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Abstract

Exploiting global contextual information has been shown useful for improving per-
formance of scene parsing and hence is widely used. In this paper, unlike previous work
that captures long-range dependencies with multi-scale feature fusion or attention mech-
anism, we address the scene parsing tasks by aggregating rich contextual information
based on graph reasoning. Specifically, we propose two graph reasoning modules, in
which features are aggregated over the coordinate space and projected to the feature and
probabilistic spaces, respectively. The feature graph reasoning module adaptively con-
structs pyramid graphs as multi-scale feature representations and then performs graph
reasoning to model global context. Whilst, in the probabilistic graph reasoning module,
graph reasoning is performed over a graph consisting of class-dependent representations
generated by aggregating the pixels that belong to the same classes. We have conducted
extensive experiments on the popular scene parsing datasets, including Cityscapes, PAS-
CAL Context and ADE20K, and achieved state-of-the-art performances.

1 Introduction
Scene parsing, a fundamental topic in computer vision, aims to predict classes of all pixels
based on their properties for a given image. It has found various applications in auto-driving,
indoor scene understanding and robot navigation. In recent years, convolutional neural net-
works (CNNs) based on the fully convolutional network (FCN) [21] have pushed the perfor-
mance of scene parsing algorithms to soaring heights [4, 19, 33, 38]. Scene parsing can be
considered as a pixel-wise classification process, and capturing long-range relations between
pixels and modelling global contextual information can help achieve good results. However,
due to the local connectivity of CNN filters and large input images, size of receptive field is
often too small to aggregate enough information even with very deep models [41].

To address the above problem, many approaches have been proposed to enlarge the size
of receptive field or to aggregate and model global context. Early work [2, 3, 34] removed
the last two downsampling layers and utilized dilated convolutions in CNNs to obtain larger
feature maps and richer contextual information. Later, pyramid pooling based approaches [3,
4, 38] have been proposed to further enlarge the receptive field and capture global contextual
information to boost the performance. Recent work [8, 13, 14, 35, 40, 43] based on the
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self-attention mechanism [31] has been developed to capture global feature dependencies
and update the representations for each pixel. More recently, graph reasoning based context
modelling methods [5, 11, 17, 18, 32, 37] have shown excellent results on scene parsing
tasks, where a graph is learned from clusters of pixels to generate feature representations
and graph reasoning is performed over the graph to model global relations. In this paper, we
address scene parsing by further exploring the properties of the optimal graphs constructed
in the graph-based methods.

In principle, vertices in the optimal graphs should contain semantic contextual informa-
tion, representing groups of pixels that share similar characteristics in the coordinate space,
whilst irrelevant information should be suppressed as much as possible. Objects in images
have varied sizes and locations, hence it is crucial to construct multi-scale graphs consist-
ing of multi-level feature representations to capture multi-level context. Aggregating pixels
belonging to the same classes is an effective way to obtain representative vertices in graph.
To this end, we propose two types of graph reasoning modules to capture long-range de-
pendencies and aggregate contextual information for scene parsing in the feature space and
probabilistic space, respectively. Specifically, we append two parallel graph reasoning mod-
ules on the top of dilated CNNs. One is a feature graph reasoning (FGR) module, where
pyramid graphs are constructed to generate multi-scale feature representations. We intro-
duce graph reasoning to capture the dependencies between vertices in the graphs, and then
graphs are fused and distributed back to coordinate space to enhance feature learning. The
other is a probabilistic graph reasoning (PGR) module, which utilizes a coarse segmentation
map to aggregate pixels and generate class-dependent representations in one graph. Then
graph reasoning is performed to model the relations between different classes. Finally, the
outputs of these two modules are fused to yield the final segmentation result.

Main contributions are summarized as follows:
(i) We explore the desired properties of graphs in the graph-based method, and demon-

strate that exploiting multi-scale feature representations in pyramid graphs is an efficient way
for feature learning, and utilizing prior segmentation information to construct graph can help
model context and improve performance.

(ii) Two graph-based context aggregation modules are proposed to capture long-range
dependencies and model contextual information in feature and probabilistic spaces respec-
tively for scene parsing tasks.

