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Abstract

In this paper, we propose to employ a Gaussian map representation to estimate precise
location and count of 3D surface features, addressing the limitations of state-of-the-art
methods based on density estimation which struggle in presence of local disturbances.
Gaussian maps indicate probable object location and can be generated directly from key-
point annotations avoiding laborious and costly per-pixel annotations. We apply this
method to the 3D spheroidal class of objects which can be projected into 2D shape rep-
resentation enabling efficient processing by a neural network GNet, an improved UNet
architecture, which generates the likely locations of surface features and their precise
count. We demonstrate a practical use of this technique for counting strawberry ach-
enes which is used as a fruit quality measure in phenotyping applications. The results
of training the proposed system on several hundreds of 3D scans of strawberries from a
publicly available dataset demonstrate the accuracy and precision of the system which
outperforms the state-of-the-art density-based methods for this application.

1 Introduction
Recent advances in computer vision have led to several practical applications addressing
challenging problems in fields such as agriculture. Modern imaging systems enable rapid,
non-destructive monitoring of different crops and their traits, often referred to as high-
throughput phenotyping, which are useful for breeders and biologists [27]. The current state
of the art in object detection, which might be used for such tasks, targets entire objects or
their large parts (e.g. [8, 13, 23, 24]) and are therefore not suitable for extracting small and
precise regions which might be vital for characterising properties of such objects. The shape
information is of particular significance in phenotyping applications and therefore 3D vision
can bring several benefits when compared to 2D images.

Standard supervised segmentation and detection algorithms require very tedious anno-
tation process, which is very complex and difficult to acquire for small surface detail of
3D objects. An alternative and simpler approach is to employ keypoint annotations which
denote the central location of each object and use this information to create density maps.
Such annotations were successfully employed for counting by regression through prediction
of density maps has been proposed [18, 19]. Such methods are very efficient in predicting
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object counts across images and areas of interest where a high density of objects or details
can be observed. A drawback of such methods, however, is their lack of precision for local-
ising the counted details.

In our work, we consider a particular application of strawberry achene counting which
is an important characteristics of fruit sought by both strawberry producers and breeders,
making it an important phenotyping task. The fertilised achenes, or the visible “seeds” on
the surface of a berry, are responsible for the development of the fruit and its overall quality.
The achenes are arranged into fairly regular spiral rows and their number is affected by the
cultivar, berry’s location on the plant and environmental factors [15]. The counting process
is typically manual, laborious and therefore there is a great interest in pursuing automated
methods for undertaking this task. Some earlier attempts looked at the use of 2D colour im-
agery for that purpose [12, 17], but due to a large variation in achene’s colour and appearance
such methods are suffering from limited accuracy. Therefore we propose to exploit the use
of 3D information for this task.

In contrast to state of the art, our work proposes to employ a Gaussian map representation
to estimate precise location and count of 3D surface features together with a custom-made
network trained on simple keypoint information indicating central location of achenes in
image coordinate, addressing limitations of the density-based methods. The contributions
of this paper are as follows: 1) a method for utilising the 3D spheroidal nature of certain
objects for creating 2D surface projections for efficient processing by Convolutional Neural
Networks (CNNs), 2) a custom-made neural network GNet trained on Gaussian maps for an
accurate and efficient prediction of the surface locations and their precise count, 3) experi-
mental comparison of the proposed method to state-of-the-art density-based approaches in a
practical application of achene counting in 3D scans of strawberries.

