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Abstract

The limited dynamic range of commercial compact camera sensors results in an inac-
curate representation of scenes with varying illumination conditions, adversely affecting
image quality and subsequently limiting the performance of underlying image process-
ing algorithms. Current state-of-the-art (SoTA) convolutional neural networks (CNN) are
developed as post-processing techniques to independently recover under-/over-exposed
images. However, when applied to images containing real-world degradations such as
glare, high-beam, color bleeding with varying noise intensity, these algorithms amplify
the degradations, further degrading image quality. We propose a lightweight two-stage
image enhancement algorithm sequentially balancing illumination and noise removal us-
ing frequency priors for structural guidance to overcome these limitations. Furthermore,
to ensure realistic image quality, we leverage the relationship between frequency and
spatial domain properties of an image and propose a Fourier spectrum-based adversar-
ial framework (AFNet) for consistent image enhancement under varying illumination
conditions. While current formulations of image enhancement are envisioned as post-
processing techniques, we examine if such an algorithm could be extended to integrate
the functionality of the Image Signal Processing (ISP) pipeline within the camera sensor
benefiting from RAW sensor data and lightweight CNN architecture. Based on quanti-
tative and qualitative evaluations, we also examine the practicality and effects of image
enhancement techniques on the performance of common perception tasks such as object
detection and semantic segmentation in varying illumination conditions.

1 Introduction
Images captured in dynamic illumination conditions can have underexposed or overexposed
regions or a combination of both. The underexposed regions are susceptible to noise, and
overexposed regions obscure textural information of surrounding features. This deteriorates
the performance of underlying high-level perception tasks such as feature matching [33],
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Figure 1: Performance landscape (GMACs vs PSNR) of different SoTA Image Enhancement Algo-
rithms on sRGB Images from the LOL [44] dataset (left) and corresponding Power Spectral Density
curves of enhanced images (right).

lane detection [22], object detection [27], and semantic segmentation [38]. While hardware
modifications or software adjustments can be used for increasing light received by a camera
sensor when capturing a scene, these approaches introduce additional noise and artifacts
such as motion blur (increasing exposure time), losing the depth of field (increasing aperture
of the appropriate lens), and non-uniform lightening (using additional light source). Hence
focus shifts towards software-based image enhancement as a post-processing technique to
enhance image quality while maintaining image sharpness and color balance.

Current SoTA algorithms leverage CNNs and define different functional configurations
focusing on CNN architectures [24, 48, 51] or optimization formulation [12, 52] to obtain
a well-illuminated image in low light or high illumination conditions. However, illumina-
tion settings confine the performance of these methods; hence they perform well only in the
conditions wherein the complete image has similar illumination conditions. This assump-
tion is rarely fulfilled in real scenarios, resulting in increased pixel noise, color bleeding,
and pixelations, reducing image quality when using these algorithms on natural images con-
taining local illumination sources. This is extremely detrimental in scenarios wherein these
enhanced images are used as inputs for performing high-level vision tasks such as object
detection, semantic segmentation, etc., as it degrades the performance of SoTA algorithms
(See the supplementary).

To circumvent these limitations of SoTA low-light image enhancement (LLIE) algo-
rithms, we propose a two-stage enhancement architecture wherein the first stage focuses on
coarsely balancing illumination and the second stage focuses on noise and artifact removal to
reconstruct a well-illuminated color-balanced image. Furthermore, to improve feature qual-
ity without increasing computations, we propose a compact multi-scale feature extraction
mechanism that splits a given feature map along channel dimension and subsequently uses
a convolutional filter with different kernel sizes. These features are then aggregated after
being scaled using a channel attention mechanism that encourages relevant features while
suppressing irrelevant features, allowing us to obtain features across diverse receptive fields
used to balance the illumination of the image. Subsequently, the secondary network is used
to recover the regions affected by noise and artifacts to ensure textural and structural fidelity
within enhanced images. This two-stage approach reduces the network size while ensuring
SoTA performance, saving on inference time and memory requirement.
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(a) LL Image (b) Magnitude (c) Phase (d) δMagnitude

(e) GT (f) Magnitude (g) Phase (h) δPhase

Figure 2: Disentangling (a) low light and (e) its correspond-
ing ground truth into (b, f) magnitude and (c, g) phase com-
ponents using fast Fourier transform with difference heatmap
of magnitude and phase (d, h). In the heatmap, red highlights
maximum error whereas blue represents minimum error.
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Figure 3: Overview of the proposed
compact multiscale-feature extrac-
tion and aggregation.

