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Figure 1: Sample of images generated by MIGS over a variety of scene attributes from BDD
dataset [31]. The model is trained on 10-shot data for generating the images.

Abstract
Generation of images from scene graphs is a promising direction towards explicit

scene generation and manipulation. However, the images generated from the scene
graphs lack quality, which in part comes due to high difficulty and diversity in the data.
We propose MIGS (Meta Image Generation from Scene Graphs), a meta-learning based
approach for few-shot image generation from graphs that enables adapting the model to
different scenes and increases the image quality by training on diverse sets of tasks. By
sampling the data in a task-driven fashion, we train the generator using meta-learning on
different sets of tasks that are categorized based on the scene attributes. Our results show
that using this meta-learning approach for the generation of images from scene graphs
achieves state-of-the-art performance in terms of image quality and capturing the seman-
tic relationships in the scene. Project Website: https://migs2021.github.io/

1 Introduction
The task of high-quality image generation and manipulation has been capturing the attention
of researchers for many years. Recent advances in deep learning for unconditional image
synthesis [19, 20, 21, 22] has led to producing high-quality images that are often indistingu-
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ishable from the real ones by a human. Some impressive results have been also achieved
for the class-conditional image generation [3] and generation from semantic segmentation
masks [28]. While the latter method allows for pixel-level control on the image, it requires a
segmentation map which may be practically hard to obtain. An easier alternative to represent
image semantics is a scene graph [16], i.e. a graph where nodes correspond to the objects
and edges define the relationships between them. Image generation from such graphs is
attractive as they allow full control over the semantics and it is easy to modify them in case
of scene editing. Image generation from scene graphs has been introduced in [18]. While
the results are encouraging, the images generated by this model lack quality when trained
on datasets with diverse scenes, as the network struggles to learn meaningful representations
to accommodate such discrepancies. To counterpart this problem we suggest using meta-
learning in order to help the network focus its attention on specific tasks during training. Yet
such a model is able to quickly adjust to a wide set of tasks during testing with only a few
training samples available. Additionally, our approach allows us to introduce the task of few-
shot learning for scene graph to image generation problem, which is an attractive scenario as
it can help to generate semantically meaningful images in applications with a scarce amount
of data. The contributions of our work can be summarized as follows:

• A novel meta-learning approach for the generation of images from scene graphs, which
achieves state-of-the-art results compared to previous work

• Introduction of the few-shot learning problem for scene graph to image generation

• A novel task sampling method for scenes in the wild that can benefit other image
generation with meta-learning scenarios.

We evaluate our proposed method on automatically generated scene graphs for Berkeley
Deep Drive [31], Action Genome [15] and Visual Genome [23] datasets, showing superior
results compared to the baselines, qualitatively and quantitatively. This is also verified by
performing a user study on the quality of images. The source code of this work is provided
in the supplement and will be publicly released upon its acceptance.

2 Related Work
Image generation Recent advances in generative models, in particular, Generative Adver-
sarial Networks (GANs) [10] have boosted the quality of image generation. A line of works
explore generative models for unconditional image generation [19, 20, 21, 22]. Image gen-
eration models have also been explored conditionally, with a diverse set of priors such as
semantic segmentation maps [4, 28, 36], natural language descriptions [24, 29, 38, 40] or
translating from one image domain to another using paired [14] or unpaired data [42]. Most
related to our approach are methods that generate images from scene graphs [18].

Image generation from scene graphs Scene graphs [16] refer to representations that de-
scribes images, where nodes are objects, and the edges represent relationships between them.
With the recent rise of large-scale scene graph datasets, such as Visual Genome [23] a di-
verse set of scene graph related tasks were explored. A line of works propose strategies for
scene graph generation from images [11, 26, 37]. Johnson et al. [18] introduced the reverse
task of image generation from scene graphs, using a 2D layout as an intermediate represen-
tation between graphs and images, where layouts are decoded to images using a Cascade
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Refinement Network (CRN) [4] architecture. Later, a similar architecture was explored for
image generation in an interactive form [1] as well as for semantic image manipulation [6].
Herzig et al. [12] proposed a model that uses canonical scene graphs, to improve robustness
in terms of graph size and noise. Recently, Garg et al. [9] generate scene graphs uncondi-
tionally and later synthesize images from the resulting graphs. Other related works explore
image generation directly from layouts [32, 33, 41] or investigate 3D scene graphs [7, 35].