2 Related work
Surface analysis of the objects rather than their spatial information, is a core idea behind our
work. In [21], the authors propose a new method for applying deep learning over sphere-like
objects using a parameterisation known as a planar flat torus. In [28], the authors work on
learning information on mesh surfaces which, due to their nature, better capture detail and
geometry compared to point clouds or voxels, but with a non-Euclidean structure and non-
trivial topology, the complexity associated with their processing rises significantly. They pro-
pose operations similar to convolutions over the surface to learn features for segmentation or
classification. Another approach presented in [11] is using a surface to image projection via
torus, which achieves state-of-the-art performance on 3D object classification and segmen-
tation. Mesh-based methods cannot be easily applied to scenarios where fine shape detail is
required, due to the exponential complexity associated with rapidly increasing face-count in
high precision meshes. In [3], the authors introduce a set of building blocks for CNN to use
spectral information from spherical projection and Fourier transform applied to 3D model
recognition. In [2], a similar approach is proposed but instead using the projections directly,
with stripes along the azimuthal coordinates and increasing contour information with multi-
view branches to the proposed framework. Further analysis of stereographic projections and
their suitability for the 3D object classification task is considered in [29]. Another approach
to spherical data is presented in [4, 5, 22] which uses pooling and sampling over a graph cre-
ated on the surface of a sphere, to learn classification and possibly other tasks. The promising
results were observed in cosmology classification. The use of spherical and stereographic
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projections, however, was mainly restricted to classification tasks. Their uses for detection
and segmentation are limited due to lack of suitable annotated datasets.

Counting by regression rather than by detecting each object is a strong alternative when
exact localisation is not needed. In [16], the authors proposed a supervised framework for
predicting the number of objects by using a loss functions based on the MESA distance and
global density prediction. This work highlights the fact that density is not always being equal
to the number of objects, especially at the border of images where the distribution pattern can
be cut off. But this behaviour was seen as desirable, as objects on the sides of images where
not fully counted. This density prediction is later used in [18], where different deep learning
architectures where employed to predict density maps and use the same integration method
to predict object counts. In [9], the authors propose to combine Gaussian maps and density
maps across different losses, to refine predictions of the different network parts. While
improvements in counting performance compared to state-of-the-art methods are reported,
the method still relies on density maps to predict the count, and requires complex training
with multiple networks and loss functions involved. Improvements to previous detection
frameworks on scenes with a high number of similar and closely located objects was reported
in [14] by using Gaussian maps as auxiliary predictions. While improving the detection and
count results such a method still relies on fully annotated detections.

In agriculture, one of the important phenotyping measures is based on counting partic-
ular elements of plants. A comparison between two detection algorithms to produce a pre-
dicted number of leaves for a given plant with a rudimentary robotic platform is presented
in [1]. A similar idea is pursued in [6] where the number of leaves is regressed through a
neural network’s latent space without producing any density map or similar representation
for localisation. In [26], unsupervised learning is used to provide pseudo-segmentation maps
and several optimisation steps such as watershed segmentation are used to provide the object
count, although the segmentation and count suffer from imprecision due to the unsupervised
nature of the method. Counting object in agriculture for phenotyping purposes is such an
important task that [10] offered a comparison of detection- and regression-based for various
fruit types. In [20] localisation prediction combined with segmentation is used to refine the
prediction for plant detection. The approach creates blobs for each object of different classes
and employs one decoder branch for prediction and one for pixel segmentation. The method,
however, still relies on segmentation annotation and the two decoder branches double the
number of parameters for the network. A similar work is presented in [30] for grape count-
ing in images, focusing on using segmentation masks with 3 different classes to produce the
count using connected components algorithm for clustering. But such a method requires pre-
cise annotation for fruits, background and fruits edges, which is difficult to obtain for large
datasets.

3 Method

3.1 Spherical projection to a planar representation

In this work, we consider a special class of spheroid-like objects, which are characterised by
their shape similar to a deformed spheroid centred around their centre of mass. This char-
acteristics allows for converting meshes of such objects from Cartesian to spherical coordi-
nates, which can be then unrolled and used as indices of the 2D planar shape representation.
This representation allows the use of 2D convolutions over the surface of the object and acts
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Figure 1: A 3D scan of strawberry from [7] (left) and its 2D projection with an indicated
ROI and the annotated surface (right). The visualisation features surface normals along the
Z axis.