Furthermore, upon a closer inspection of power spectral density of images enhanced
by SoTA algorithms, we observe poor performance at high frequencies that capture edge
information; thus, we propose utilizing the frequency domain information to ensure con-
sistent enhancement under diverse conditions by leveraging the duality between frequency
and spatial domain characteristics of an image. Specifically, point-wise modifications in the
frequency domain result in global modifications across spatial domains in an image. In addi-
tion, visual examination (Fig. 2) of frequency domain information, i.e., magnitude and phase
components generated using Fast Fourier Transform (FFT), reveals multiple attributes that
can be leveraged to ensure image enhancement. Some notable attributes include the pres-
ence of high textural information within a well-lit image (Fig. 2(e)) that are centered in the
magnitude spectrum. As low light image doesn’t capture detailed textural information, the
intensity of magnitude spectrum (Fig. 2(b)) is attenuated. This observation can be extended
for edges present in an image. While the magnitude spectrum can be interpreted as ’how
much’ of frequencies are present in an image, an equally important phase component (Fig.
2(c, f)) determines ’where’ those frequencies are present in the image. This motivates us to
construct an adversarial network that utilizes both the magnitude and phase components of
an image to determine whether it is real/fake. Such a binary CNN would leverage the com-
plete spectral properties of how much and where certain frequencies are present and thus
result in enhanced images closely resembling the ground truth.

While the performance of image enhancement algorithms has improved lately, utiliza-
tion of camera-ISP (comprising of multiple handcrafted task-specific algorithms to convert
raw color filter array (CFA) data to standard RGB (sRGB) image) introduces additional non-
linearities capping the peak performance of SoTA algorithms. However, due to the propri-
etary nature of camera-ISP, the implementation of enhancement algorithms on RAW sensor
data is not well studied. Recently different works such as SID [4], and Five5K [2] have col-
lected RAW image pairs using different exposure times to construct paired images that could
be used for training end-to-end image enhancement algorithms instead of the current post-
processing formulation. However, as these datasets capture high illumination conditions by
increasing the exposure times, they do not contain dynamic scenarios such as glares, color
bleeding, high beam, etc., thus representing conditions that are easily violated in real-life de-
ployment. Nevertheless, they could be used for training an end-to-end CNN with additional
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augmentations as paired-dataset capturing diverse illumination conditions and storing it in
RAW format is impractical. Instead, we construct a test-set that represents varying illumi-
nation conditions under diverse conditions by capturing images using a dashboard camera
mounted on a consumer vehicle, allowing us to examine the efficacy of algorithms on real-
world deployment. We summarize our contributions as,

• We propose a two-stage CNN architecture for performing illumination balancing and
image restoration that works with both sRGB and RAW images.

• We combine channel split mechanism with multiscale convolutions to enhance the
receptive field and increase feature information without a substantial increase in com-
putations.

• To ensure the presence of high-frequency components within enhanced images, we
propose using frequency information within an adversarial learning mechanism.

• As paired training datasets cannot represent dynamic conditions, we construct an un-
paired test-set by collecting RAW and sRGB images under dynamic illumination con-
ditions using a personal vehicle as data capturing setup.

• We demonstrate varying illumination conditions to adversely affect the performance
of object detection algorithms and improve it by enhancing image quality using the
proposed approach.

