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Abstract

In RGB-D object detection, due to the inherent difference between the RGB and
Depth modalities, it remains challenging to simultaneously leverage sensed photomet-
ric and depth information. In this paper, to address this issue, we propose a Feature
Exchange Transformer Network (FETNet), which consists of two well-designed compo-
nents: the Feature Exchange Module (FEM), and the Multi-modal Vision Transformer
(MVIT). Specially, we propose the FEM to exchange part of the channels between RGB
and depth features at each backbone stage, which facilitates the information flow, and
bridges the gap, between the two modalities. Inspired by the success of Vision Trans-
former (ViT), we develop the variant MViT to effectively fuse multi-modal features and
exploit the attention between the RGB and depth features. Different from previous meth-
ods developing from specified RGB detection algorithm, our proposal is generic. Exten-
sive experiments prove that, when the proposed modules are integrated into mainstream
RGB object detection methods, their RGB-D counterparts can obtain significant perfor-
mance gains. Moreover, our FETNet surpasses state-of-the-art RGB-D detectors by 7.0%
mAP on SUN RGB-D and 1.7% mAP on NYU Depth v2, which also well demonstrates
the effectiveness of the proposed method.

1 Introduction

Object detection, which aims to locate and classify objects from input images, is a funda-
mental yet challenging task in computer vision. Remarkable progress has been made in this
field, benefiting many intelligent tasks, including autonomous driving, vision navigation,
and scene understanding. With the rapid development of commercial depth sensors, depth
images can be readily collected, which are also expected to complement RGB images to
promote object detection performance.
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Consequently, RGB-D object detection has attracted increasing attention in the past few
years. Early works [1, 2, 3] take depth maps as the fourth channel of the corresponding
RGB images, and use various hand-designed kernel descriptors to model object size and 3D
shape. However, since RGB information and depth information are inherently different, it is
difficult to effectively extract features from the simply concatenated data. To alleviate this
problem, recent works [10, 15, 16, 18, 31] have adopted two parallel backbone networks
to extract RGB-D features separately. RGBD R-CNN [15] generalizes the R-CNN detec-
tor [13] into a two-stream network for the RGB and depth modalities. Large-scale CNNs
pre-trained on RGB images are used to help extract depth features. To initialize the depth
network with better parameters, Gupta et al. [16] transfer supervision from the large-scale
labeled RGB modality to the unlabeled paired depth modality. Xu et al. [31] propose a corre-
lated detection module to mitigate the disagreements between the modality-specific results.
However, these methods have insufficient ability to learn long-range attention between the
two modalities, which limits their performance. Li et al. [18] propose a cross-modal atten-
tional context framework to incorporate the correlated information from different modalities.
But the feature information flow between the two modalities at the backbone stage has not
received sufficient attention in these methods, which hinders the backbone network from ex-
tracting effective modality-specific features. In addition, most existing methods are specially
designed for R-CNN [13] and Fast R-CNN [12], which prevents them from exploiting the
further development in the RGB-based object detection field.

Aiming to address the above-mentioned issues in RGB-D object detection, we propose
a novel Feature Exchange Transformer Network (FETNet), which is independent of specific
RGB detectors. It consists of two well-designed components. First, we introduce the Feature
Exchange Module (FEM) to partially swap the RGB and depth features at each backbone
stage, which facilitates the information flow between the two modalities. Second, inspired
by the recent success of Transformer [28], we develop the Multi-modal Vision Transformer
(MVIT) to learn the global and local attention of the two modalities and perform multi-
modal feature fusion. Embedded with these two new modules, FETNet surpasses state-of-
the-art RGB-D detectors by 7.0% mAP on SUN RGB-D and 1.7% mAP on NYU Depth
v2. Furthermore, by integrating the proposed modules, various RGB object detectors can be
extended to their RGB-D variants, and significant performance gains can be obtained. These
clearly demonstrate the value and versatility of the proposed modules.

2 Related Work

2.1 Depth Feature Extraction

Depth maps, which contain information related to the distance from specified viewpoints
to the surfaces of scene objects, are inherently different from RGB images of the scene.
Therefore, it is challenging to extract features from the distance-related modality effectively.