as straightforward dimensionality reduction.
Let’s define P as the point cloud formed of N points sampled over the surface of the ob-

ject and assume that P is centred around the origin and aligned along the Z axis. Each point
P is represented in Cartesian coordinates as (x,y,z) and in spherical coordinates as (ρ,θ ,ϕ)
where ρ the radial distance from the origin/centre of mass, θ the latitude, and ϕ is the polar

angle. Coordinates in spherical coordinates are calculated as follows: ρ =
√

P2
x +P2

y +P2
z ,

θ = arctan(
√

P2
x +P2

y /Pz) and ϕ = arctan(Py/Px). The shape in spherical coordinates is then

sampled in ∆ degree angle increments along the ϕ in range of [−180◦,180◦] and θ in range of
[0◦,180◦] resulting in a 2D representation X of 360/∆ width and 180/∆ height. For a com-
plete coverage and to reduce the sparsity of the projected points, we use a cubic interpolation
between the pixels of X to fill in any missing values. We use surface normals’ components
as the value of each pixels. These normals are obtained directly from the original mesh (with
underlying θ and φ kept through the projection).

To illustrate the projection steps, Fig. 1 demonstrates an example from our application
featuring a 3D strawberry scan from [7] and its projection onto the 2D space. Since, in
this particular case, the information around both poles is of limited use (i.e. it represents
removed calyx and clamped tip of the strawberry), we further restrict the region of interest
in the projected image and limit the height to hmin and hmax values.

3.2 Counting and localisation

We use supervised learning based on a 2D CNN to localise and count the surface features.
Rather than using a traditional segmentation/detection model for each feature, we apply a
regression approach with locations indicated by a Gaussian kernel centred around each sur-
face feature which we want to count. The overall diagram indicating critical components of
the method is presented in Fig. 2.

Gaussian maps: The ground truth Gaussian map is created from keypoint annotations
indicating location of each surface feature (i.e. strawberry achene in our case) in the planar
projection image. For each annotation, a symmetric 2D Gaussian is applied representing the
likelihood of the pixels to be part of the object, with the highest pixel value at the keypoint
location. Each Gaussian map MG can be described as MG = ∑

N
i=1 I0 +Gσ (i) for N annotated

objects, where I0 is an empty image corresponding to the size of the 2D projection X , and
Gσ (i) is a Gaussian kernel centred around each annotation. The values of the final map
are normalised so that the highest pixel value is 1.0 representing the exact and more likely
location of the achene with radially decreasing confidence values. Contrary to the density
maps, this representation indicates location of individual objects rather than their count.
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Figure 2: The complete pipeline for object localisation and count with the proposed GNet
architecture.

In our work, we consider two selection criteria for σ : a fixed value for all objects,
selected low enough to avoid overlaps in dense regions, and an adaptive value σa =
min(dmin pt ,β ) based on the distance to the closest neighbour dmin and binary likelihood
threshold pt (described below) with a fixed upper bound β corresponding to the size of an
average object.

Gaussian network (GNet): We propose to use a supervised method to train a object
localisation predictor with the generated ground truth Gaussian maps. The input image X
consists of 3 channels corresponding to the normalised surface normal attributes. Our model
is based on an encoder-decoder architecture derived from the UNet framework. The encoder
E(X ) generates a latent feature space with x1,x2,x3,x4,x5 different level/scale of the feature
map. The output from the network gm = D([x1,x2,x3,x4,x5,E(X )]) represents the latent
space progressively upsampled and decoded through the decoder D, with the different scales
of feature maps concatenated at different layer outputs. The graphical overview of the archi-
tecture is presented in Fig. 2 which includes double convolution blocks (Double Conv) and
combined maxpool-convolution blocks (Down Conv)1. The key difference with the UNet
framework resides in the upsampling blocks, which we have been replaced by transposed
convolutions to allow the decoder to learn the progressive upsampling of feature maps and
increase its precision. We also added dilation to the transposed convolutions, to spread apart
the learned kernels across larger areas and improve the field of view and understanding of
local information when upsampling. We offer an ablation study of these improvements in
Sec. 5.

As loss function, we use the Binary Cross Entropy expressed as L =
1
N ∑

N
i=1−(yi log(gmi) + (1 − yi) log(1 − gmi)) for all N pixels, where gmi is the pre-

1The source code is available at: https://github.com/lelouedec/PhD_3DPerception

https://github.com/lelouedec/PhD_3DPerception
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dicted Gaussian map value and yi is the ground truth value at location i. The loss function in
this form is traditionally used for binary classification problems, but it can also be used for
measuring the distance between two probabilistic distributions.