2 Related Works
2.1 Image Enhancement
Early CNN-based approach, LLNet [24], proposed an autoencoder formulation for perform-
ing contrast enhancement while simultaneously suppressing noise. Subsequent works rely
on Retinex Theory coupled with additional priors such as structure aware loss in RetinexNet
[44], reflectance restoration in KinD [51], and attention mechanism [48] to improve LLIE
performance. When applying these algorithms on images comprising both well and poorly-
lit regions, they distort the regions that do not require any enhancement. To overcome such
situations, DALE [15] proposed a two-stage approach of first identifying dark regions using
a visual attention module and then enhancing the brightness of these regions. These meth-
ods perform LLIE on images of reduced spatial resolution resulting in inaccurate spatial
enhancement. MIRNet [47] was proposed to maintain a semantically and spatially accu-
rate enhancement network using multi-resolution convolution and attention mechanisms. As
these methods require paired training samples, constructing a training dataset is extremely
time-consuming. EnlightenGAN [12] utilized a generative adversarial framework for con-
structing low light images and subsequently using it to train an underlying LLIE algorithm,
whereas [52] relying on self-supervised learning to formulate a retinex model optimized
using maximum entropy.

Recently frequency priors have been explored to restore images with MWCNN [21]
using wavelet transforms to perform tasks such as super-resolution, denoising, and JPEG
artifact removal. [46] highlighted that detecting and removing noise is much easier from
low-frequency components and thus proposed a two-stage network that decomposes an im-
age into low and high frequency, recovers low-frequency components, and enhances high-
frequency details. In addition, DIDH [34] proposed an adversarial framework utilizing low
and high-frequency prior-based discriminators for domain invariant dehazing. While these
works highlight information represented within the frequency domain and devise different
strategies for exploiting it for restoration tasks, we use an adversarial Fourier network to
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leverage its duality property with an image for performing region-sensitive image enhance-
ment. As sRGB images are widely available and used for conducting research for high-level
perception tasks, [23] constructed a dataset to demonstrate that low illumination conditions
obscure information contained within an image, resulting in a performance drop of SoTA
object detectors. Theoretically, the performance can be retained or improved if the image
is processed using an ideal enhancement algorithm. However, from our experiments, we
demonstrate that current methods result in increased pixelation and noise that adversely af-
fect performance. Hence an ideal image enhancement algorithm is still missing.

2.2 End-to-End Camera ISP
Traditional ISP comprises multiple low-level tasks such as white balancing, demosaicing of
CFA data, denoising, high dynamic range compression, black pixel removal, contrast en-
hancement, tone mapping, super-resolution, etc. The order of application and additional
algorithms are unique to sensor manufacturers and inaccessible in most cases with extensive
studies being conducted for independently performing these low-level tasks with state-of-
the-art (SoTA) performance achieved using CNNs. Furthermore, due to the electronic nature
of the camera sensor, it is prone to various noise from various sources such as photon noise,
quantization noise, and digital noise [8, 45]. This motivated different works such as [1, 6, 30]
to focus on removing noise to improve the signal-to-noise ratio, which has a more prominent
effect on images captured in low light conditions [4, 45] due to low pixel intensities. [16]
observed superior performance of dehazing algorithm with reduced artifacts when the RAW
image is used instead of sRGB image. Encouraged by the success of individual CNNs on
low-level tasks, [14] proposed a solution to jointly perform denoising and demosaicing us-
ing a residual connection to improve feature flow and better leverage image structure. [29]
extended this approach by integrating the task of super-resolution and jointly optimizing the
underlying CNN to obtain high-quality RGB images. To further improve the quality of sRGB
images [17, 32] proposed a two-stage framework for sequentially restoring and enhancing
an image. Lately [10] proposed an end-to-end framework for mapping a RAW demosaiced
image captured via smartphone camera into sRGB space while simultaneously enhancing it
to match the quality with a DSLR camera. Similar to these approaches, we perform end-to-
end RAW-to-sRGB image conversion while removing illumination inconsistencies to obtain
a balanced image using a demosaiced image as input and improving performance using fre-
quency priors while achieving real-time performance.

