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Abstract

The amount and quality of datasets and tools available in the research field of hand
pose and shape estimation act as evidence to the significant progress that has been made.
However, even the datasets of the highest quality, reported to date, have shortcomings
in annotation. We propose a refinement approach, based on differentiable ray tracing,
and demonstrate how a high-quality publicly available, multi-camera dataset of hands
(InterHand2.6M) can become an even better dataset, with respect to annotation qual-
ity. Differentiable ray tracing has not been employed so far to relevant problems and is
hereby shown to be superior to the approximative alternatives that have been employed
in the past. To tackle the lack of reliable ground truth, as far as quantitative evaluation is
concerned, we resort to realistic synthetic data, to show that the improvement we induce
is indeed significant. The same becomes evident in real data through visual evaluation.

1 Introduction
Estimating the pose and shape of a human hand in 3D from RGB images is an impor-
tant problem with numerous applications in human-computer interaction, augmented reality,
robotics and more. State-of-the-art solutions have shown impressive results in real-world set-
tings (see Section 2) with their remarkable performance heavily relying on advances in deep
learning architectures [17, 53] and the availability of large datasets for training. Synthetic
datasets have perfect ground truth information, but their lack of realism hinders generaliza-
tion to the real domain. Real datasets model the real world directly, but come with noisy
manual or automatically generated pose/shape annotations, that are nevertheless considered
to be ground truth (see Figure 1). As a result, state-of-the-art 3D hand reconstructions from
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Figure 1: Real datasets of hands, e.g. multiview dataset InterHand2.6M [34], as well as
results of state-of-the-art 3D hand pose/shape estimators, yield imperfect backprojections,
which is evidence of error. We propose a method to improve the geometrical estimation of
the hand, by exploiting color consistency, through a novel differentiable ray tracer, by Li
et al. [24]. In the three exemplar comparisons taken from the same instance, the left sides
correspond to input state and the right sides to output state, after our method has been applied.
As is evident, a better fitting geometry increases color consistency, which is reflected in the
sharpness and definition of the appearance map, on the right.

visual data exhibit mediocre image-to-model alignment. Increasing the amount of training
data will improve the results only to the degree that the quality of the accompanied annota-
tions is high. The ability to improve upon imperfect hand pose and shape estimates provided
as image annotations or as the output of a neural network during training or testing can
greatly benefit the performance of hand reconstruction methods.

In this work, we propose a method for refining an imperfect estimate of the geometry of a
hand using calibrated multiview images as input. We follow a render-and-compare approach,
and optimize the shape, pose and global orientation of the hand so that the discrepancy
between the rendered and the observed hand, across multiple views, is minimized. The
effectiveness of our method lies (a) in the density of the information exploited as constraints
to the problem, i.e. all the pixels in all images that correspond to the hand, as well as (b) the
appropriateness of sampling in rendering, taken into account in the forward and the backward
step of the optimization.

No previous work addresses unsupervised hand geometry refinement. However, the con-
stancy of the appearance across images has been exploited in the context of hand or human
pose estimation in recent works [2, 33, 41]. Most rendering components invoked in the liter-
ature can be mapped to Pytorch3D [46], which implements Neural Rendering [20] and Soft
Rasterization [27]. Contrary to what has been employed so far, we make use of differen-
tiable ray tracing [24, 36], and show that it delivers improved results, in comparison. For
an impression of the gap between rasterization and ray tracing, and sampling correctness the
reader is referred to [13]. We employ the differentiable Monte Carlo ray tracer by Li et al.
[24], which provides a solution to gradient discontinuities at the edges. The latter practically
implies that the benefits of ray tracing can also be exploited in the backward pass, instead of
just the forward pass.

We showcase our method on a subset of the recently proposed real and large-scale dataset
InterHand2.6M [34]. InterHand2.6M contains imperfect ground truth annotations (see Fig-
ure 1) comprising 3D joint locations, derived in a semi-automatic way, and associated hand
shape and pose descriptions, expressed via the MANO hand model, with a reported error of
around 5mm. To circumvent the lack of ground truth data that are reliable enough for quanti-
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Figure 2: To perform multiview refinement of 3D hand geometry we compute the scalar
difference between the backprojection of the currently estimated hand geometry and appear-
ance and the observed input images. We update the estimates according to the gradient of
the difference at the estimation point. Backprojection is performed using a ray tracer. 3D
joint estimates, when available, can optionally be incorporated to aid search.

tative performance assessment, we resort to synthetic experimentation that closely resembles
the setup in InterHand2.6M. We are able to successfully refine human hand estimates corre-
sponding to a large variety of hand poses, shapes and appearances.