Object count from the predicted maps: From the calculated Gaussian maps, the final
object count is calculated as follows. First the output values are binarised using a fixed
threshold pt which creates distinct groups of foreground pixels. Then, the resulting binary
map undergoes a connected component labelling procedure resulting in a set of individual
clusters corresponding to the object count. The localisation information of the achenes, if
required, can be obtained directly from the cluster centres, which is not possible to obtain
directly when using density based methods.

3.3 Baselines

As a baseline for comparisons to our method, we consider a basic non-maxima suppression
algorithm based on point distances from the origin (ρ) and two state-of-the-art approaches
based on density estimation.

Non-maxima suppresion method: We create region proposals as circles of diameter
β , located on local-maxima of the projection of ρ on the strawberry surface. We then use
non-maximum suppression over the proposed locations of achenes and combine into one
the predictions with an overlap above 50%. The final count of achenes is the number of all
predictions left after the suppression procedure.

Density method: Generating the density map can be realised by convolving each key-
point annotation with a Gaussian kernel resulting in a groundtruth density map. Each individ-
ual kernel is normalised so that all kernels can be integrated into the toal number of objects in
the image. This idea is popular for example in crowd counting applications (eg. [19]) which
typically use loss functions based on distance in metric space (Mean Square Error loss).

The density map is expressed as MD(x) = ∑
N
i=1 δ (x−xi)Gσ (x), where δ (x−xi) is a map

with 1 at each location and 0 elsewhere and Gσ (x) is a Gaussian kernel with σ =
∑

3
j=1 k j

f ,
where k j is the distance from the annotated pixel i to the jth closest neighbour, and f is a
scaling factor. The final count of objects C is obtained by integrating all density pixels from
the entire image.

The two state-of-the-art baseline network architectures for density-based predictions are
CSRNet [18] and CAN [19]. We chose these two methods, since their complexity is compa-
rable to our model. CSRNet is a single column model with a VGG16 [25] feature extractor
as an encoder, a mirrored decoder without upsampling and an outer convolution generating
the predicted density map. We use version of the network with a dilation rate of 2 from the
original paper. The CAN approach is multi-scale, using different feature maps from the en-
coder which are upsampled and combined into one latent space feature map before being fed
to a decoder similar to one in CSRNet. We chose both methods for being the best performing
methods for density based count regression on multiple standard datasets.

For both methods, the output size of the network is 8 times smaller than the input. There-
fore, the target of the loss function needs to be downsampled using a bicubic function for
training. This impacts the precision of the methods with smaller resolutions of inputs, and
tends to force averaging over some areas instead of very precise density information.
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4 Evaluation

4.1 Datasets
For our application, we use a publicly available dataset of high-resolution 3D scans of straw-
berries presented in [7]. The dataset comprises of images, 3D scans and phenotypic infor-
mation for 1611 strawberries, divided into 20 groups representing 15 varieties for 3 different
locations. The calyx was manually removed while trying to minimise the amount of dis-
carded flesh. The 3D scans were performed with use of a high resolution Solutionix Rexcan
DS2 scanner typically employed for precise dental scanning applications, and spray coating
each berry with a white titanium solution to minimise light reflection. For each berry, 10
different views were captured to create the resulting point cloud which then underwent the
Poisson disc reconstruction process using three depths of 4, 6 and 8. In our work, we chose
the depth of 8 for the highest level of detail.

For the purpose of strawberry achene counting, we manually indicated keypoint locations
for each achene in the images resulting from planar projections of the 3D scans (see Fig. 1 for
example annotation). We annotated 781 strawberries in total corresponding to 11 groups of
the original dataset including 7 different species and 4 different picking locations. For each
strawberry, we generated both density and Gaussian maps as groundtruth for the different
methods evaluated. We use an 80% training and 20% testing set split corresponding to 625
strawberry scans for the training set and 156 for the testing set. The training set has an
average of 274 achenes (std: 66, min: 99, max: 503), and the testing set has an average of
271 achenes (std: 62, min: 98, max: 499).

