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Abstract

Expression translation has received increasing attention from the computer vision
community due to its wide applications in the real world. However, expression synthesis
is hard because of the non-linear properties of facial skin and muscle caused by different
expressions. A recent study showed that the practice of using the same generator for
both forward prediction and backward reconstruction as in current conditional GANs
would force the generator to leave a potential "noise" in the generated images, therefore
hindering the use of the images for further tasks. To eliminate the interference and break
the unwanted link between the first and second translation, we design a parallel training
mechanism with two generators that perform the same first translation but work as a
reconstruction model for each other. Additionally, inspired by the successful application
of wavelet-based multi-level Generative Adversarial Networks(GANs) in face aging and
progressive training in geometric conversion, we further design a novel wavelet-based
multi-level Generative Adversarial Network (WP2-GAN) for expression translation with
a large gap based on a progressive and parallel training strategy. Extensive experiments
show the effectiveness of our approach for expression translation compared with the
state-of-the-art models by synthesizing photo-realistic images with high fidelity and vivid
expression effect.

1 Introduction

Recently, expression synthesis has attracted much attention from the community of com-
puter vision because of its wide applications to photography technologies, human-computer-
interaction and animation movies. However, facial expression manipulation is challenging
owing to the non-linear facial geometric variation caused by different expressions.

Although difficult it is, expression translation has achieved great progress due to the rapid
development of deep neural networks. Especially, the advent and development of Genera-
tive Adversarial Networks (GANs) [1, 12, 16, 28, 38] have opened a new door to the face
manipulating technologies [5, 6, 20, 26, 36]. The advent of Condition GAN (cGAN) [22]
and Cycle-GAN [39] made the attributes editing on the same subject possible without paired
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images belonging to the same subject. Many recent models [5, 26, 31] applied the princi-
ple of cGAN and Cycle-GAN for facial expression translation. Specifically, one generator
is called twice to perform expression translation and reconstruction by conditioning on dif-
ferent expression domain (i.e. expression label or Action Units (AUs) code [9]). However,
this manner will force the generator to leave an unseen "noise" to the generated image for
a convenient reconstruction in the second step. Based on the facial attributes editing task
performed by StarGAN [5], Sanchez et al. [29] found that the second translation of the gen-
erator based on the outcome of the first translation will produce results almost the same as
the input images no matter what conditions were adopted. The footprint left in the outcomes
hampered the reuse of these images for further tasks. We infer the interference may be caused
by the tight linkage between the forward prediction and backward reconstruction by using
the same generator, resulting in a defective generator leaving a footprint in the outcome. To
eliminate the unwanted interference, we propose a parallel training system consisting of two
generators with equal importance. The generators are trained simultaneously for the same
forward prediction but then act as the reconstruction model for each other. Our method can
break the unwanted link between the first and second translation (as shown in Figure 2).

An intuitive application of our unbound generators is to equip them for progressive train-
ing. Previous end-to-end models for expression editing usually generate artifacts or blurs
around the expression-rich areas such as the forehead, eyes and mouth. Inspired by the suc-
cessful application of progressive training in geometric conversion [19, 35], we propose a
novel progressive training framework based on our parallel training scheme.

Besides efficient geometric translation, identity preserving with fine-grained facial fea-
tures is another important task of facial expression editing. Recent research [20] showed
that multi-level discriminators integrated with wavelet-based information decomposition can
help to extract features related to identity and age for face aging. Considering facial expres-
sion translation also involves identity preserving and the synthesis of local expression-related
features such as forehead wrinkles and smiling lines, it is intuitive to apply the wavelet-based
multi-level discriminators to facial expression translation.

In this work, we propose a novel WP2-GAN for continuous expression translation. The
model consists of two parallel generators and a set of wavelet-based multi-level discrimina-
tors. All the modules are trained and updated progressively hence we can effectively reduce
the computing resource for model training. We adopt an attention mechanism like [26] to
each of the generators so that two generators can mainly focus on the active areas for expres-
sion conversion. To maintain the background information of the input image after several
progressive translations, we take the original image as the source to calculate the background
information of the generated image. Wavelet-based multi-level discriminators are employed
to extract expression-related features at multiple scales from the given images, enforcing the
generators to synthesize photo-realistic images with vivid expressions.