Our contributions can be summarized as follows.
• We propose an effective unsupervised method for hand pose and shape refinement

from multiview images, given an initial estimate of the 3D hand geometry and, op-
tionally, noisy target 3D joint locations. We complement the sparse noisy information
about the 3D joint locations with rich image cues related to the appearance of the hand.

• We employ the proposed method to improve on a real dataset that is already on par
with the state of the art with respect to annotation quality, while being richer in other
aspects (number of samples, diversity in hand shape, pose, appearance, etc), yielding
a dataset that is overall of even better quality.

• We employ, for the first time, a differentiable ray tracer to the problem of estimat-
ing the 3D pose and shape of hands, that is shown to be theoretically and practically
superior to the rasterization methods that have been employed so far.

• We provide a suite of synthetic experimentation to connect the degree of color consis-
tency, as a function of geometry and appearance, with the improvement in 3D estima-
tion of the hand, for the described scenario.

2 Literature Overview
The task of 3D hand pose estimation from markerless visual input is a significant problem
with numerous applications. It has been explored since the ’90s [47] and is still actively
researched today [14, 16, 18, 32, 55, 56, 65]. Numerous important applications can be
built based on hand pose estimation systems, including Human-Computer Interaction such as
Augmented and Virtual Reality, Performance Capture and Assessment, and Sign Language
Recognition and Translation. The task is very challenging, due to several interdependent,
complicating factors such as fast hand motions, self-occlusions, wide hand articulation range,
and frequent interaction with the environment [9].

Given the difficulty of the problem, the early approaches predominantly relied on multi-
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view input to alleviate ambiguities arising from occlusions, an approach that has recently
gained again popularity [8, 15, 16, 39, 40, 47, 54, 62]. Stereo input was similarly ex-
plored [25, 41, 48]. With the wide availability of commodity depth sensors around 2010,
the research also focused on monocular depth or RGBD input [11, 21, 30, 32, 37, 38, 44, 57,
58, 59, 63]. However, shortly thereafter, the success of deep learning lead to the proliferation
of robust systems that perform on monocular RGB input [4, 5, 10, 12, 14, 18, 23, 35, 42, 50,
55, 56, 60, 64, 65]. More recently, event cameras have also been investigated [52].

The early approaches typically estimated the parameters of a kinematics skeleton with
predefined bone lengths, either in the form of joint angles, or as 3D joint positions di-
rectly [8, 47]. The accuracy achieved with the availability of depth information yielded the
first practical real-time systems [38], and enabled on-the-fly adjustment of the bone lengths
to the observed hand [30, 61]. The development and availability of a parametric hand pose
and shape model [51] in turn fueled research towards estimating the surface of the observed
hand [3, 12, 23, 33, 63]. Finally, some recent works are presenting the first attempts to model
the appearance of the hand to some extent [7, 33, 45]. Their main focus is on the estimation
of an appropriate hand model, while the affects of lighting and shadows are factored out.

Differentiable graphics renderers have lately gained traction as per their impact in many
Computer Vision related tasks, too. Notably, such an approach was adopted specifically for
hand pose estimation in the early work by De la Gorce et al. [8]. In that work, a graphics
pipeline was custom fitted with the ability to compute derivatives with respect to parameters
of the scene. More recently, several generic renderers with built-in automatic differentiation
have been presented [20, 24, 27, 28, 29, 36] with [20] being the most widely adopted
renderer. In this work, we propose the first method for inferring hand geometry from visual
data that employs differentiable ray tracing [24]. This design choice allows for far more
accurate modeling of the lighting in the scene than existing differentiable renderers, taking a
big step towards handling the full complexity of real scenes. As we show in our experimental
evaluation, the accuracy of estimating the hand geometry when we employ [24] instead of
the state-of-the-art rasterization-based renderer [20] is significantly improved. Rendering via
differentiable ray tracing can, additionally, benefit other domains that rely on analysis-by-
synthesis approaches such as human pose estimation, 6D object pose estimation etc.