(iii) We developed a model based on the proposed dual modules, and achieved state-of-
the-art performances on the Cityscapes [6], the PASCAL Context [23] and the ADE20K [42]
datasets, demonstrating the effectiveness of the proposed method.

2 Related Work
Scene Parsing and Semantic Segmentation. Recent approaches based on CNNs have
achieved great successes in scene parsing and semantic segmentation tasks. FCN [21] was
the first approach to replace the fully connected layers in CNNs with convolutional layers to
convert the scene parsing tasks into pixel-level classification tasks. Since then, methods for
scene parsing can be roughly divided into two categories. One category removes the last two
downsampling operations and employs dilated convolutions to preserve receptive field and
resolution [2, 3, 34, 38]. The other category adopts the encode-decoder structure to recover
resolutions step by step [1, 24, 28]. Moreover, some segmentation methods focus on im-
proving efficiency. In ICNet [39] and ContextNet [27], downsampled images were applied
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to deep branches while large images were applied to shallow branches to reduce computa-
tional complexity. Raszke et al. [25] built a lightweight backbone to reduce computational
complexity by discarding the last stage of the network. Mehta et al. proposed the ESPNet
[22], where multiple dilated convolutions were adopted in each module to extract features.
Context Aggregation. Due to varied scales of objects in scene images and local connectivity
of CNN filters, aggregating contextual information and capturing long-range dependencies
can help boost the performance of scene parsing. In DeepLab series [2, 3, 4], an atrous
spatial pyramid pooling (ASPP) module was proposed to encode and aggregate multi-scale
contextual features by using different dilated convolutions. In ParseNet [20], global pool-
ing was used to aggregate contextual information to provide sufficient global information.
In PSPNet [38], different average pooling operations were utilized to obtain contextual in-
formation at different scales. EncNet [36] uses a context encoding module to selectively
highlight class-dependent features. Another popular way for context aggregation is adopting
the self-attention mechanism based on the non-local block [31] to model relations between
each pair of pixels. In [8], two attention modules were proposed to capture global depen-
dencies along spatial and channel dimensions respectively. In OCR [35], object contextual
representations were learned by aggregating pixels lying in the object regions. Moreover,
some methods [13, 14, 43] have been proposed to reduce the computational complexity of
attention mechanism.
Graph Reasoning. Graph-based methods have been increasingly used in computer vision
recently. Graph convolutions [15] were initially proposed for semi-supervised classifica-
tion. Later, Chen et al. [5] projected pixels to an interactive space to obtain a feature graph,
and then relational reasoning was performed by graph convolutions to model global context.
SGR [18] uses external human knowledge to guide the graph reasoning module to enhance
local feature representations. In A2-FPN [12], multi-level features were extracted and pro-
jected to different graphs to capture dependencies for instance segmentation. GINet [32]
creates two interactive graphs to encode dependencies between visual features and linguis-
tic correlations respectively. In CDGCNet [11], a coarse prediction map is used to extract
features and construct a separate graph for each class, and graph reasoning is independently
performed to learn useful information. Different from this approach, our method constructs a
single graph where each vertex represents a class and models the relations between different
class-specific representations. In [17], the original feature maps were considered as pyramid
graphs to be performed graph reasoning, while in our method, pixels in the feature maps are
first aggregated and projected to pyramid graphs in different spaces, and each graph contains
more essential feature representations than the original feature maps.

3 Methods
In this section, we first review the basic knowledge of graph convolution, then introduce
in detail the proposed graph reasoning modules performing in the feature and probabilistic
spaces respectively. Finally we describe how to combine them in the overall framework.

3.1 Graph Convolution
Traditional convolutions operate as sliding windows on input feature maps to encode feature
pixels in neighbouring cells, pixels in neighbouring cells are connected in order with this
operation. While in graph convolutions [15, 16], the input is an undirected graph, where
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Figure 1: An overview of the proposed feature graph reasoning module. “s” denotes the
scale factor of pooling operation, and ⊗ is matrix multiplication.

vertices are unordered and cannot be convolved by a structured convolutional filter. To prop-
agate information over the entire graph, an adjacency matrix is used to model the relations
between pairs of vertices. Explicitly, given an input graph G ∈ RN×D, where N and D are
the number of vertices and channel number of the graph respectively, the graph convolution
is formulated as

G̃ = σ((A+ I)GW ), (1)

where A is a N×N adjacency matrix for information diffusion over the graph, I is the identity
matrix to add self-connections for the adjacency matrix, W ∈ RD×D is a trainable weight
matrix to perform linear transformation and σ is a non-linear function. In our experiments, A
is randomly initialized and learnable, W is set to a 1×1 2D convolution, and σ is set to ReLU
function. After graph convolution, each vertex is incorporated with necessary contextual
information from other vertices.