Our main contribution is to introduce two parallel generators to the facial expression
translation task and to eliminate the interference existed in previous methods that is caused
by using one single generator for both forward and backward translation. Additionally, we
design a novel progressive training strategy based on the parallel generators, combined with
wavelet-based multi-level discriminators to improve the quality of expression translation.
Extensive experiments illustrate the effectiveness of our method for expression translation
with a large gap.
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2 RELATED WORKS

2.1 GAN

Generative Adversarial Networks (GANs) [12] were first proposed to generate images based
on minimax game theory, then were improved by many other works [1,13,16]. Later, Mirza
and Osindero [22] proposed a conditional GAN (cGAN) that embeds prior information into
image generation. Cycle-GAN [39] was proposed to perform image-to-image translation
without paired images through a cycle-consistent loss. Soon after, models combined with
cGAN and Cycle-GAN were widely applied to cross-domain translation [5, 26, 31, 37].
Most of these works only adopt one generator for target features translation and then the
reconstruction of the input image. Sanchez et al. [29] mentioned that using one generator
for both prediction and reconstruction would leave a "noise" to the outcome, therefore hin-
dering the further application of the generated images. The authors proposed a recurrent
cycle-consistency loss to replace the original loss. However, their approach needs paired
images with the same identity, thus loses the advantage of Cycle-GAN for unpaired images
translation. In this work, we propose to use two parallel generators to conduct the forward
translation but served as the reconstruction model for each other. Empirical experiments
show that our method can overcome the drawback of previous methods (shown in Figure 2).

2.2 Facial Expression Translation

Current methods for facial expression translation can be generally categorized into two
classes. The first class resorts to a 3D model for expression editing. Blanz and Vetter [3]
proposed the first 3D Morphable model for 3D face reconstruction. Vlasic et al. [32] pre-
sented a multilinear model of 3D face meshes for expression translation. Cao et al. [4]
introduced a method for facial image animation based on the 3D face mesh. Geng et al. [11]
proposed a 3D-guided generative model for continuous expressions editing. paGAN [23]
can perform fine-grained expression translation by conditioning on multiple conditions such
as the desired blendshape expression and viewpoint generated by a 3D fitting model. Fa-
cial expression translation methods using a 3D model usually require efforts for complex
parametric fitting, thus are computing resource demanding.

The second category of methods for expression synthesis leverages deep generative mod-
els. Many previous works [10, 27, 30] performed discrete or continuous facial expression by
conditioning on facial landmarks. ExprGAN [6] can control the intensity of expression by
conditioning on an embedding generated from expression labels. LEED [34] realized label-
free expression translation by disentangling the expression-related features from identity.
But a pre-trained GAN for neutral expression synthesis is still needed to extract the iden-
tity related features. StarGAN [5] achieved multi-task translation among different domains
with one model. But this model can only generate limited and discrete emotion expressions.
Pumarola et al. [26] proposed GANimation with an attention mechanism to predict continu-
ous expression translation by conditioning on AUs [9]. However, this model still generates
some artifacts for expression translations with a large gap. Many other works [24, 31] lever-
age multi-level discriminators to extract expression-related features during model training.

Different from [10, 27, 30], our approach can perform continuous expression editing
by conditioning on AUs code which can be extracted by Openface [2] conveniently. Un-
like [5, 24, 25, 31], which only utilize one generator for both forward prediction and recon-
struction, our method adopts two parallel generators to alleviate the interference mentioned
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by [29]. Besides using multi-level discriminators like [31], we integrated the wavelet-based
image decomposition at multiple scales in frequency space to promote the expression-related
features extraction in discriminators.