3 Methodology
3.1 Problem Formulation
Functioning of current SoTA image enhancement algorithms is limited to either low illumi-
nation or high contrast conditions while being capped by non-linearities arising from camera-
ISP. This increases the computational cost of current SoTA, making them unviable for real
scenarios wherein such image enhancement mechanisms can improve the performance of
different perception tasks. As frequency spectrum is beneficial in ascertaining the limita-
tions of current SoTA algorithms, we integrate such information in the CNN architecture
and optimization cycle to ensure textural and structural consistency within enhanced images
without noise or unwanted artifacts, thereby providing high dynamic range without relying
upon multiple images.

3.2 Network Architecture
Our baseline architecture comprises a two-stage process wherein the first stage enhances illu-
mination, and the second stage removes any artifacts (Fig. 4). We utilize different techniques
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Figure 4: Overview of the proposed image enhancement framework

introduced in the literature to develop efficient modules that provide high feature quality with
reduced computational resources.
Illumination Balancing - As different regions can be affected by various illumination sources,
to ensure consistent illumination, we use a UNet [31] style encoder-decoder framework that
allows convolutional kernels access to complete image at the encoder end. To avoid ex-
cessive computations arising from extracting features across multiple scales (1/2, 1/4, 1/8,
1/16, 1/32), inspired by performance gains achieved by increasing receptive field size of
convolutional layers, we instead focus on achieving compact multi-scale feature extraction
mechanism and thus extract features from 3 scales, i.e., 1/2, 1/8 and 1/32. Using multi-scale
convolutions increases computational cost, hence to reduce the computational cost, different
techniques such as channel shuffling, [50], squeeze-excitation [9], inception modules [39],
1x1 point convolutions [19] etc., were proposed. In this paper, we combine these techniques
to obtain a computationally efficient multi-scale feature extraction mechanism (Fig. 3) and
propose a channel split mechanism that divides a feature map across channel dimensions
into multiple parts (P) of equal size (implying number of channels (C) should be divisible
by a split factor S). These parts are then used as inputs for convolutional kernels of different
filter sizes to obtain features across a wider receptive field. To ensure relevant scale-specific
features are amplified, we integrate a channel attention mechanism to features from each
scale which are subsequently aggregated.
Image Restoration - Upon enhancing illumination within the image, different artifacts and
noises can be effectively restored. Furthermore, to ensure the presence of structural and
textural details, we concatenate the original input image along with enhanced image and
use residual dense blocks (RDBs) [53] (that combine local and global features) to ensure
similarity with ground truth. While RDBs are usually used on down-scaled features, we
argue that subsequent upsampling of these features would reduce image quality resulting in
losing details. Contrarily using them on complete images avoids these issues.

3.3 Fourier Adversarial Network
As there is a perceivable difference between Fourier transforms of low light and correspond-
ing ground truth images (Fig. 2), frequency domain information (extracted using Fast Fourier
Transform (FFT)) can be used to improve image quality by incorporating it within the op-
timization cycle. Furthermore, as low and high frequencies can be used concurrently to
capture structural information better, using a complete Fourier spectrum can ensure struc-
tural consistency within the enhanced image. While pixel-based losses could be used to
ensure FFT of enhanced and ground truth images are similar, they fail to capture inter-pixel
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relationships across neighboring pixels. Instead, we propose to use a CNN-based binary
loss to determine whether a given image is real or fake based on the Fourier spectrum of
its grayscale version. Furthermore, since the magnitude spectrum of an image has higher
intensity around zero frequency, we normalize it before concatenating it with an input image
that is then passed to the discriminator for binary classification. As we use a Fourier-based
adversarial network to identify real/fake images using structural details, we require another
adversarial network to ensure equal balance towards textural details. Thus we use commonly
used PatchGAN [11] for this purpose.