3.2 Dual Graph Reasoning Modules

3.2.1 Overview

In scene parsing tasks, the relationships between different objects provide vital clues. For
example, boats are usually on the water, and cars are often by the side of the road. Dual
to the limited receptive field and local connectivity of traditional convolutional filters, such
global scene clues are hard to utilize. Capturing long-range dependencies and modelling
global context can effectively address this issue.

Different from the previous pyramid pooling approaches or methods based on the self-
attention mechanism, we propose two graph-based modules to capture global dependencies
by modelling relations among vertices, and we also investigate the desired properties of
optimal graphs. We design a feature graph reasoning (FGR) module, which constructs pyra-
mid graphs to model multi-level feature representations, and a probabilistic graph reasoning
(PGR) module to aggregate class-level contextual information and model class-dependent
representations.
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3.2.2 Feature Graph Reasoning (FGR) Module

Due to different scales and locations of objects in scene parsing tasks, multi-level features
need be encoded to provide sufficient information. Towards this objective, we construct M
feature graphs in the FGR module to encode multi-scale feature representations. Here we
just take one scale s as an example, other scales are processed in a similar way. For this scale,
given an input feature, X ∈ RH×W×C, where H, W and C are the height, width and channel
number, respectively, we first use an average pooling operation to reduce spatial size and a
1×1 convolutional layer to squeeze channels, obtaining feature, Y s ∈ RHs×W s×D, where Hs

and W s are the height and width at scale s respectively, and D is the reduced channel number.
As illustrated in Figure 1, for each scale, feature Y s is first reshaped to RLs×D, where

Ls = Hs×W s is the number of pixels. Then a projection matrix, Ac f ∈ RNs×Ls
, is calculated

to transform Y s from the coordinate space to a graph in the feature space, and Ns is the
number of vertices. The projection matrix Ac f is generated by a linear transformation and
softmax normalization as

Ac f
i j =

exp(ys
j ·w

p>
i )

∑
Ls
t=1 exp(ys

t ·w
p>
i )

, (2)

where Ac f
i j is the normalized projection weight of assigning pixel ys

j ∈ R1×D to vertex i, and
W p = [wp

1 , · · · ,w
p
Ns ] ∈ RNs×D is a trainable weight to calculate the projection matrix. Then,

following the previous work [5, 18], we use the projection matrix Ac f to construct the feature
graph, Gs ∈ RNs×D, in the feature space as

Gs = Ac fY sW c f , (3)

where W c f ∈ RD×D denotes a trainable linear transformation. In this way, pixels in the
original feature Y s are adaptively aggregated to feature representations in the feature graph.
Note that the number of vertices Ns is fewer than the number of pixels Ls in the original
feature maps to suppress irrelevant information, and Ns decreases with the decrease of Ls

to obtain multi-level feature representations. Then graph reasoning is performed over the
generated graph using Eqn. 1 to generate G̃s, where each vertex is updated with global
information. In the experiments, we set weights W c f and W p to two 1×1 2D convolutions.

After generating graph at each scale, we concatenate the obtained M pyramid graphs,{
G̃s
}

, along vertex dimension into the final feature graph, G f =
[
G̃1, . . . , G̃M

]
∈ RN×D,

where N = N1 + · · ·+NM is the total number of vertices. Next, the fused multi-scale feature
representations in G f can be distributed back to coordinate space to enhance the local infor-
mation of each pixel in original feature. Exactly, we adopt a reverse projection to map the
obtained feature graph, G f , from the feature space to the coordinate space and reshape the
result to H ∈ RH×W×C and then fuse with input feature X as