4.2 Experimental parameters
In our experiments, we compare four different methods which we denote as follows: GNet
is the proposed method with a fixed Gaussian kernel, GNeta with a variable kernel and two
baseline methods are denoted as CSRNet and CAN. The specific parameters for all four
methods are detailed below.

Input resolution: We use two different resolutions for input X determined by a degree
angle increment parameter which we set to ∆ = 0.5 and ∆ = 1.0 degrees, resulting in two
image resolutions of 720×360 and 360×180. Based on various examples from the dataset,
we choose the ROI over our projections to be at hmin = 23.5% and hmax = 76.5% allowing
for ignoring areas previously covered by the calyx at the top and clamped flesh at the bottom.
For the binarisation of the predicted Gaussian map gm, we use a threshold value pt = 0.33
giving > 66% likelihood for the object to be found at the given location.

Training parameters: To take into account potential rotation of the berries along the z
axis, as well as avoiding too fast convergence toward local minimum and overfitting, we use
data augmentation during training. To imitate the rotation around the Z axis, the projected
training image is translated horizontally by a random value from a range [0, W]. This mainly
helps the network generalising for the objects location. We use the Adam optimiser, with
a learning rate of 1e−5 for density based methods and 1e−6 for GNet. All models are
trained until the loss starts to plateau (loss oscillating around an average value). We train on
a PC equipped with an NVIDIA 1080 Ti GPU and 12 GB of VRAM. For ∆ = 1.0, a single
inference of GNet with connected component clustering performs at 25 FPS which drops
down to 5 FPS for ∆ = 0.5.

Gaussian kernel: For the GNet with a fixed kernel size, we set σ = 1.25 for ∆ = 1.0 and
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σ = 2.5 for ∆ = 0.5. For the adaptive variant GNeta, we set the bounding value β = 2.5 for
∆ = 1.0 and β = 5 for ∆ = 0.5. These values are based on the average radius of the achenes
which for the resolution corresponding to ∆ = 0.5 equates to about 5 pixels. The scaling
factor f for the density-based methods CSRNet and CAN is set to 10 following the original
implementation of the methods.

Evaluation metrics: Following previous evaluation methods for counting, we use as
metrics the Mean Average Error (MAE) ∑

n
i=1 |yi−xi|

n and Root Mean Squared Error (RMSE)√
∑

n
i=1(yi−xi)2

n , where yi is the ground truth count for sample i, xi is the predicted count and
n the number of samples in the test set. We additionally provide the average percentages of
False Positive (FP) and False Negative (FN) cases, to reflect better on the performance of
each method.

5 Results

GNet vs. density-based methods: The results for the four evaluated methods and two
different resolutions (∆= 1.0 and ∆= 0.5) are presented in Table 1 left. We also add the basic
non-maxima suppression method for both resolutions as a means of comparison and baseline
for other methods. The GNet method outperforms both density-based methods regardless the
resolution with large differences between the GNet and CSRNet/CAN especially highlighted
for the lower resolution case (∼ 23 RMSE difference). The density-based methods, when
compared to GNet, tend to report fewer false positives but their relatively high count miss
rate (FN) results in overall degradation in performance. This can be observed in the reported
distribution of errors presented in Fig. 3 where the expected error values for CSRNet/CAN
are way below the 0 mark and their distribution is more spread. Similarly, the resulting
linear regression lines between the ground truth and predictions in Fig. 3 reveal a negative
bias for the density-based methods although it seems that the the total count per strawberry
example does not significantly influence the error rate. High number of false negatives from
NMS are explained by the non-regular geometric features of the achenes and their fusion
with the flesh of the fruit. Also the numerous bumps and perturbation of the flesh (due to
handling and bruising of the fruits), cause the higher number of false positive predicted by
NMS compared to other methods.