There is no previous work that focuses solely on unsupervised refinement of hand ge-
ometry. However, refinement of the hand geometry considering image evidence has been
used within broader frameworks for reconstructing hands from visual data. For instance, a
rendered hand is compared against the segmented silhouette of the observed hand [1, 3] or
its texture, where the hand texture is modeled using a uniform color prior [7] or a texture
model [45]. Although using the appearance of the hand for matching carries more infor-
mation than using the hand silhouette, inaccurate inference of the appearance of the hand
in [7, 45] led to no improvement on hand pose and shape estimation. We present an effective
way for leveraging the appearance of the hand for pose and shape refinement via matching
the appearance of the hand across multiple views. There exists limited previous work that has
relied on photometric consistency among multiple views for hand pose estimation [33, 41]
and human body estimation [2, 43]. The quality of the results is highly affected by the
quality of the rendered hand or body geometries and the corresponding derivatives from the
differentiable renderer. Note that dealing with human hands compared to the human body
poses the extra challenge that the appearance of the fingers is self-similar.
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3 Method
The input to our method is a calibrated multiframe, M, an initial estimate of the hand ge-
ometry parameters, h, and optionally a set of 3D annotations, J, for the joints of the hand.
M consists of a set of RGB images {Oi}, i = 1, . . . ,N along with the extrinsic and intrin-
sic calibration information {Ci}, i = 1, . . . ,N of the corresponding cameras where N is the
number of cameras. We represent the hand geometry using the MANO hand model [51],
which is parameterized by h = {β ,θ ,τ,φ}, where β ∈ R10 is the identity shape, θ ∈ R45 the
pose, τ ∈ R3 the 3D translation of the root and φ ∈ R3 the 3D rotation of the root. Any other
differentiable representation of the hand that can be decoded into 3D geometry, e.g. [33],
is employable, too. The optional 3D joint annotations, J, can be either a product of h or a
loosely coupled estimate, as is the case in the InterHand2.6M dataset.

The output of our method is the finetuning, δh, of the hand geometry parameters, h, such
that the new geometry derived from h and δh, when backprojected, fits the observations Oi
more accurately than h. Similarly to previous work [41], we rely on the color consistency
assumption. Contrary to [41], we provide an alternative formulation of the problem, striving
for higher fidelity. More specifically, instead of requiring all rasterized pixels corresponding
to projected geometry on each image to have the same color intensity in all reprojections
on other images, we assume that each part of the geometry is consistently colored, through
a common color map, i.e. an image encoded in a set of variables c, and require that all
backprojections, up to per camera i color transforms Ti, match the observations. The main
differences between the two approaches are that color consistency in our approach is a hard
constraint, rather than a soft one, and that we do not compare rasterizations to color intensi-
ties interpolated in image space, which are prone to aliasing, but, rather, we require for each
backprojected pixel, that constitutes an integration of samples, to match the observations in
the corresponding pixels, which are also regarded as the integrals they really are. The inte-
grals in reference regard the rendering equation [19] which we compute through [24]. This
approach guarantees that the constraints drawn from observations are properly defined and
their effects are properly backpropagated from image differentiation to geometrical changes,
with sampling appropriateness being the highlight.

We, thus, define the following optimization problem:

δ ĥ, ĉ, T̂ = argmin
δh,c,T

E (δh,c,T ) , (1)

where
E (δh,c,T ) = E1(δh,c,T )+λE2(δh) . (2)

The data term, E1, of Equation (2) amounts to the backprojection error between the ren-
derings of the estimated geometry across multiple views and the corresponding observed
multiview images (Section 3.1). The prior term, E2, acts as a penalty for solutions that are
far from the initial estimate of 3D joint locations (Section 3.2).