The most recent work that also adopted a progressive training strategy for expression
editing is Cascade EF-GAN [35]. Different from Cascade EF-GAN that adopts three local
sub-networks to synthesize local patches (i.e. eyes, nose and mouth) and one global network
to predict a whole face, our approach leverages wavelet-based multi-level discriminators to
extract multi-level facial features automatically without physical concatenation. Further-
more, we design a new progressive training method based on two parallel generators, that
can be updated gradually instead of stacking all well-trained modules and optimizing them at
one time. Hence our method can simplify model training and reduce the computing memory.

3 PROPOSED METHOD

3.1 Problem Formulation

Figure 1: An overview of the WP2-GAN framework. The workflow of the progressive
training is shown on the top, while the details of each step are shown in the zoom-in area. As
two generators perform a similar task, we only show one stream of the translations. In each
progressive step, one generator GA takes as input the image xin and the target expression yt
to synthesize the image xt . Then the other generator GB works as a reconstruction model to
restore the input image xin. A cycle-consistent loss is calculated by comparing xin with x̄in
to preserve the identity of the input image. A similarity loss imposed on the outcomes of
two forward translations is adopted to force two generators proceed in the same direction.
Wavelet-based multi-level discriminators(WMD) take as input different levels of wavelet
coefficients generated from the synthetic image xt or the original image xo and evaluate the
realism of given images as well as the AUs code translation accuracy.

Let X and Y represent the source facial image and expression domains, respectively.
Given an original face xo ∈ X with an expression yo ∈ Y and a different target expression
yg ∈ Y , our goal is to learn a transformation that can generate the facial image xg ∈ X with
the same identity as xo but with the desired expression yg.

As we mainly consider the problem of continuous expression translation, the continu-
ous Action Units (AUs) intensity [9] is adopted as AUs code, which can be extracted by
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Figure 2: Comparison between StarGAN
and modified StarGAN with parallel gener-
ators for expression translation. Each triplet
contains the input face in the first column
followed by outcome of the first translation
(angry face) in the middle and then the result
of second translation (disgusted face) based
on the first outcome.

Figure 3: Display of progressive transla-
tion results by our WP2-GAN. The first
column contains the input faces followed
by two intermediate results and then the fi-
nal outcomes. The last column shows im-
ages with target expressions. The progres-
sive model provides a gradual transforma-
tion between expressions with a large gap.

OpenFace [2]. Given the AUs code of a target expression, we can obtain the intermediate con-
dition for progressive training according to the interpolation formula: yt = yo+α ∗(yg−yo),
where α ∈ {0.3,0.6,1.0}, is a hyper-parameter to control the intensity of each step of pro-
gressive training. An overview of our architecture is given in Figure 1.

3.2 Parallel and Progressive Training Mechanism
Motivated by the discovery in [29], we design a parallel training mechanism for the AUs
code conditioned expression translation. During the training process, two generator GA and
GB both take as input the original image xo and the target condition yg to synthesize the
image xA and xB, respectively. Then, the generator GB (GA) takes as input xA (xB) and the
original expression yo to reconstruct the original image. As each generator leverages the
outcome of another generator to reconstruct the input image, it removes the potential "short-
cut" in the model to memorize the input image for the second translation. Our generators are
auto-encoder based networks adopted from [26].

Inspired by the impressive success of progressive training methods [19, 35] in geometric
conversion, we design a novel progressive learning strategy for our task based on the parallel
training mechanism. As shown in Figure 1, we decompose the previous end-to-end transla-
tion into three progressive steps. Especially, in each progressive training step, the forward
generator GA takes as input the interpolated condition yt and the image xin, which can be
the original image xo or an intermediate result of last step of translation. The condition yin
corresponding to image xin can be the original expression yo or an interpolated condition.

Different from [35], our progressive training is based on two parallel generators. Thus we
can avoid the accumulation of interference as mentioned before. Besides, our approach does
not stack multiple pre-trained generators together and update all networks at final step but
trains and updates the neural networks by each progressive step, thus reducing the computing
memories needed. The work with a similar idea of using parallel generators is [19]. But it
is designed for unsupervised image-to-image translation instead of semi-supervised facial
attributes editing. The intermediate results of progressive translation are shown in Figure 3.