H = A f cG fW f c,

Z = conv(concat(X ,H)),
(4)

where A f c ∈ RL×N is a reverse projection matrix used to adaptively transform feature repre-
sentations from the feature space to the coordinate space, W f c ∈ RD×C is a trainable weight
to recover channel number from D to C, and a 1×1 convolutional layer is adopted to fuse the
concatenated feature. The reverse projection matrix A f c is computed by a linear combination
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Figure 2: Architecture of the proposed probabilistic graph reasoning module.

and softmax normalization of X as

A f c
i j =

exp(xi ·wr>
j )

∑
N
t=1 exp(x j ·wr>

t )
, (5)

where A f c
i j is the normalized reverse projection weight of assigning vertex j to feature hi ∈

R1×C, and W r = [wr
1, · · · ,wr

N ]∈RN×C is a trainable weight to calculate the reverse projection
matrix. In this FGR module, multi-level contextual information is aggregated and modelled
in the pyramid feature graphs to help feature learning and boost performance.

3.2.3 Probabilistic Graph Reasoning (PGR) Module

In scene parsing tasks, input images usually contain multiple kinds of objects to be seg-
mented, exploiting and modelling the relationships between class-dependent representations
in graph can enhance global scene understanding.

In the PGR module, a coarse segmentation prediction map, P ∈ RH×W×K , where K is
the number of classes, is used to map the input feature, X ∈ RH×W×C, from the coordinate
space to the probabilistic space. As illustrated in Figure 2, we first normalize the prediction
map along spatial dimension to make each value reflects the confidence of belonging to each
class, and reshape it to RL×K . Then we construct the probabilistic graph, Gp ∈ RK×D, by

Gp = P>XW cp, (6)

where W cp ∈ RC×D is a trainable weight to reduce channel number from C to D. In this
way, pixels in original feature maps are aggregated to K class-dependent representations.
Next we perform graph reasoning over the obtained graph using Eqn. 1 and generate G̃p,
where the dependencies between classes are modelled. After getting the reasoned graph, we
adopt a reverse projection, similar to the reverse projection in FGR module, to transform the
graph back to coordinate space. We first calculate a reverse projection matrix Apc ∈ RL×K

following the same procedure of Eqn. 5, then we project G̃p to H in the coordinate space
and reshape H to RH×W×C. Finally, we obtain the final output feature, Z ∈ RH×W×C, as

H = ApcG̃pW pc,

Z = conv(concat(X ,H)),
(7)

where W pc ∈RD×C is a trainable weight to recover channel number from D to C. In this PGR
module, class-dependent context is aggregated and modelled to emphasize object contextual
information in feature maps with the guidance of prior segmentation map.



LIU AND YIN: DUAL GRAPH-BASED CONTEXT AGGREGATION FOR SCENE PARSING 7

3.3 Overall Framework
We adopt the ResNets [10] pretrained on the ImageNet as our backbone. Following the
previous work [2, 4, 38], we remove the last two downsampling operations in the backbone
and employ dilated convolutions. The proposed dual graph reasoning modules are injected in
parallel after the backbone. The output feature of res-5 stage is fed to these two modules as
input. In the FGR module, three parallel branches are used to construct multi-scale feature
graphs. Spatial sizes of input feature are reduced to 1, 1/2 and 1/4 of the original scale
respectively, and the number of vertices in three graphs are set to 128, 64 and 32 respectively.
While in the PGR module, the output feature of res-4 stage in the backbone is applied with
a classifier to obtain the coarse segmentation map. Finally we aggregate the output features
of the two modules to obtain the final results. We use the cross entropy loss to supervise the
coarse and final segmentation, and the weight for auxiliary loss is set to 0.4 following the
previous methods [36, 38].

4 Experiments
Benchmark datasets employed are described first, along with implementation details. Then
the ablation studies performed are reported to show the effectiveness of the proposed method.
Finally we report the evaluation results on the Cityscapes [6], PASCAL Context [23] and
ADE20K [42] datasets.

4.1 Datasets
Cityscapes. The dataset, collected for urban scene understanding, contains 5000 images
with 19 classes being annotated for scene parsing. All images are of size 2048×1024, and
in our experiments only the fine annotated images were used for training and evaluation. The
training, validation and test sets consist of 2975, 500 and 1525 images, respectively.
PASCAL Context. The dataset provides detailed semantic labels for the PASCAL VOC
2010 images, with training set and test set containing 4998 and 5105 images, respectively.
There are 59 foreground categories and one background class. Following the previous work
[29, 35], we evaluated our method on the 59 annotated classes.
ADE20K. The dataset is a very challenging scene parsing dataset, involving 150 dense labels
and containing 20K and 2K images for training and validation respectively.

