshtein distance). The MAP
performance of this setting is 89.28%, when the proposed embedding-based QbS is 95.50%.
We can see that the "hard" decision of explicitly specifying a unique character sequence
leads to notable precision decrease. Moreover, embedding-based spotting can be imple-
mented more efficiently since no decoding procedure nor the time-consuming Levenshtein
comparison are required. In a nutshell, this experiment highlights the importance of dedi-
cated spotting methods instead of treating KWS as a by-product of the recognition output.

Table 2 (left) contains the experimental results for both QbE and QbS, along with the
recognition metrics for the decoder (Seq2Seq branch), using the proposed system dubbed as
Seq2Emb. Recognition results act as an extra indication of the effectiveness of the Seq2Seq
branch. Along with vanilla trained Seq2Emb system, we also consider feeding word strings
from a corpus to the autoencoder path and binarizing the intermediate embeddings. Specif-
ically, we learn an implicit LM (Seq2Emb+LM), as described in the previous section, using
a concatenation of the LOB [14] and BROWN [8] corpora, from which we sample words
according to their occurrence frequency. This extra information feed has a positive im-
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Table 1: Recognition on IAM. (left) loss curves indicating the importance of the CTC assistance mod-
ule. (upper-right) Recognition results reported w.r.t training each branch separately (“alone”) versus
training with the proposed multitask loss (“joint”). (bottom-right) Error decoding examples using the
proposed joint model. Results using either model branch are compared (CTC/Seq2Seq).
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method QbE QbS CER WER
Seq2Emb 91.62 95.50 5.1 15.1

Seq2Emb+LM 92.04 95.91 5.0 14.7
Seq2Emb+LM+B (w/o train) 86.12 90.80 79.62 98.53
Seq2Emb+LM+B (w/ train) 90.89 93.51 5.0 15.2

method binarization MAP
Autoencoder No 95.91

Module Yes 93.51
Forced No 96.53

Alignment Yes 96.38

Table 2: Keyword Spotting on IAM. (left) Comparison of recognition and KWS results when incorpo-
rating a language model (+LM) and binarizing the representation (+B). (right) Comparison of different
approaches for QbS KWS with or without the binarization scheme

pact on both recognition and KWS, supporting the observation drawn from Table 1(bottom-
right). Finally, we also report the effect of the proposed binarization scheme, dubbed as
Seq2Emb+B, for two different settings: straightforwardly apply the sign operation on the
embeddings generated by an already trained system or re-train the whole system according
to the STE rationale. The first case produces decent KWS results, even though it deterio-
rates performance, while it completely ruins the decoding ability of the generated embed-
dings. Nonetheless, using the STE scheme, recognition performance is close to the initial
non-binary case, while KWS results are also considerably improved. Overall, we get a well-
performing system over all tasks despite the information loss due to the binarization step,
while at the same time obtaining a very compact descriptor.

We also compare the two proposed QbS/KWS strategies, presented in Table 2 (right).
Specifically, we compare QbS using the character encoder module versus the forced align-
ment approach. Notably, the Forced Alignment approach increases spotting performance,
regardless if the word representation is binarized or not. Of course, the improvement is
achieved at the cost of computational effort, since encoder-based QbS relies on comparing
fixed-length representations with a simple distance metric, and is thus very efficient.

Method IAM GW
CER WER CER WER

Sueiras et al. [40] 8.8 23.8 - -
Wigington et al. [45] 6.07 19.07 - -
Krishnan et al. [20] 6.34 16.19 - -

Dutta et al. [5] 4.88 12.61 4.29 12.98
Zhang et al. [47] 8.50 22.20 - -
Kang et al. [15] 6.43 16.39 - -

Proposed Models
Seq2Emb+LM 5.01 14.73 4.23 10.82

Seq2Emb+LM+B 5.04 15.21 4.65 12.27

Table 3: Comparison of state of the art word
recognition approaches for IAM and GW. Bina-
rized variation is also included.