Similar to [26, 35], a visual attention mechanism is applied to the generators, enforcing
the network to only focus on the active facial area rather than the periphery. To overcome the
gradual loss of background information during progressive translation, we leverage the orig-
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inal input to compute the background information of the synthetic image in each progressive
step. The image can be calculated by:

xt = MA⊗ xo +(1−MA)⊗MC, (1)
where MA and MC denote the attention map and color map generated by the generator from
the original or intermediate input. xo represents the original input image instead of the in-
termediate input.⊗ indicates the element-wise multiplication. This strategy enables the pro-
gressive model to preserve background and face pixel information located in inactive areas.

3.3 Wavelet-based Multi-level Discriminators
Recently, wavelet-based multi-level discriminators have been successfully applied to face
aging [20, 21]. Wavelet Packet Transform (WPT) can decompose an image into multi-level
wavelet coefficients which contain both texture and geometric information [20]. Considering
expression translation involves changes in both shapes and texture, image decomposition at
multiple scales by WPT could promote the performance of the system.

In this work, we adopt three levels of discriminators which have a gradually decreasing
number of convolutional layers so that three levels of wavelet coefficients can be encoded
into three matrices with the same size YDi ∈ RH/26×W/26

, where i = {1,2,3}, H and W are
the height and width of the input image. Each element of YDi represents the probability of the
corresponding patch to be real. We do not concatenate the outcomes of three critics as one
tensor as [20] did. Empirical studies show that separate discriminators do not cost much time
than combined ones but can stabilize the training process. As we adopt WGAN-GP [13] for
stabilized adversarial training, a penalty loss is added to the gradient norm of each critic.

Besides photo-realism, three discriminators are also responsible for estimating the AUs
code. To reduce the number of parameters, we add one regression layer for AUs regression,
on the last second layer of each discriminator.

3.4 Loss Functions
The loss functions used for our model include five items: (1) An adversarial loss Ladv used to
distinguish fake images from real inputs. (2) An attention loss LA to prevent the saturation
of the attention mask. (3) A condition loss Lcond is adopted to guarantee the translation
accuracy of expression. (4) A similarity loss Lsim to ensure two parallel generators proceed
in the same direction. (5) Finally, a cycle-consistent loss Lcyc is utilized to preserve the
identity-level consistency. The overall loss functions for G and D can be formulated as:
L= Ladv +λcondLcond +λsimLsim +λcycLcyc +λA(LA(G,xin,yt)+LA(G,xt ,yin)), (2)

where λcond , λsim, λcyc and λA are hyper-parameters for condition loss, similarity loss, cycle-
consistent and attention loss, respectively. Due to the limit of paper length, please refers to
supplementary materials for the detailed loss functions and structures of our neural networks.

4 EXPERIMENTS

4.1 Dataset
We train and test our model WP2-GAN on two public facial expression databases: RafD [17]
and Compound Facial Expressions of Emotions Dataset (CFEED) [7]. RafD consists of
8,040 images of 73 subjects collected from different angles. We only adopt frontal images
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and collect 1,608 images for our experiments. CFEED consists of 5,060 compound expres-
sion images of 230 subjects. We randomly select 9/10 images of each database above for
model training and the remaining for model testing.

In our experiments, all images are aligned, cropped and resized to the size of 128×128
by Openface [2]. We also leverage Openface to extract the AUs code for every image.

4.2 Qualitative Experimental Results

Figure 4: Qualitative comparison with previous works on RafD (left four columns) and
CFEED (right four columns).

In this section, we test our approach on both RafD and CFEED and compare the results
with three previous models: GANimation [25], UNet-MFS [18] and Cascade EF-GAN [35],
all of which are conditioned on AUs code for continuous expression translation. We leverage
the code issued publicly on Github and train GANimation and UNet-MFS with the same
training set as described above. We obtain the results from [35] for Cascade EF-GAN due to
the unavailability of the code.

As shown in Figure 4, GANimation and UNet-MFS generate results with obvious ar-
tifcats on test samples of both RafD and CFEED, especially on area of mouth. Although
Cascade EF-GAN generates natural outcomes with much less artifacts, the results are a little
blurring. In contrast, our method can vividly simulate the target expressions and generate
photo-realistic images with high-fidelity, showing the superiority of our method for expres-
sion translation with obvious geometric deformation.