Early works [1, 2, 3] mainly focus on the hand-designed operators. By taking depth maps
as an extra channel of corresponding RGB images, Bo et al. [3] leverages hand-designed
features such as SIFT and multiple shape features from the depth channel. To facilitate
the depth feature extraction, Gupta et al. [15] propose a geocentric embedding to convert
single-channel depth maps into three-channel HHA format (Horizontal disparity, Height
above ground, and Angle with respect to gravity direction). The HHA format is adopted
by some following works [18, 31]. However, it introduces a hand-designed conversion, and
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the conversion process is time-consuming [17]. In this paper, we shall demonstrate that the
handcrafted conversion is unnecessary, and we can achieve better performance when taking
raw depth maps as input.

Recent works [10, 15, 16, 18, 31] have been dedicated to extracting depth features uti-
lizing ImageNet-pretrained CNNs. To bridge the gap between the RGB-pretrained CNN
and input depth data, Gupta et al. [16] train the depth backbone by teaching the network to
reproduce the mid-level semantic representations learned from well-labeled RGB counter-
parts. But the information flow between depth and RGB features is blocked in these methods,
which hinders the backbone network from learning modality-specific representations.

2.2 RGB-D Information Fusion

Many algorithms dedicate to fusing RGB-D features have been proposed. RGBD R-CNN [15],
a two-stream network extended from R-CNN [13], uses two large-scale CNNs pre-trained
on RGB images to extract RGB-D features separately, and fuses multi-modal features at a
late stage. Li et al. [18] develop a cross-modal attentional context network by generalizing
Fast R-CNN [12], and introduce LSTM [14] to recurrently generate contextual information
from both RGB and depth data. On the basis of Faster R-CNN [24], Xu et al. [31] propose
a modality-correlated and modality-specific detection network. They introduce a third sub-
net to learn modality-correlated representations from the modality-specific RGB and depth
backbone features at early stages, to mitigate the disagreements between the results from
different modalities. However, these methods rely on specific RGB detection algorithms,
which limits their versatility.

Different from the above-mentioned algorithms, the proposed modules (i.e., FEM and
MViT) are integrated into the backbone network and the widely used feature pyramid layer,
respectively. This ensures the proposed method to be independent of any specific RGB object
detection framework, and boosts the performance of various object detection methods.

3 Method

3.1 Network Overview

Fig. 1 illustrates the architecture of the proposed FETNet. It takes the RGB images and
the corresponding depth maps as input. The RGB images and the depth maps are fed into
two different backbone networks. At each backbone stage, we integrate a Feature Exchange
Module to partially swap the RGB-D features. MViT takes the exchanged features at each
same stage as input, to capture their global and local attention and conduct multi-modal
feature fusion. Output features of each level in MViT are fed into a weight-shared head to
locate and classify objects in the images. Finally, after Non-Maximum Suppression (NMS),
we obtain the final detection results.

3.2 Feature Exchange Module (FEM)

Due to the gap between photometric (RGB) and geometric information, it is tricky to fuse
RGB-D features directly. Motivated by the Temporal Shift Module [21] that moves feature
maps along the temporal dimension, we introduce the Feature Exchange Module (FEM) that
partially exchanges the RGB features with the depth features at each backbone stage to add
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Figure 1: Network architecture of the proposed FETNet. The colored frames between the
backbone blocks are the Feature Exchange Modules. Features from each MViT are fed into a
weight-shared Head to obtain the location and classification results. For simplicity, we only
show the details of one Head in the dashed box.
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Figure 2: Schematic diagram of the proposed Feature Exchange Module (FEM). We partially
exchange RGB-D features with Depth features at each backbone stage to build an informa-
tion flow between them.

an information flow between them. It thus bridges the gap between these two modalities.
As shown in Fig. 2, we split RGB features F,,; and Depth features Fy,,;, of C channels
into two blocks (S with k x C channels and S;_; with (1 — k) x C channels, with k € [0, 1]),
respectively. Then we exchange the block in the RGB features with the corresponding block
in the Depth features.

The proposed FEM can be formulated as

"FH—b1 = Cat(Sk(féepth)ﬂSl—k<f:.gb))’

rg

. ) ) €))]
Fiton = Cat(Se(Flgp)s Stk (Forepen):

where ffgb and F éepth denote the RGB-D features at the ith stage; and Car denotes the

concatenation operation.
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Figure 3: Schematic diagram of the proposed MViT, where C is the concatenation operation,
and + is the element-wise addition operation.