4.2 Implementation Details
We conducted all the experiments based on PyTorch [26]. The “poly” learning rate pol-
icy [20] was used (the learning rate is multiplied by (1− iter

max_iter )
power with power = 0.9),

and the initial learning rate was set to 0.005 for Cityscapes and 0.001 for other datasets.
Stochastic gradient descent (SGD) optimizer with momentum 0.9 and weight decay 0.0001
was applied to all the networks. For data augmentation, we adopted random horizontal flip,
random brightness, random scaling in the range of [0.5,1.75] and random crop. Crop size is
set to 769×769 for Cityscapes and 520×520 for others. The networks were trained for 120
epochs on PASCAL Context and ADE20K with batch size 16, and 240 epochs on Cityscapes
with batch size 8. For evaluation, the mean Intersection-over-Union (mIoU) metric was used
as the evaluation metric. Given prediction set A and target B for class c, the IoU of class
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Method PSF mIoU (%)
Baseline — 47.85
+ FGR {1} 49.79
+ FGR

{
1, 1

2

}
49.66

+ FGR
{

1, 1
2 ,

1
4

}
50.52

+ FGR
{

1, 1
2 ,

1
4 ,

1
8

}
50.58

Table 1: Comparisons of FGR module with
different pyramid scale factors. “PSF” means
pyramid scale factors.

MAX AVG CR mIoU (%)
49.85√
50.10√
50.24√ √
50.52

Table 2: Results of FGR module with dif-
ferent settings. “MAX” and “AVG” denote
max and average pooling, “CR” means ap-
plying channel reduction after pooling.

Method mIoU (%) Params (M) Inf. time (ms)
Dilated ResNet-50 47.85 33.1 11.5
ResNet-50 + GloRe [5] (Our impl.) 49.92 38.1 12.9
ResNet-50 + ASPP [4] (Our impl.) 50.47 41.4 16.8
ResNet-50 + OCR [35] (Our impl.) 50.38 39.0 13.1
ResNet-50 + FGR 50.52 48.1 14.9
ResNet-50 + PGR 50.11 38.7 12.9
ResNet-50 + FGR + PGR (serial) 50.74 53.2 15.7
ResNet-50 + FGR + PGR (parallel) 51.09 63.2 17.7

Table 3: Ablation studies on the FGR and PGR modules, “serial” and “parallel” mean adopt-
ing two modules in serial and parallel order respectively.

c is calculated by (A∩B)/(A∪B), where ∩ and ∪ are intersection and union operations
respectvely, and the mIoU is calculated by averaging the IoU of each class.

4.3 Ablation Studies
A series of ablation experiments were conducted on PASCAL Context with single scale test-
ing for the proposed method. We adopted the dilated ResNet-50 based FCN as the baseline.
Pyramid Scale Factors. We built FGR modules with different settings of pyramid scale
factors to make comparisons, and results are summarized in Table 1. Comparing with the
baseline result in the first row, all the schemes of FGR module can improve the performance
to some extent. We can see that the performance increases with the increase of number of
branches, indicating that constructing multi-scale feature graphs can help model multi-scale
context and capture information of objects with varied sizes. Although the scale factors of
{1,1/2,1/4,1/8} achieved the best result (50.58%), the improvement is minor compared
to factors of {1,1/2,1/4} (50.52%). Therefore, to make a trade-off between accuracy and
computational complexity, we adopted scale factors of {1,1/2,1/4} in the final architecture.
Pooling Operation. We investigated the effect of different pooling operations in the FGR
module. As shown in Table 2, constructing pyramid graphs without pooling operation
achieved the worst performance, while average pooling worked better than max pooling.
Channel Reduction. We explored the performance of the FGR module with different posi-
tions for applying channel reduction operation. As shown in Table 2, applying the operation
after pooling improved the result by 0.28% (50.24%→ 50.52%).
Effects of FGR and PGR. We conducted experiments to evaluate the effects of FGR and
PGR modules and compare with other context aggregation methods, i.e., GloRe [5], ASPP
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Figure 3: Visualizations of projection matrices. First two columns are input images and
ground truths. Columns 3 and 4 are projection weights of two vertices in the feature graphs,
and last two columns are the projection matrices of two vertices in the probabilistic graphs.