4.3 Quantitative Experimental Results
We adopt a similar method of Cascade EF-GAN [35] and StarGAN [5] to evaluate the ex-
pression translation accuracy of our model. Particularly, we train different models on the
training sets of RafD and CFEED and test them on the unseen test sets. We then train an
expression classifier (Resnet-18 [14]) on the filtered training set of each database, which only
contains images with basic expression (i.e. angry, disgust, fearful, happy, sad, surprised or
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RafD CFEED
Method Accuracy↑ FID↓ SSIM↑ Accuracy↑ FID↓ SSIM↑
GANimation 85.36% 45.34 0.6646 77.46% 25.83 0.6507
UNet-MFS 88.36% 56.44 0.6905 84.39% 28.48 0.6769
Cascade EF-GAN 89.38% 42.36 – 85.81% 27.15 –
Ours (WP2-GAN) 89.47% 41.74 0.6818 87.97% 24.91 0.6659
Parallel-GAN 87.31% 46.74 0.6590 76.67% 29.55 0.6467
P2-GAN 89.00% 43.44 0.6770 85.46% 23.75 0.6579
WP-GAN 87.71% 46.65 0.6753 85.52% 25.72 0.6619

Table 1: Quantitative comparison among GANimation, Unet-MFS, Cascade EF-GAN and
all variants of the proposed model.

neutral). We obtain two classifiers with a test accuracy of 100% on RafD and 88.67% on
CFEED, respectively. Finally, we evaluate the performance of our models for basic expres-
sion translation by classifying the generated images with the classifier. Higher expression
recognition accuracy represents higher expression translation accuracy of models.

The quantitative comparison among GANimation, UNet-MFS, Cascade EF-GAN and
variants of our method is displayed in Table 1. The results of Cascade EF-GAN are from [35].
We can observe that our approach obtains the highest expression translation accuracy com-
pared with three previous models on both RafD and CFEED. The proposed model was
trained progressively thus can overcome the drawback of limited training data and signifi-
cantly exceed the baseline GANimation in terms of expression translation accuracy by 4.11%
on RafD and 10.51% on CFEED, respectively. Our method also outperforms UNet-MFS and
Cascade EF-GAN by 3.58%/2.16% on CFEED and slightly on RafD, showing the superiority
of our method in expression translation accuracy.

We further evaluate the image quality in terms of and Fréchet Inception Distance (FID) [15]
and structural similarity (SSIM) index [33]. A lower FID score and a higher SSIM normally
represent a higher image quality. As shown in Table 1, our method achieves the lowest FID
scores on two databases compared with three baselines, even outperforms the latest state-
of-the-art model (Cascade EF-GAN) by 0.62 on RafD and 2.24 on CFEED, demonstrating
the advantage of the proposed model. Our method also exceeds two baselines in terms of
SSIM on two databases. Although UNet-MFS achieves slightly higher SSIM scores than our
method, we can infer that our model can predict expressions with higher quality considering
the qualitative results shown in Figure 4 as well as FID scores in Table 1,

Higher expression translation accuracy and image quality achieved by our model demon-
strate the superiority of our approach in expression translation with a large gap.

4.4 Ablation Study

In this section, we study the contributions of each component of our proposed model and
compare the expression translation effects on both RafD and CFEED among variants of the
proposed model. The baseline we compare in this section is GANimation. Parallel-GAN
means the model with two generators and is trained in a parallel method, while P2-GAN
denotes the model trained in a parallel and progressive way. Compared to P2-GAN, we in-
troduce the wavelet-based multi-level discriminators to our final model. Compared to WP2-
GAN, WP-GAN only has one generator. The single generator works as the reconstruction
model for itself in each progressive step of training.