3.3 Multi-modal Vision Transformer (MViT)

Recently, Transformer [28] has achieved success on some computer vision tasks (e.g., image
classification [9, 27], object detection [6, 32, 35], and video processing [23]). Because of its
strong ability to capture global and local attention, we find that Transformer [28] is naturally
suitable for the RGB-D feature fusion.

Inspired by ViT [32], we develop its multi-modal variant, MViT, to effectively fuse RGB-
D features. Since ViT [32] is proposed for image classification, it introduces a class token to
avoid the bias on image representation. Therefore, we remove the class token in the proposed
MViT for multi-modal feature fusion. To convert the features extracted from backbones into
sequence data, the RGB and Depth features are first flattened in the height # and width w
dimensions and then concatenated together. As illustrated in Fig. 3, with feature embedding,
the concatenated features F,, are encoded into dj;4.-dimensional features F,,p.q. Typically
dpiqe 18 much smaller than 2Aw to reduce the computational cost. To distinguish the loca-
tions of features, we add positional encoding P (a set of learnable parameters) to the input
embedding. The multi-head attention layer first converts the input features into Query Fo,
Key Fk, and Value Fy, and then the attention output F, is computed as

.FQX.F%
Vi

where o represents the Softmax function; dj denotes the dimension of Fg; x denotes the
outer product; and 7 indicates the transpose operation.

Different from ViT [32], we add a short-cut connection between the input feature and
the Transformer output, and fuse them with a channel attention layer, to improve the feature
representation ability. The MViT can be formulated as

-Fattn:G( )X]:V7 (2)

/ = Chnmtn(cat(f(ittmf;{gbv éepth))) (3)

fuse


Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and J{é}gou} 2020

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Zhang, Zhang, Tang, Wang, Hua, and Sun} 2020{}

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2020

Citation
Citation
{Liu, Luo, Li, Lu, Wu, Li, and Yang} 2020

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Zhang, Zhang, Tang, Wang, Hua, and Sun} 2020{}

Citation
Citation
{Zhang, Zhang, Tang, Wang, Hua, and Sun} 2020{}

Citation
Citation
{Zhang, Zhang, Tang, Wang, Hua, and Sun} 2020{}


6 XIAO ET AL.: FETNET

where F,, and Fgep, denote the input RGB and depth features, respectively; ChnAttn
indicates the channel attention layer in Fig. 3; Cat denotes the concatenation operation; and
F ji"us . represents the fused features at the ith level of MViT.

Furthermore, we introduce a Bottom-Up pathway between MViTs at different levels, to
enrich high-level semantic features with low-level geometric clues, as illustrated in Fig. 1.The
Bottom-Up pathway can be formulated as

‘/—_-t+1 :up( ]l“use) +fl+1 (4)

fuse fuse>

where U p indicates the upsampling operation.

4 Experimental Results

We evaluate our model on SUN RGB-D [26] and NYU Depth v2 [25], which contain 10,335
and 1,449 RGB-D images, respectively. The training-test splits keep the same as official.
Mean average precision (mAP) and average precision (AP) are adopted as evaluation metrics,
which are the same as those proposed by PASCAL VOC [11].

4.1 Implementation Details

We implement our model with the MMDetection toolbox [7] based on PyTorch. Faster
R-CNN head proposed by Ren ef al. [24] is adopted as the classification and regression
head. The proposed MVIiT is set to have depth D as 2 and head H as 2 to learn global
and local attention, respectively. For fair comparison, VGG-16 and VGG-11 pre-trained on
ImageNet [8] are the default backbones to extract features from RGB-D images, respectively.
Following [18, 31], we only work with 19 major furniture categories available in the two
datasets: bathtub, bed, bookshelf, box, chair, counter, desk, door, dresser, garbage bin, lamp,
monitor, nightstand, pillow, sink, sofa, table, television, and toilet.

On SUN RGB-D [26], models are trained with stochastic gradient descent (SGD) opti-
mizer with initial learning rate as 0.01 and batch size as 4. We adopt the linear warm-up
strategy with 500 warm-up iterations. Weight decay and momentum are set as 0.0001 and
0.9, respectively. During training, images are horizontally flipped with a probability of 0.5
for data augmentation. The input images are resized to 608 x 800. All models are trained
with 24 epochs. Same as [18, 31], we finetune the SUN RGB-D [26] pre-trained models on
NYU Depth v2 [25] with learning rate 0.001.