Meta-learning Meta-learning or learning to learn was initially introduced for the few-shot
classification problem. Model-agnostic Meta-Learning [8] (MAML) is one of the most well-
known works for few-shot image classification. MAML aims to optimize a model on a set
of tasks using second-order gradient computation to obtain a model that adapts fast to newly
seen tasks. Due to the extensive computation demands of MAML, a first-order approxima-
tion of it was proposed in Reptile [27] with similar performance. These approaches have
been mainly adopted in image classification and segmentation problems. A combination
of meta-learning with GANs was introduced in [39] which employs adversarial training for
few-shot image classification. However, the employment of meta-learning for the few-shot
image generation task has been rarely explored. FIGR [5] uses meta-learning for few-shot
image generation for small-scale datasets of black and white images, while few-shot image
to image translation [25] generates images by adapting input from a source domain to a tar-
get domain. Despite the previous use of meta-learning for image generation, it has been only
used on data with limited diversity and low resolution. To our knowledge, this is the first
work on the few-shot generation of high-resolution scenes in the wild.

3 Methodology

3.1 Problem Definition
A task in meta-learning for few-shot image classification is defined as a set of image, label
pairs. In our work, we define the task as scene graph and image pairs. Given a set D of
image I and scene graph G pairs, we define our initial dataset D = {I,G}. The dataset is
divided into different tasks based on the predefined task definition. In each iteration of the
training phase, a task is randomly sampled and the scene graph to image model parameters
are optimized on the selected task. In the test phase, the trained parameters are then used to
fine-tune the model on specific target tasks. The main components of our method which are
the image generation and meta-learning are described over the following sections.

3.2 Image generation
To tackle the task of scene graph to image generation we build upon SG2Im [18] architecture
as a foundation. SG2Im takes as input a scene graph, where the nodes correspond to the
objects and the edges define relationships between them. The scene graph is processed by
graph convolutional network (GCN), which operates on triplets subject-predicate-object, to
propagate information along the edges. This results in processed per-node features, where
each object has its own embedding vector that encodes information about itself as well as
relationships with connecting objects. These embeddings are then used to predict a set of
bounding boxes and segmentation masks for each object. The predicted boxes and masks are
combined to project the GCN features to image space and obtain a scene layout. The next
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Figure 2: Method Overview. Our method consists of two phases: Meta-training and Test-
ing. In the meta-training phase, the model parameters θ are updated on a sampled task l in
each iteration. One task is a set of image and scene graph pairs that are unified in one group
by some criteria. We pass a scene graph through a GCN to produce features from the nodes
embeddings for creating a scene layout. The layout is passed to the generator, which synthe-
sises the final image. In the testing phase, we fine-tune the model θ for a defined number of
shots on each specific task which results in the generation of our final images.

step in this pipeline is an image generator that receives a scene layout and produces an image
corresponding to the given semantic definition. In order to force the network to produce both
realistically looking and semantically correct images, two image discriminators are used on
top of the generated image. The first one discriminates individual objects in a local context,
while the second one classifies a picture as a whole. We use different loss terms for training
the model. Most of the losses are adopted from [16], but some extra loss terms are also
used which we mention below. To prevent the model from generating trivial solutions, we
employ the perceptual loss [17] λpLp using the VGG network. There are two GAN losses
defined, one for the whole image and one to make individual objects look realistic. These are
defined as LGAN,global and LGAN,obj respectively. To ensure the quality of generated objects,
the auxiliary classification loss Laux,obj is used. The loss for predicting the bounding boxes is
defined by Lbox which is calculated using the L1 loss between the predicted and ground truth
bounding boxes. Finally, the image loss Lim which is the L1 distance between the predicted
image and the ground truth image is used. Equation 1 shows the task loss Lτ definition.

Lτ = λbLbox +λg min
G

max
D
LGAN,global

+λo min
G

max
D
LGAN,obj +λaLaux,obj

+λpLp +λimLim,

(1)

where λb,λg, λo, λa, λp, λim are weighting values and

LGAN = E
q∼preal

logD(q)+ E
q∼pfake

log(1−D(q)), (2)

where preal refers to the real data distribution from the ground truth and p f ake is the distri-
bution of generated fake images or objects. The input to the discriminator is defined by q.

In order to improve the image quality of the images generated by SG2Im and tackle a
few-shot learning scenario, we adapt Reptile [27] algorithm for GANs, similarly to how it
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is done in FIGR [5]. However, FIGR is focused on the problem of unconditional image
generation and experiments with images that have a single object drawn on them. We, on
the other hand, have a setting conditioned on a scene graph with multiple objects, which is a
more challenging problem compared to FIGR. We meta-train all components of the SG2Im
pipeline on a diverse set of scenes and prove that such procedure enables high-quality image
generation from the scene graph.