In summary, the complete framework comprises a two-stage enhancement network that
acts as a generator (G) with two discriminators focusing on structural (D1) and textural (D2)
details to determine genuinity of a given image. For optimizing the complete framework, a
combination of pixel (L1), structural (MS-SSIM [42]), and feature-based (Supervised Con-
trastive Adversarial Loss) loss functions along with adversarial losses (following LSGAN
[26]) are used resulting in the following optimization objective for learnable parameters
within generator (θG) and discriminators (θD1,θD2),

min
θG

max
θD1,θD2

λL1LL1(θG)+λMS−SSIMLMS−SSIM(θG)

+ λSCALLSCAL(θG)+λP−ADVLP−ADV (θG,θD1)+λF−ADVLF−ADV (θG,θD2)
(1)

Here λL1,λMS−SSIM,λSCAL represent weights for balancing the L1, MS-SSIM, and SCAL
losses and are set to 1, 1, and 0.01, whereas λP−ADV ,λF−ADV represent the weights for bal-
ancing the adversarial losses and are set to 0.5. We refer to the generator trained using this
process as AFNet.

4 Experimental Evaluations
4.1 Datasets and Evaluation Metrics
As we analyze the performance of different SoTA image enhancement algorithms along
with their application in real perception tasks, we rely upon multiple datasets with different
evaluation metrics. Hence we categorize them according to tasks and summarize them as,
Image Enhancement - To examine the performance of SoTA algorithms under diverse il-
lumination conditions, exhaustive experiments are performed using datasets containing both
sRGB and RAW images. For sRGB images, we use LOL [44] and SICE [3] datasets wherein
the LOL dataset contains 1000, 485, 15 paired training, validation, and test images, whereas
the SICE dataset contains 400, 130, 58 paired images captured under different illumination
conditions ranging from -3ev to +3ev with increments of 1ev. For the RAW dataset, we uti-
lize the SID-Sony [4] subset having 2421, 276 training and test samples along with the ELD
[45] dataset that comprises 384, 96 training and test image pairs captured using different
camera sensors. To quantify performance, we use a wide range of metrics covering pixel
information (PSNR), structural consistency (SSIM [43]) and Textural Consistency both with
(LPIPS [49]) and without (NIQE [28]) reference.
Perception Algorithms - To analyze the impact of variable illumination conditions on com-
mon perception tasks such as object detection and semantic segmentation, we choose ExDark
[23], JOL [36], COCO [20] and Cityscapes [5] datasets and use mAP and mIOU metrics to
quantify performance in dynamic illumination conditions. While Exdark and JOL captures
dynamic illumination conditions for object detection, we extend the COCO and Cityscapes
datasets to represent night conditions using image translation methods to verify the results
across datasets and tasks. Specifically, we improve performance of original Cycle-GAN [55]
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Table 1: Quantitative results of ablation studies.
Config. PSNR / SSIM GMACs
Single Stage 14.25 / 0.57 0.46
Two Stage w 1x RDB 18.16 / 0.62 0.57
w 3x RDB 19.67 / 0.64 0.92
w 5x RDB 20.48 / 0.69 1.58
w 7x RDB 20.51 / 0.71 2.23
Two Stage w 7x RDB + cMSFE-A 21.45 / 0.78 4.38
+ Patch GAN 21.97 / 0.82 4.38
+ Fourier GAN (RGB) 22.98 / 0.83 4.38
AFNet (+ Fourier GAN (Gray)) 23.01 / 0.84 4.38

Figure 5: Power Spectral Density (PSD) of im-
ages generated using different configurations of
proposed framework.

by introducing different techniques which are provided in supplementary. While such tech-
niques could be inversely used to generate well-illuminated images, the computational cost
associated with these algorithms to process high-resolution images overshadows their style
translation performance.