4.2 Results on SUN RGB-D and NYU Depth v2

We compare the proposed FETNet against recent state-of-the-art RGB-D object detection
methods. For these methods, we adopt the results reported in their papers.

As shown in Table 1, FETNet achieves the best performance and promotes mAP to 54.5
on SUN RGB-D [26], surpassing state-of-the-art RGB-D detectors at least 7.0%. The pro-
posed FETNet significantly improves the performance on chair, counter, desk, door, garbage
bin, lamp, monitor, nightstand, pillow, sink, and toilet. As a multi-class classification and
regression task, the significant improvement in these categories may lead to a slight decline
in the remaining categories due to the inter-class balance.

Table 2 shows the detection results on NYU Depth v2 [25] of the pre-trained models.
FETNet boosts mAP to 54.0, substantially surpassing all the RGB-D detectors. In detail,
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Table 1: Experimental results on SUN RGB-D. The results in red and blue represent the first
and second best performances.
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Table 2: Experimental results on NYU Depth v2. The results in red and blue represent the
first and second best performances.

FETNet promotes the performance on bathtub, bookshelf, chair, desk, door, dresser, garbage
bin, lamp, monitor, nightstand, pillow, sink, and table.
The outstanding performance on both datasets indicates the effectiveness of our FETNet.

4.3 Compared with RGB-based Detectors

Method Reference Input Modality =~ Backbone  Inference GFLOPs mAP
GFLv2 [20] CVPR 2021 RGB ResNet-152 169.9 498
Ours + GFLv2 [20] RGB-D ResNet-50 160.6 53,7¢+39
ATSS [34] CVPR 2020 RGB ResNet-152 168.4 50.9
Ours + ATSS [34] RGB-D ResNet-50 159.1 54.3(+34
Dynamic R-CNN [33] ECCV 2020 RGB ResNet-152 140.5 53.9
Ours + Dynamic R-CNN [33] RGB-D ResNet-50 130.7 57.26433
SABL [29] ECCV 2020 RGB ResNet-152 3471 53.1
Ours + SABL [29] RGB-D ResNet-50 3373 55.9(+28)
Cascade R-CNN [4] CVPR 2018 RGB ResNet-152 168.3 534
Ours + Cascade R-CNN [4] RGB-D ResNet-50 158.5 56.1¢+27)
Faster R-CNN [24] NeurIPS 2015 RGB ResNet-152 140.5 54.8
Ours + Faster R-CNN [24] RGB-D ResNet-50 130.7 57.9¢+3.D

Table 3: Comparison with state-of-the-art RGB-based object detectors on SUN RGB-D.

Since neither FEM nor MVIiT relies on specific object detection methods, these two mod-
ules can be integrated into existing RGB object detection frameworks to get their corre-
sponding RGB-D object detection extensions. Table 3 illustrates the performance of several
common detectors and their RGB-D counterparts on SUN RGB-D [26]. For fair comparison
(similar computational complicity), we set RGB-based methods with a deeper backbone net-
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work (i.e., ResNet-152) and RGB-D methods with two ResNet-50 to extract features from
the two input modalities.

As shown in Table 3, the proposed modules (i.e., FEM and MViT) can steadily improve
the detection performance on both single-stage detectors (i.e., GFLv2 [20], ATSS [34]) and
two-stage detectors (i.e., Dynamic R-CNN [33], SABL [29], Cascade R-CNN [4], Faster
R-CNN [24]), with lower computational complicity.

4.4 Ablation Studies

We execute extensive ablation studies to reveal the characteristics of the proposed method.
Since NYU Depth v2 [25] is a subset of SUN RGB-D [26], only the latter is used here.

Method MFP FEM MViT GFLOPs mAP
baseline 237.1 41.8
baseline + MFP v 257.0 49.9
baseline + MFP + FEM v v 257.0 53.0
baseline + MFP + MViT N v 279.3 53.8
FETNet v v v 279.3 54.5

Table 4: Ablation study on the proposed FEM and MViT on SUN RGB-D. MFP: the Multi-
modal Feature Pyramid layer illustrated in Fig. 1.