SoA Comparisons: Finally, we com-
pare the proposed method to state-of-the-art
approaches for both the recognition and the
spotting task. Even though we focused on
generating effective embeddings and expect
sub-optimal recognition performance, we re-
port recognition results in Table 3 for the
sake of a thorough exploration. We con-
sidered the two recognition-oriented datasets
for this scenario: IAM and GW. Since we
follow the setup of the reduced character set
(as in [1]) which is also used in KWS, we
included related works with the same setup
and the same task, i.e. unconstrained lexicon-free word recognition. Detailed informa-
tion about the setup is included in the supplementary material. Compared methods include
Seq2Seq approaches [15, 40, 47] and CTC-based approaches [5, 20, 45], while [15, 40, 47]
do not state explicitly the character set used (if the full character set is used as in Table 1, a
reduced performance is expected). Results show competitive performance of the proposed
method even when binarized embeddings were considered, outperformed only by [5] for
IAM. Thus, the numerical results support our claim of extracting discriminative binary word
representations which can be faithfully decoded with negligible degradation of accuracy.

A comparison of our method versus state-of-the-art methods for KWS is presented in Ta-
ble 4, including all four aforementioned KWS datasets. The proposed variations outperform
or are in par with existing SoA approaches, even when we extract binary embeddings. Inter-
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estingly enough, the binarization scheme has almost non-existent degrading impact on the
"easier" datasets GW, Botany and Konzilsprotokolle, as opposed to the deteriorated results of
IAM. Contrary to the reported methods of Table 2, we successfully use a recognition-oriented
architecture to extract word embeddings. Specifically, most of the works employ PHOC-
based representations for training [1, 16, 19, 38, 39]. Others rely to training according to an
explicit word classification task, including of all the possible words [17, 18], while the triplet
loss for generating distinct embeddings is employed in [46]. Also, [19, 46] make use of se-
mantic information to increase performance. Note that Krishnan et al. [16, 17, 18, 19, 20]
use several performance-enhancing techniques, which are orthogonal to our approach (and
thus potentially beneficial if added to the proposed pipeline), such as pretraining with a very
large synthetic dataset and extensive data augmentation with local deformations. Also note
that our network, including all its sub-components, is considerably smaller compared to vast
VGG-based models such as PHOCNet [38, 39].

Method IAM GW Botany Konzils
QbE QbS QbE QbS QbE QbS QbE QbS

Attributes+KCSR [1] 55.73 73.72 93.04 91.29 75.77 65.69 77.91 82.91
PHOCNet [38] 72.51 82.97 96.71 92.64 89.69 74.47 96.05 94.20

HWNet [17] 80.61 - 94.84 - 84.16 - 79.13 -
Triplet-CNN [46] 81.58 89.49 98.00 93.69 54.95 3.40 82.15 12.19

PHOCNet-TPP [39] 82.74 93.42 97.78 98.02 91.23 95.06 97.70 97.28
DeepEmbed [16] 84.25 91.58 94.41 92.84 - - - -

Deep Descriptors [32] 84.68 - - - - - - -
Zoning Ensemble PHOCNet [33] 87.48 - - - - - - -

End2End Embed [20] 89.07 91.26 98.14 97.42 94.82 88.60 92.96 71.00
DeepEmbed [20] 90.38 94.04 98.01 98.86 95.46 97.17 94.11 90.65

Synth+DeepEmbed [20] - 95.09 - 98.98 - 97.18 - 91.43
HWNetV2[18] 92.41 - 98.24 - 95.26 - 93.47 -
NormSpot[19] 92.54 96.54 99.37 99.46 - - - -

Proposed Variations
Seq2Emb 92.04 95.91 97.86 98.41 95.73 98.23 97.51 98.66

Seq2Emb+B 90.89 93.51 97.83 98.38 94.89 98.01 96.79 98.26
Seq2Emb+FA - 96.53 - 98.77 - 99.00 - 99.21

Seq2Emb+B+FA - 96.38 - 98.52 - 98.78 - 99.25
Table 4: Comparison of the state of the art for Keyword Spotting versus variations of the proposed
method for four KWS datasets: IAM, GW, Botany and Konzilsprotokolle (Konzils). The proposed
method uses the implicit LM training module (+LM) only for IAM and GW.

5 Conclusions
We have proposed a novel DNN-based system that can generate discriminative word embed-
dings, ideal for Keyword Spotting. The core idea is to make use of the encoding output of
a Sequence-to-Sequence architecture, trained for performing word recognition. A number
of extensions and variants of the base architecture have been also proposed and discussed,
including a retraining scheme that can produce binarized, compact descriptors as well as two
alternative ways to handle QbS KWS with our model. In almost all of the variations of the
tasks considered, the proposed model was shown to provide state-of-the-art results.
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