(a) Image (b) FCN (c) Ours (d) Ground truth

Figure 4: Qualitative comparison results on the Cityscapes validation set.

[4] and OCR [35] modules. To ensure fairness, we reproduced these methods under the same
experimental settings. As shown in Table 3, when adding FGR module, performance was
improved by 2.67% (47.85%→ 50.52%), and 2.26% (47.85%→ 50.11%) by adopting PGR
module. Moreover, combining the two modules in parallel achieved better result of 51.09%
than in serial, which also outperformed other approaches, demonstrating the effectiveness of
the proposed method. Further more, we measured the model parameters and inference time
on a NVIDIA Titan V100 GPU with input size 520×520.

4.4 Visualizations and Analysis

We provide visualizations of projection weights on the Cityscapes dataset in Figure 3. Specif-
ically, the first and second columns are input images and the ground truth scene parsing
masks, respectively. In the third and fourth columns, we select two vertices of the feature
graphs and show their corresponding projection weights, i.e., Ac f

i , as heatmaps. It can be
seen that different vertices correspond to different patterns (the brighter pixels, the higher
response), such as the sky and ground, and long-range contextual information is captured.
Besides, relevant features are also aggregated by the same vertex, such as the cars and road.
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Method Backbone Cityscapes ADE20K PASCAL Context
PSPNet [38] ResNet-101 78.4 43.29 47.8
GloRe [5] ResNet-101 80.9 – –
EncNet [36] ResNet-101 – 44.65 51.7
DUpsampling [30] Xception-71 – – 52.5
SGR [18] ResNet-101 – 44.32 52.5
SVCNet [7] ResNet-101 81.0 – 53.2
ISA [13] ResNet-101 81.4 45.04 54.1
ANNet [43] ResNet-101 81.3 45.24 52.8
CCNet [14] ResNet-101 81.4 45.22 –
DANet [8] ResNet-101 81.5 45.32 52.6
DMNet [9] ResNet-101 – 45.50 54.4
OCR [35] ResNet-101 81.8 45.28 54.8
SpyGR [17] ResNet-101 81.6 – 52.8
GINet[32] ResNet-101 – 45.54 54.9
Ours ResNet-101 81.8 45.67 55.1

Table 4: Comparisons with the state-of-the-art methods on the test set of Cityscapes, valida-
tion sets of ADE20K and PASCAL Context, results are reported in terms of mIoU (%).

While in the last two columns, we visualize two projection matrices, i.e., P, of probabilistic
graph vertices as heatmaps. Comparing with the vertices in feature graphs, we can see that
the vertices in probabilistic graph correspond to specific classes (e.g., car, tree and road).

Qualitative comparisons with the baseline are shown in Figure 4, and yellow squares
are used to mark the challenging objects. In the FCN model, large objects (e.g., bus in the
first row, fences in the second row and building in the third row) are hard to be covered
by valid receptive fields and this would lead to inconsistent results. Due to the long-range
dependencies modelling performed by our method, this issue can be efficiently addressed.

4.5 Comparisons with State-of-the-Art Methods
Based on the ablation studies, we designed the dual graph reasoning modules and adopted
them in parallel at the top of dilated ResNet-101 backbone. We then evaluated its perfor-
mances on three benchmark datasets: PASCAL Context, Cityscapes and ADE20K using
multi-scale testing strategy, results and comparisons with other methods are shown in Table
4. The proposed method outperformed the state-of-the-art methods on these benchmarks.

5 Conclusions
For scene parsing, we propose two graph-based context aggregation modules to adaptively
aggregate contextual information and model long-rang dependencies using graph reason-
ing. A feature graph reasoning module is introduced to construct pyramid feature graphs
containing multi-level feature representations to help feature learning, and a probabilistic
graph reasoning module is presented to construct a probabilistic graph consisting of class-
dependent representations to emphasize object contextual information. The ablation studies
show that the method can significantly improve segmentation performance, and its efficacy
has been demonstrated by achieving state-of-the-art results on various benchmark datasets.
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