3.1 Data term
We define the backprojection error as

E1 (δh,c,T ) = ∑
i=1,...,N

f1 (Oi, Ti ·R(Gv (h+δh) ,V (c) ,Ci) ) . (3)
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Geometry: Gv (x) computes the 3D vertices of the geometry represented by x. Without
loss of generality, in the presented work we implement this function through the MANO
model [24]. This means that x ∈ R61, encoding global position and orientation, as well
as non-dimensionality-reduced articulation. Instead of our highly regularized approach, one
might opt for a non-parametric representation, to also accommodate off-model deformations,
without further changes in modeling.

Color mapping: Each surface element of the hand geometry is mapped to a pixel colour
during rendering. This mapping takes the form of an image which is mapped to the geometry
through a per pixel coordinate transform (see [45]). We employ the same mechanism, but
instead of a single image we consider a set c = {Vlow,Vhigh} of two images of different sizes:
Vlow ∈ R8×8×3 and Vhigh ∈ R512×512×3. Thus, V (c) = Vlow +Vhigh. Vlow is scheduled early
during optimization (see Section 3.3) and represents low frequency base color information.
Vhigh is added to the optimization schedule in a 2nd phase, as a detail residual on top of Vlow,
which through addition also includes medium and high frequency information. Vlow is scaled
up in size so as to match Vhigh prior to addition, through nearest neighbor interpolation.

Rendering: R(g,V,C) is a function that renders an image, through ray tracing, out of the
geometry g, using a camera specification C, and a color map V ∈ RH×W×3 of height H and
width W , with known vertex associations to g. The renderer R, is implemented using the
differentiable ray tracer by Li et al. [24]. Color consistency is hardly met in real conditions.
To account for slightly different colorization across cameras we allow the rendering result
for camera i to also vary with respect to a 3×3 linear color transform Ti, which is the same
for all pixels corresponding to camera i. Best results have been attained for such transforms
that are close but not equal to the identity transform.

Render-and-compare: The comparison between an observed image o and a rendered hy-
pothesis r amounts to the aggregation of the per pixel color differences (Dc) and the differ-
ences between edge detections (De) computed on o,r:

f1 (o,r) = Dc (o,r)+De (o,r)
Dc (o,r) = |o− r|

De (o,r) = |Canny(o)∗K−Canny(r)∗K|
(4)

where Canny(.) denotes the application of the Canny edge detector [6], implemented through
[49]. K is a 11× 11 Gaussian kernel of σ = 5, that is convolved with the edge detections,
prior to differentiation. The detected edges reflect the prominence of the hands against the
background. The diffusive blurring counters the sharpness of the edge detection results and,
thus, practically widens the basin of convergence.

3.2 Prior term
We define the joint error as

E2 (δh) = f2 (J, GJ (h+δh) ) , f2 (x,y) =
{

0.5(x− y)2/γ, |x− y|< γ

|x− y|−0.5γ, otherwise
, (5)

where GJ (x) computes the 3D joint locations of the hand geometry x which are compared
against the target 3D joint locations, J. The error function f2 is a coordinate-wise smooth
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L1 loss. The purpose of this term is to favor solutions whose joint predictions are within γ

millimeters from J in all axes. We use γ = 5 in all our experiments. It is worth noting that the
weight of this term λ can be zero for the majority of cases, but it is assigned a small value
(λ = 10−3) to robustify optimization against poses with high ambiguity (e.g. closed fist) or
cases where the initial starting point is significantly far from the sought optimum.

3.3 Optimization
The optimization was carried out using the Adam algorithm [22]. The simultaneous opti-
mization of geometry and color is a very challenging problem, as the optimization dynamics
yield a race between which variable set settles first, leading to unfavorable local optima. To
remedy this, we introduce a warm-up phase of 50 iterations where only variables T (per-
camera color transform) and Vlow (low detail color map) are considered. This warm-up
phase is succeeded by an optimization of all the variables (δh,c,T ), for a remainder of 150
iterations. This scheduling has been experimentally shown to be robust for the case of the
InterHand2.6M dataset. The implementation was done in PyTorch. For the average case of
30 views in a multiframe, each optimization iteration requires 0.93s for the rasterization path
and 13.77s for the ray tracing path with 16 number of samples per pixel in both the forward
and the backward pass, as estimated on a system powered by a NVidia Titan V GPU. For the
200 iterations we employed this yields a duration of 3.1min for the rasterization path and
45.9min for the ray tracing path to process a multiframe.