3.3 MIGS
In this section, we introduce our method of Meta image generation from scene graphs
(MIGS) and its components. Our primary goal is to be able to quickly and effectively adapt
a model trained on a variety of images to a specific task with just a few training shots. To
tackle this problem we refer to the meta-learning models [8, 27] and their application in a
few-shot learning setting. To the best of our knowledge, we introduce a few-shot learning
scenario for the scene graph to image generation for the first time.

Task Definition Meta-learning models assume access to a set of tasks T , that consist of
different learning problems τ . Each of these tasks τ represent an image generation from
scene graph problem and has its own set of image-graph pairs Dτ = {I,G}τ , that have been
grouped together in one task based on certain criteria. Such criteria include the type of ob-
jects on the scene, specific background surroundings or any other attributes of either graphs,
or images that unite them together. However, the splitting bases should be homogeneous
across the whole set of tasks T . The task splitting criteria is dependent on the dataset charac-
teristics. It can be defined based on the scene attributes such as time of the day, the context
or by simply clustering the images into a set of clusters based on their visual attributes using
an unsupervised clustering method such as [34].

Meta-learning A loss function on a task τ is denoted as Lτ . For simplicity we define Lτ

as a combination of all generator Lτ,G and discriminator Lτ,D losses in SG2Im model. Then
our meta-learning goal is to find such initial model parameters θ that for a randomly selected
task τ the loss Lτ will be low after k iterations with only a few data points available. In short,
such objective is defined as

min
θ

[Lτ

(
Uk

τ (θ)
)
], (3)

where Uk
τ (θ) denotes an operator that updates weights θ k times using image-graph pairs

from Dτ .
In order to find such parameters θ , we train the models with the Reptile algorithm [27]. It

comprises of inner and outer loops. In the inner loop k iterations of operator U are performed
on the locally copied weights θl for a randomly sampled training task l. In an outer loop the
weights vector of the meta-model θ are updated leveraging the difference between θ and θl
computed in the inner loop. This updated can be summarized as:

θ ← θ +β
1
L

L

∑
l=1

(θl−θ), (4)

where L is number of tasks and β is the meta learning rate. We perform such updates sepa-
rately for the image generator model and two discriminators.
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Figure 3: Examples of images generated from BDD dataset for a task with the following
attributes: day time: daytime; weather: rainy; driving scenario: highway. All images were
generated from the scene graph defined on top. MIGS not only produces more realistic im-
ages but also has a higher accuracy when cross-referenced with the provided scene graph, i.e.
MIGS + SPADE is the only model for which the truck is clearly seen in all three scenarios.

Testing For testing the trained meta-model, we first fine-tune the trained weights θ on the
training split of each specific test task l to obtain the final weights θl for this task. Then, we
generate images from the (unseen) test set scene graphs of each task.

To fairly compare our meta-models to baseline methods, we use transfer learning on each
of the non-meta models’ weights Φ and fine-tune them on each task to obtain the correspond-
ing Φl . Then for each task l we evaluate the images generated by θl and Φl .

4 Experiments
We evaluate our method on Berkeley Deep Drive [31] (BDD), Action Genome [15] (AG)
and Visual Genome [23] (VG) datasets on different baselines. We show that our proposed
method is independent of the generator architecture as the performance gain happens in two
different generator architectures, namely CRN [4] and SPADE [28]. To measure the quality
and realism of the images generated by our proposed method quantitatively, Fréchet Incep-
tion Distance [13] (FID) and Kernel Inception Distance [2] (KID) are reported. Moreover,
generated image samples are compared to related work in diverse scenarios. We refer the
reader to the supplement for the results with more metrics such as precision and recall [30]
and the architecture details of the CRN, SPADE and GCN networks.

4.1 Datasets
As there are no established datasets for conditional image generation with meta-learning, we
investigated and selected datasets that can be naturally categorized in a set of tasks.
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Figure 4: Examples of images generated from the Action Genome dataset. Each column
correspond to one task (i.e. a video sequence) that each model was fine-tuned on. The MIGS
results on each video notably contain more details as opposed to the baseline counterpart.

Berkeley Deep Drive [31] (BDD) This dataset consists of images from city streets, resi-
dential areas, and highways in different scene conditions. As BDD does not contain scene
graphs associated with images, we construct spatial scene graphs automatically, leveraging
the ground truth bounding boxes, leading to six mutually exclusive spatial relationships:
left of, right of, above, below, inside, and surrounding. As we are mostly
interested in the objects and their relationships, we pre-process images and crop out the area
of interest, which contains all the objects and as little background as possible.

For our meta-learning purpose, we split BDD into tasks using provided attributes for
all images, such as time of day, weather conditions, and driving scenarios. We then filter
out tasks that have less than 500 images available, which results in a total of 23 different
meta-learning tasks. We use 20 tasks for training and validation and 3 for testing.