4.2 Training Mechanism
To enhance sRGB images, we utilized images from the LOL dataset, cropped to 256 x 256
along with augmentation techniques mentioned [35] that ensure the presence of different
illumination conditions within training samples. We used an ADAM [13] optimizer with an
initial learning rate of 1e-4 for both generator and discriminators. We train the complete
framework for 1000 epochs while reducing the learning rate by a factor of 0.5 every 200
epochs and use the model weights that result in minimum validation error across the training
process. As we study if camera-ISP could be integrated within the enhancement pipeline,
we modify all prior sRGB algorithms to accept 4 channel demosaiced input and use bicubic
upsampling to match the resolution of generated images with ground truth. Furthermore,
we follow the training process mentioned above without making any modifications to the
underlying CNN architecture. For our experiments, we use a system equipped with NVidia
3090 GPU running Pytorch 1.7.

4.3 Ablation Studies
In this section, we examine the effect of different architectural and optimization modifi-
cations on network performance in terms of computational cost as well as the quality of
the enhanced image. To carry out our examination, we use the LOL dataset as its small
size allows us to explore different network variants while minimizing the training time. We
first compare the performance of single-stage and two-stage networks that are trained in an
end-to-end manner without using pixel, structural and perceptual losses. From performance
results summarized in Tab. 1 and PSD in Fig.,5 we observe the two-stage network with
5 RDB blocks to result in peak performance in PSNR and SSIM. We further replace the
standard convolutional layers with proposed cMSFE-A layers and observe performance to
improve significantly both in terms of quantitative metrics and the PSD curves as well with a
large textural component matching the ground truth PSD. Subsequently, we examine the ef-
fect of training proposed two-stage enhancement algorithm in GAN framework, specifically
focusing on the effect of Fourier spectrum-based discriminator on quality of generated im-
ages. Quantitative and qualitative results (In Supplementary) demonstrate that using Fourier
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Table 2: Performance Evaluation of SoTA on
sRGB images from LOL dataset.
Algorithm PSNR / SSIM (↑) NIQE / LPIPS (↓) GMACs

Input 7.77 / 0.19 5.71 / 0.42 -
DALE 18.55 / 0.73 9.43 / 0.28 211.47
DLN 21.34 / 0.82 3.05 / 0.28 248.02
DSLR 18.22 / 0.62 3.90 / 0.58 18.74
EnlightenGAN 17.48 / 0.65 4.89 / 0.39 61.07
GLAD 19.72 / 0.68 6.80 / 0.40 0.12
KinD 17.65 / 0.77 3.89 / 0.28 14.62
MBLLEN 17.63 / 0.72 3.38 / 0.37 104.76
RetinexNet 16.77 / 0.42 9.73 / 0.47 68.00
URIE 20.10 / 0.72 4.75 / 0.41 14.28
Ours 23.01 / 0.84 3.86 / 0.27 4.38

Table 3: Performance Evaluation of SoTA on
RAW images from SID-Sony dataset.
Algorithm PSNR / SSIM (↑) NIQE / LPIPS (↓) GMACs

Rawpy 28.73 / 0.77 4.07 / 0.38 -
EnlightenGAN 24.27 / 0.64 4.68 / 0.53 349.20
RAW2RGB-GAN 23.55 / 0.78 4.00 / 0.71 342.19
KinD 26.91 / 0.73 4.10 / 0.39 196.07
GLAD 27.11 / 0.82 3.86 / 0.39 132.64
SID 28.88 / 0.78 4.39 / 0.43 562.06
TENet 30.17 / 0.83 3.18 / 0.31 1560.14
PyNet 29.01 / 0.79 3.79 / 0.34 2097.03
PyNet-CA 27.24 / 0.74 4.02 / 0.41 2194.14
AWNet 28.09 / 0.76 3.98 / 0.39 460.29
Ours 27.67 / 0.84 3.94 / 0.37 168.08

discriminator improves image generation quality, while the method of extracting Fourier
spectrum from a grayscale image or per-channel of RGB image doesn’t make a significant
difference on performance. From the PSD curves, we can verify that using Fourier adver-
sarial networks indeed improves the performance of enhancement algorithms in the higher
frequency spectrum. (We present extended analysis in Supplementary).