The adaptive kernel variant GNeta improves results by a small margin when compared to
the fixed kernel GNet, with the most significant change for the higher resolution. This indi-
cates that adjusting the size of the kernels, especially in small and dense areas, improves the
overall accuracy. There are relatively small differences between the two density-based meth-
ods, although CAN performs better in higher resolution (∆ = 0.5) which can be attributed to
their contextual module having more pixels to work with when compared to CSRNet which
is taking scales less into consideration.

Ablation study of GNet: To demonstrate the benefits of the proposed improvements to
the original UNet architecture, we conducted a short ablation study. We compare the perfor-
mance of the standard UNet with a version replacing upsampling with transpose convolu-
tions denoted as UNett , and with the proposed GNeta (see Table 1 right). Without dilation,
replacing upsampling with transpose convolution does not bring significant improvements,
while adding dilation increases the local information taken in consideration and improves
the results. Slightly higher FP rates for GNeta come from difficult areas, where bumps, other
defects or difficult features to annotate were highlighted, thanks to the added precision from
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Arch. ∆ RMSE MAE FP% FN%
GNet

0.5

14.30 9.80 1.55 2.06
GNeta 12.86 8.40 1.34 1.75

CSRNet 36.42 32.90 0.00 12.13
CAN 24.62 20.03 0.41 6.97
NMS 71.64 57.37 11.41 10.45
GNet

1.0

16.10 10.89 0.87 3.15
GNeta 17.60 10.10 2.65 1.07

CSRNet 39.84 35.55 0.24 12.87
CAN 39.65 30.48 0.28 10.96
NMS 71.16 55.75 7.51 13.74

Arch. MSE MAE FP% FN%
UNet 13.69 9.21 0.94 2.45
UNett 14.24 9.71 1.38 2.19
GNeta 12.86 8.40 1.34 1.75

Table 1: Performance comparison of the GNet and density-based methods for two different
resolutions ∆ (left). Performance comparison for the standard UNet, UNett with transpose
convolutions instead of upsampling, and the proposed GNeta (right).
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Figure 3: The linear regression between the ground truth and prediction counts for all con-
sidered methods (left) and distribution of errors (right) for ∆ = 0.5.

dilation.
Qualitative analysis: We also present two graphical examples from our test set including

a difficult case with very dense areas (Fig. 4) and an easier example with more homogeneous
spread of achenes over the surface (Fig. 4). For both examples, it can be seen that GNet
methods better predict localisation and count, with a more precise result obtained with GNeta
trained with adaptive kernels.

Unannotated regions: We also assess if GNeta can generalise to unannotated achenes
outside of the chosen ROI. For that purpose, we simply rotate the berry along the X axis
to place its top and bottom on the central horizontal axis of the projection resulting in a 2D
projection featuring previously cropped-out regions. An example result is presented in Fig. 5
where it can be seen that the trained system generalises well to the completely unseen areas
of the object.

6 Conclusions and Future Work
In this paper we proposed to use spherical projection on images of spheroid objects for
surface feature localisation and counting combined with Gaussian map prediction and clus-
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Figure 4: A difficult (left) and uniform (right) example with high density areas. From left-
to-right then top-to-bottom: GNet prediction over the 3D surface, annotated projection and
the outputs from GNet, GNeta, CSRNet and CAN respectively for ∆ = 0.5.

Figure 5: Predicting achene locations in unannotated regions: prediction in the ROI only
(left) and in the unannotated bottom part of the berry on 2D projection (centre) and 3D
surface (right).

tering. Our method allows an accurate localisation of achenes on the surface of strawberries,
outperforming state-of-the-art density-based methods for this particular application. Intro-
ducing adaptive kernels and improvements to the UNet architecture lead to even better results
and extremely precise count and localisation of achenes over the 3D surface of strawber-
ries. The presented work opens up new possibilities for exploiting surface features for other
phenotyping applications considering crops with similar spheroid shapes. Future work will
address issues of rotation robustness and better predictions by using different rotations of
objects and their projections as well as introducing end-to-end learning for the selection of
threshold locally. We are also interested in incorporating such automatic predictions into
more complex phenotyping and biology pipelines, especially by correlating genotypic infor-
mation with the predicted phenotypes.
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