Action Genome [15] (AG) The Action Genome dataset was originally designed for the
action recognition problem. It consists of video frames of humans interacting with objects in
a scene. We use human-object relationships labels from Action Genome directly to construct
semantically meaningful scene graphs.

As the AG dataset consists of a large number of videos with different actions, we use
those videos as task splitting criteria. We remove the frames of all videos that do not have
persons or only persons and no other objects, as it is impossible to construct meaningful
scene graphs from them. Furthermore, we extract as tasks only the horizontal videos with at
least 30 frames annotated by a human. This procedure provides us with 735 tasks which we
split into 662 train and validation and 73 test tasks accordingly.
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Visual Genome [23] (VG) The Visual Genome dataset provides images with their corre-
sponding scene graphs and bounding box annotations which makes it suitable for the image
generation from scene graphs problem. Since the VG dataset does not have specific annota-
tions for scene attributes, we construct the tasks by splitting all the images into 100 classes
using SCAN [34] pre-trained on the imagenet dataset in an unsupervised manner. We use
the first 60 clusters for the pre-training step and the last 40 clusters for evaluation.

4.2 Experimental setup
We train our models to generate images of size 128×256 for BDD and AG, and 64×64 for
VG. For all meta-learning models, we use an inner learning rate of 0.0001 and train for 10
inner iterations with Adam optimizer. The outer loop has a learning rate of 1 and uses SGD.
The number of training iterations is dependant on the model and dataset, e.g. AG is more
diverse than BDD and takes longer to converge. Meta-learning models on AG are trained for
40000 outer loop iterations and models on BDD are trained for 30000.

The baseline model, SG2Im [18] is trained on the same data as MIGS (all training tasks)
in the pre-training step. During the testing phase, the pre-trained model is used as an initial-
ization and is fine-tuned and tested in the few-shot setting similarly to MIGS. In all datasets,
both models are trained until convergence. The SG2Im model is trained for 250k iterations
on AG, 200k iterations on BDD, and 40k iterations on VG. The MIGS model is trained for
40k and 30k iterations on AG and BDD respectively, and 8k iterations on VG.

4.3 Results
The quantitative results of our experiments are shown in Table 1, Table 2. We compare
our method to two baselines which are SG2Im with the original CRN decoder and another
version with the SPADE network as the decoder to improve the generation quality. More
qualitative results are provided in the supplementary material.

BDD Results We show the performance of the mentioned models on BDD with different
shot values ranging from 5 to 160 both quantitatively in Table 1 and qualitatively in Figure 3.
Among all three experiments, we observe that FID and KID improve almost twice compared
to the corresponding model with no meta-learning. We also perform a user study on BDD
images, asking users to rank the quality of images from the same scene graph generated by
different methods, and determine whether the scene represents the specified attribute. The
results of the user study show that MIGS + SPADE is generally chosen as the most realistic
method, MIGS + CRN as second and SG2Im + SPADE, SG2Im + CRN as third and fourth
rank respectively. The exact percentages of rankings are shown in Table 3. The values
show the percentages of users choosing the method as the specified rank based on the image
quality. For the attribute representation, MIGS + SPADE and MIGS + CRN stand as 1st and
2nd rank, while SG2Im + SPADE and SG2Im + CRN are ranked 3rd and 4th.

Figure 3 shows example scene graph and images generated with baselines and our
method on a single testing task from BDD. It is clear from these images, that our method
outperforms all baselines and is able to generate realistic-looking images with a high level
of detail even in an extremely challenging scenario where only 5 frames are available for
training. Additionally, example images generated for a diverse set of training tasks may be
seen on Figure 1. Our method successfully captures the differences in the scenes associated
with daytime and driving scenario change.
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Method Decoder FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓
160-shot 10-shot 5-shot

SG2Im [18] CRN 194 210 176 186.5 196.8 224.2
MIGS(Ours) CRN 158.5 156.4 157 158.4 183.5 187.6
SG2Im SPADE 66.1 42.2 70.6 48.3 95.2 73.1
MIGS(Ours) SPADE 49.5 26.7 46.1 24 53.5 30.7

Table 1: Quantitative results on BDD100k fine-tuned on 5,10 and 160 shots.

AG Results We train the Action Genome model on all training images for each testing
task (approximately 30 frames) and evaluate the model on the frames extracted from the full
videos that were not used for training. The testing set has approximately 65000 images.