4 Results

4.1 Data and metrics
We evaluated our pose and shape refinement method on real data from the InterHand2.6M
dataset [34]. To circumvent the lack or reliable ground truth, as required for quantitative
assessment, we additionally performed experiments on synthetic data with perfect ground
truth. These data closely simulated the InterHand2.6M dataset. In the next sections, we
report the following error metrics:

1. mean Euclidean per-vertex distance εv between the ground truth and predicted hand
geometry (in mm),

2. backprojection error on image intensities εb (Dc term in Equation (4)) between
the rendered projection of the refined geometry and the observed image, expressed in
intensity levels (range 0−255).

4.2 Quantitative analysis on synthetic data
4.2.1 Geometry refinement from noisy input

We assessed the performance of our proposed method for varying levels of noise regarding
the initial estimate of the hand geometry. We closely simulated the capture environment
of the InterHand2.6M dataset, using the same number and location of virtual cameras (see
Figure 3), and considered 5 gestures, each performed by 2 different subjects, resulting in a
total of 10 multiframes or 305 independent frames (camera counts varied between 29 and 32).
The gestures were chosen to depict varying degrees of self-occlusion. Noise was simulated

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Moon, Yu, Wen, Shiratori, and Lee} 2020{}



8 KARVOUNAS, KYRIAZIS, OIKONOMIDIS, TSOLI, ARGYROS: RAY-TRACING HAND

10 20 30 40
Distance from GT(mm)

0

5

10

15

20

25

30

35

v 
(m

m
) 

0

10

20

30

40

 D
c (

in
te

ns
it

y)

Vertex distance v

Backprojection Dc

Figure 3: (left) Examples of synthetic data. (right) Performance of our method on hand
geometry refinement using synthetic data. The geometry of the hand is initialized at various
distances from ground truth as shown in the x-axis. The y-axes show how the mean per-
vertex error (εv) and the backprojection error (εb) after refinement exhibit similar behavior.
Please refer to Section 4.1 for the symbol definitions.

by adding a random Gaussian vector to the MANO pose and shape parameters of the selected
gestures and hand shapes. We defined the noise level as the mean per-vertex distance between
the initial and perturbed hand geometry. The hand textures were generated using HTML [45]
approximating the hand textures observed in InterHand2.6M. Examples of our synthetic data
are shown in Figure 3 on the left. On the right, we show the mean per-vertex error of the
refined hand geometry and the corresponding backprojection error for all subjects and hand
poses. The x axis denotes the noise level. Note that we also considered noise levels beyond
the average levels estimated in InterHand2.6M (5mm). We observe a monotonic relation
between the two types of error, i.e. the error on the estimated 3D geometry decreases as the
backprojection error decreases. Similarly, we expect that decreasing the backprojection error
on all views on real data will be accompanied by improvement in the actual 3D estimation.

4.2.2 Ray tracing vs rasterization

For ray tracing we use the differentiable Monte Carlo ray tracer by Li et al. [24]. As a
rasterizer to compare with, we use the hard rasterization variant of Pytorch3D [46], which
is equivalent to Neural Rendering [20], and has been commonly employed in the relevant
literature, in its original form or in slight variations.

A few important notes are the following. The ray tracer by Li et al. [24], apart from
implementing straightforward ray tracing and gradient computation, provides a continuous
sampling solution for the edges, which in practice means that the basin of convergence for
our backprojection problem is effectively widened. Other than that, the only hyperparameter
of the employed ray tracer is the number of samples per pixel, which increases fidelity, i.e.
the approximation of the true integrals involved in the rendering equation. Hard rasterization
does not have provision for discontinuities and widening of the convergence basin, but soft
rasterization [27] does, by means of per pixel aggregation of neighboring information. The
way soft rasterization is employed in optimization is that the “softness”, controlled by a few
parameters (γ,σ , blur amount, number of faces per pixel, etc.), is scheduled in a coarse-to-
fine fashion, across iterations [26]. This means that at the last iterations, or when close to the
sought solution, hard rasterization is effectively used. Since what is being discussed resides
in this ballpark, we compare to hard rasterization.