4.4 Performance Evaluation with SoTA Algorithms
For comparing enhancement performance on sRGB images, we choose publicly available
supervised-learning-based algorithms such as DALE [15], DLN [40], DSLR [18], Enlighten-
GAN [12], GLAD [41], MBLLEN [25], KinD [51], RetinexNet [44] and URIE [37], whereas
for RAW images, we choose Rawpy 1, RAW2RGB-GAN [54], TENet [29], PyNet [10], ELD
[45], AWNet [7]. We summarize the qualitative performance on LOL and SID-Sony datasets
along with computational requirement in GMAC (Giga- Multiplication and Accumulation
Operations)2 3 in Tab. 2 and Tab. 3, respectively.

From performance metrics, we can conclude that algorithms comprising multiple subnet-
works (GLAD, KinD, DSLR) could provide comparable performance with respect to SoTA
(URIE, EnlightenGAN) without consuming excessive computations, with the proposed ap-
proach providing new SoTA without excessive computations. In addition, we observe that
GAN-based approaches such as EnlightenGAN and AFNet result in improved scores on
feature-based metrics such as NIQE and LPIPS, thereby demonstrating GAN-based ap-
proaches to generate naturalistic images. In order to examine if these algorithms could be
reconfigured to accept demosaiced RAW images and generate enhanced sRGB images, we
use EnlightenGAN, KinD, GLAD, and AFNet along with bicubic upsampling mechanism
and summarize results in Tab. 3. We observe the performance of these reconfigured algo-
rithms to reach the performance of algorithms that are specifically designed for RAW image
enhancement albeit a lower computational requirement.

5 Qualitative Evaluation
We present some visual results demonstrating the effectiveness of proposed approach for
qualitative evaluation, with additional examples included in supplementary material. Specif-
ically we show performance comparison with SoTA algorithms on LOL dataset in Fig. 6

1https://letmaik.github.io/rawpy/api/index.html
2https://github.com/sovrasov/flops-counter.pytorch
3Assuming 1 GMACs = 0.5 GFLOPs
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along with performance of SoTA object detection algorithms on low light and enhanced im-
ages from ExDark dataset [23]. From these results we demonstrate both quantitative and
qualitative superiority of the proposed mechanism that aids in performance of SoTA Object
detection algorithms.

5.01 / 0.46 6.67 / 0.35 2.73 / 0.29 4.80 / 0.64 3.42 / 0.29 5.18 / 0.38
Input DALE [15] DLN [40] DSLR [18] EnlightenGAN [12] GLAD [41]

2.94 / 0.27 2.84 / 0.39 8.49 / 0.38 3.62 / 0.43 2.91 / 0.18 3.87 / -
KinD [51] MBLLEN [25] RetinexNet [44] URIE [37] AFNet GT

Figure 6: Performance of SoTA algorithms on image from LOL dataset with NIQE / LPIPS score
respectively.

LL Image EnlightenGAN [12] DLN [40]

GLAD [41] RetinexNet [44] AFNet

Figure 7: Qualitative Performance of Deformable DETR [56] object detector on Low Light and En-
hanced Images following different SoTA.

6 Conclusion
In this paper, we presented the need for balancing illumination present in an image and
proposed a fourier adversarial network to ensure presence of structural details within en-
hanced images. Subsequently we demonstrated the proposed approach to provide SoTA
performance while consuming minimum computational resources making it lucrative to be
deployed on edge or resource constrained devices. We further demonstrated that Camera-
ISP adversely affects the performance of image enhancement algorithms, which can be im-
proved if raw demosaiced images are used as inputs thus the image enhancement algorithm
can integrate the functionality of camera-ISP. Finally we demonstrate the varying illumi-
nation conditions adversely affect the performance of SoTA object detection and semantic
segmentation algorithms which can be improved using image enhancement algorithms.
Acknowledgement This research was supported by KAIST-KU Joint Research Center, KAIST,
Korea (N11200035).
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