AG dataset is extremely challenging for the scene graph to image generation, as it con-
tains labeling only for a few chosen objects on the image and most commonly those objects
are quite small, e.g. phone or book. Figure 4 shows the example images generated by our
model as well as baselines on AG, while the quantitative performance on AG is shown in Ta-
ble 2. Due to the difficulty of the used dataset, it is quite expected that the results look
different from the ones on BDD. However, even in this scenario, the number of details in-
creases with our method compared to a corresponding baseline. This improvement can be
also verified quantitatively from the substantial decrease in both FID and KID.

Method Decoder FID ↓ KID ·103 ↓
SG2Im [18] CRN 198 163.4
MIGS(Ours) CRN 174.5 137.8
SG2Im SPADE 141.3 76.3
MIGS(Ours) SPADE 98.1 47.4

Table 2: Quantitative results on Action
Genome dataset compared to related work.

Method Decoder Rank
1 (%) 2 (%) 3 (%) 4 (%)

SG2Im [18] CRN 15.79 23.34 26.55 35.58
MIGS(Ours) CRN 24.46 25.57 25.16 24.81
SG2Im SPADE 25.36 24.60 28.29 21.74
MIGS(Ours) SPADE 34.72 26.48 20.0 17.79

Table 3: User study ranking results on ran-
domly sampled images from BDD dataset.

VG Results The performance of MIGS compared to SG2Im [18] on the VG dataset is
presented in Table 4 and Figure 5. As shown in the results, MIGS outperforms the baseline
in all metrics for different shot values, even with less number of training epochs. Despite
the higher diversity of the images in the VG dataset and their wild nature, MIGS is able to
generate images which look more realistic compared to the baseline.

4.4 Discussion
Our experiments show that using meta-learning for the task of image generation from scene
graphs, outperforms the respective baselines almost twice, in terms of the employed metrics.
The proposed method is shown to be advantageous in all scenarios even when using only 5
training samples. The results obtained on BDD qualitatively differ, which can be attributed

Method Decoder FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓
160-shot 10-shot 5-shot

SG2Im [18] (All epochs) SPADE 55.20 35.54 81.42 59.39 91.79 68.52
MIGS(Ours, 1/3 epochs) SPADE 54.83 34.21 76.56 52.02 84.87 59.38
MIGS(Ours, All epochs) SPADE 54.24 29.00 75.96 50.69 83.54 55.28

Table 4: Quantitative results on VG fine-tuned on 5, 10 and 160 shots.
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5-shot 10-shot 160-shotGT

MIGS (Ours) SG2Im MIGS (Ours) SG2Im MIGS (Ours) SG2Im

Figure 5: Example images generated with MIGS + SPADE and SG2Im + SPADE on the
Visual Genome dataset.

not only to a more challenging setting of the AG but also to the unsuitability of this dataset
for the image generation task. As it is intended for action recognition on video, only the
objects that the person interacts with are annotated. It is thus common for some instances
of the objects to be ignored in certain frames, until the action takes place, or be unannotated
through the whole video if not used by the main actor. Such discrepancies may confuse the
model and result in poor quality. Additionally, this dataset contains a lot of very small objects
compared to the frame size. We believe that with a better dataset for semantically meaningful
scene graphs the model should demonstrate results similarly to BDD. The results on the VG
dataset show that using a simple yet effective task construction scheme, such as clustering,
which could be applied to any other dataset, combined with the meta-learning approach can
improve the performance of the image generation. The effect of task construction on the
performance of meta-learning is an interesting topic and leaves room for research for future.

5 Conclusion
We propose MIGS, a meta-learning approach for the generation of images from scene graphs.
To our knowledge, this is the first work for few-shot image generation of scenes in the wild.
The proposed method could be applied to a different range of generator architectures and
different datasets. We plan to replace the current SG2Im framework with [12] as part of the
future work. The results of the evaluation on three datasets show that our proposed meta-
learning-based image generation scheme proves to improve the quality of generated images
significantly in all scenarios. We show that it is possible to generate high-quality images
only given 5 shots of data. The performance gain compared to previous work is shown both
quantitatively and qualitatively in the results.

Citation
Citation
{Herzig, Bar, Xu, Chechik, Darrell, and Globerson} 2020



MIGS: META IMAGE GENERATION FROM SCENE GRAPHS 11

Acknowledgement We gratefully acknowledge the Munich Center for Machine Learning
(MCML) with funding from the Bundesministerium für Bildung und Forschung (BMBF)
under the project 01IS18036B. We are also thankful to Deutsche Forschungsgemeinschaft
(DFG) for supporting this work, under the project 381855581.

References
[1] Oron Ashual and Lior Wolf. Specifying object attributes and relations in interactive

scene generation. In IEEE International Conference on Computer Vision, 2019.
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