Table 4 illustrates the performance gain and computational cost of each component of
the proposed FETNet. The baseline method is extended from Faster R-CNN [24]. RGB-D
features extracted from backbones are fused by directly element-wise addition. Only the final
output feature of the backbone is used for object detection. It achieves 41.8 mAP, which is
lower than existing methods [16, 18, 19]. With the help of the Multi-modal Feature Pyramid
layer (i.e., MFP), implemented with two FPN [22] to aggregate multi-scale features, the
detector achieves 49.9 mAP. When further integrating the proposed FEM, the performance
is boosted to 53.0 mAP. It is worth noting that the introduction of FEM did not lead to
an increase in computational cost, with significant performance gain. When adopting the
proposed MViT, the baseline method is improved to 53.8 mAP. This demonstrates that both
modules are effective for RGB-D object detection. Furthermore, once we combine these two
modules to build FETNet, it can surpass the baseline method with a large margin, which is
the best result exceeding existing methods by 7.0%.

We study the exchange proportion and stage in the proposed FEM. As shown in Fig. 4,
the cyan dotted line indicates the detection capacity without FEM (i.e., baseline+ MFP+MViT),
and the magenta line denotes the performance under different exchange proportions. As can
be seen, the performance reaches the peak when 1/8 of channels are exchanged. When swap-
ping at 1/2 and larger ratios, the performance is worse than excluding the swap operation.
When exchanging at 1/32 channels, it achieves slightly better performance than excluding
feature exchanging. Since swapping a large proportion of channels may harm the spatial
feature learning ability of the backbone network, while swapping a small proportion is in-
sufficient for information exchange. Exchanging features at different backbone stages is also
an important factor. Exchanging features at earlier stages leads to better performance, as
it enables the information flow at an earlier stage. Moreover, swapping RGB-D features at
more stages has a positive effect on the detector, since features extracted at different stages
provide diverse receptive fields. Extensive experiments show that exchanging the RGB-D
features at all backbone stages achieves the best performance.
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Figure 4: Performance on exchanging different proportion of channels in the proposed Fea-
ture Exchange Module on SUN RGB-D.

Method SCA BUP mAP

baseline + MFP + FEM + ViT 53.2
FETNet w/o BUP v 53.9
FETNet w/o SCA v 53.8
FETNet v v 54.5

Table 5: Ablation study on the proposed Multi-modal Vision Transformer on SUN RGB-D.
SCA: the channel attention on the short-cut connection. BUP: the Bottom-Up pathway on
different level MViTs.

We compare the proposed MViT with two convolution-based attention methods, to val-
idate the effectiveness of long-range attention for RGB-D feature fusion. We replace the
MViT with CBAM [30] and GCBlock [5], the performance drops from 54.5 to 52.3 and
53.1, respectively. The main reason is the corresponding pixels of the two modalities repre-
sent different information (i.e., color and distance). Global receptive-field helps the network
to understand each modality better. Another reason is the RGB and Depth pairs are not
perfectly aligned. This misalignment leads to the inefficiency of convolution-based local
attention methods.

We further reveal the characteristics of the proposed MViT. As illustrated in Table 5, the
short-cut channel attention connection and the bottom-up pathway both improve the detec-
tion capability and cooperate to get the best performance. As for the depth D and head H
of the Vision Transformer, the detection capability increases with D and H. Even when we
set the depth and head as 1, the performance (54.3 mAP) still surpasses existing methods,
indicating that the proposed MVIiT can effectively fuse the features of two modalities.

Method depth format mAP

FETNet HHA [15] 54.0

FETNet raw depth 54.5
Table 6: Performance of different depth formats (i.e., HHA and raw depth) of the FETNet
on SUN RGB-D.

We finally execute experiments on two widely-used formats of depth information. As
illustrated in Table 6, the performance of the two formats is similar. The proposed FETNet
is robust for the format of depth data. It proves that FETNet can effectively extract and fuse
multi-modal features from raw depth data, and thus handcrafted conversion (i.e., HHA [15])
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becomes not necessary.

5 Conclusion

In this paper, we propose a Feature Exchange Transformer Network (FETNet) to fuse multi-
modal features and detect objects effectively. Two well-designed components are introduced.
The FEM module is introduced to exchange part of the features extracted at each backbone
stage. It adds an information flow and bridges the gap between the RGB-D features. The
MViT module is developed to effectively exploit the global and local attention between the
two modalities. Extensive experiments show our FETNet surpasses state-of-the-art detectors
with a large margin in the RGB-D object detection.
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