To compare between the two rendering methodologies we define the same, common
problem, of refining a pose given calibrated multicamera RGB input. For the comparison
everything remains the same, apart from the differentiable renderer itself. We define initial
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Figure 4: (left) Comparison between ray tracing and rasterization in optimization. (center)
ev as a function of optical coverage for two diverse scenarios. We observe that 7 cameras are
enough to get most of the benefit. (right) The superiority of ray tracing [24] to rasterization
[46] in this task, all else being equal, is also evident in real data.

search locations that are increasingly further from the ground truth and try, through opti-
mization, to recover the ground truth itself. The results shown in Figure 4 indicate that ray
tracing is significantly more effective in the task described, with the advantage of simplicity
and the disadvantage of computational cost, compared to rasterization.

4.2.3 Camera coverage

We evaluated our method by varying the number of camera views used as input. We noticed
that the proposed method does not require all 32 cameras in InterHand2.6M in order to incur
a significant improvement on estimating the hand geometry. However, complementarity
in coverage among the camera views was important, as expected. To demonstrate this we
ordered the cameras in a new enumeration Ci, i = 1, . . . ,N, such that

comp(C1,...,i)≤ comp
(
C1,...,i+ j

)
,∀i, j > 0, (6)

where comp(C1,...,i) computes the complementarity for cameras 1 to i, by aggregating es-
timates of how much of the surface of the hand becomes visible, on average. Put simply,
we reordered the cameras such that every next camera incorporation maximizes the comple-
mentarity at every step. Given synthetic data as in Figure 4, we initialized our optimization
from poses that had εv = 5mm. Then, we performed our optimization in runs, where each
run added the next camera, in the order described earlier. Among all results we picked two
diverse instances to summarize the effect of camera coverage. The first instance regards an
open hand and the other regards a fist. Both instances vary with respect to occlusions and am-
biguity in observation. The results shown in Figure 4 indicate that, although more cameras
are beneficial, most of the benefits can be gained by having 7 complementary cameras.

4.3 Qualitative analysis on real data
We evaluated our method on a subset of InterHand2.6M [34]. InterHand2.6M is a large-
scale dataset with real multiview images depicting hands of various subjects performing sign
language and everyday life gestures. The dataset provides annotations on 3D joint locations
using a semi-automatic neural annotation method [31]. Given the 3D joint locations, pose
and shape parameters of the MANO hand model were also extracted on the whole dataset
with an average joint location error of 5mm [34]. However, when it comes to fine predic-
tion of hand geometry, the provided annotations can mainly serve as references for the true
location and geometry of the hand rather than ground truth. In this section, we provide quali-
tative evidence of our method improving the bundled annotations in InterHand2.6M. We ran
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our geometry refinement method on a subset of InterHand2.6M consisting of 7 subjects (6
male, 1 female) and a diverse set of poses, ranging from a highly self-occluded hand to a
completely open hand. An illustration of the predicted hand geometry for various subjects
and poses is shown in Figure 5. The hand is colored based on the surface normals. It is worth
noting that the comparative evaluation which validated our design choice of employing [24]
(see Section 4.2.2) evidently generalizes to the case of real data, too (see Figure 4). More
qualitative results are provided in the supplementary material accompanying this paper.

Figure 5: Example results of our method using real data from InterHand2.6M. Odd rows
show the hand annotations in InterHand2.6M based on MANO. Even rows show the refined
hand geometry with our method. The proposed approach can handle a variety of hand poses
and is robust to moderate hand occlusions.

5 Discussion
We proposed a method for multiview refinement of the geometry of a hand, based on the
assumption of color consistency among views and the employment of a powerful ray tracer.
We presented a quantified analysis of the benefits of our method using a series of synthetic
experiments and showed qualitatively that we improved upon the ground truth annotations
of InterHand2.6M, a state-of-the-art dataset of real images with hands. What has been dis-
cussed so far has a straightforward impact on refining the output or the training procedure of
supervised methods for hand geometry estimation. However, we find most exciting the fact
that differentiable ray tracing, as employed here, for the first time, in the problem of hand
pose/shape estimation, may open the door to self-supervised training and training in the wild.
A differentiable ray tracer such as the one in [24] presents the best chance at properly disen-
tangling image formation, which is key to generalization, and, in turn, self-supervision. The
latter constitutes the basis of our future work in this direction.
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