We can observe in Figure 5 that both the baseline and Parallel-GAN fail to produce natu-
ral expressions but generating some artifacts in areas near mouth and eyes. The introduction
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Figure 5: Comparison of expression translation between the proposal and variants of the
proposed model on both RafD (left four columns) and CFEED (right four columns).

of progressive training enables the model P2-GAN to generate vivider results but still with
some artifacts. In contrast, our proposed model can generate more realistic images with
high-fidelity such as much clearer teeth. In our approach, the utilization of wavelet-based
multi-level discriminators can further help the model to capture expression-related features,
thus generating photo-realistic images.

Although WP-GAN with a single generator can generate natural facial expression with
less artifacts, the outcomes of WP2-GAN are better matched with the target expressions. For
example, WP2-GAN produces more obvious contemptuous expression than WP-GAN on the
first sample of RafD and much clearer teeth on the second samples of two databases. This
further demonstrates the contribution of two parallel generators adopted in our approach.

We also perform the quantitative comparison between the variants and our proposed
model. Table 1 shows that our proposed model achieves the best performance among its
variants. Specially, the proposed model outperforms WP-GAN on RafD and CFEED by
1.76%/2.45% in expression translation accuracy and 4.91/0.81 in FID score, further illustrat-
ing the significance of parallel training in our model. However, compared with the baseline
model, parallel training alone (Parallel-GAN) does not cause an obvious improvement of the
translation accuracy but a decline of image quality. This could be caused by the loss of the
constraint (using the same generator for the forward and backward translation) imposed on
the previous single generator. However, progressive training and wavelet-based multi-level
discriminators equipped in our method impose extra constrains on the adversarial learning
system, enforcing the model to proceed in a desired path.
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4.5 Extensional Experiments
Our proposed model can be easily extended for continuous expression translation. Given
the AUs code of a target expression, we can obtain the intermediate AUs code by a similar
interpolation formula as that of the progressive training. Then, we use the intermediate AUs
code as the target label of the progressive training. Our results for continuous expression
translation are shown in Figure 6.

Figure 6: Continuous expression translation performed by our proposed model on both RafD
(top) and CFEED (bottom). The first column contains the input images, followed by gener-
ated images with a continuous change of expression.

Figure 7: Sampled expression translation results by our proposed model on EmotioNet [8].
Each triplet contains the test face, the target expression and finally the synthesized image.

We also evaluate our method on images in the wild. We train the model on over 70,000
images from EmotiNet [8] then fine-tune the model on RafD and CFEED. Figure 7 shows
that our approach can be applied to images with different background in the wild.

5 Conclusion
In this paper, we consider facial expression editing as an image-to-image translation task
and propose a novel wavelet-based multi-level generative network for progressive facial ex-
pression transformation. Our model consists of two generators that are trained in a parallel
way to alleviate the interference caused by using the same generator for image reconstruc-
tion. Progressive training breaks the translation between large-gap expressions into several
small steps, making the model robust to the synthesis of extreme expressions. Wavelet-based
multi-level discriminators enforce the generators to generate high-quality images by extract-
ing expression and identity-related facial features at multiple scales. Extensive experiments
demonstrate the superiority of our approach for expression translation compared to the start-
of-the-art models. Our method can synthesize photo-realistic images with vivid expression.
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fer with multilinear models. ACM Transactions on Graphics, 24(3), 2005. ISSN
0730-0301. doi: 10.1145/1073204.1073209. URL https://doi.org/10.1145/
1073204.1073209.

[33] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[34] Rongliang Wu and Shijian Lu. Leed: Label-free expression editing via disentangle-
ment. In European Conference on Computer Vision, pages 781–798. Springer, 2020.

[35] Rongliang Wu, Gongjie Zhang, Shijian Lu, and Tao Chen. Cascade ef-gan: Progressive
facial expression editing with local focuses. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5020–5029, 2020.

[36] Hongyu Yang, Di Huang, Yunhong Wang, and Anil K Jain. Learning face age pro-
gression: A pyramid architecture of gans. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 31–39, 2018.

https://doi.ieeecomputersociety.org/10.1109/FG47880.2020.00015
https://doi.ieeecomputersociety.org/10.1109/FG47880.2020.00015
https://doi.org/10.1145/1073204.1073209
https://doi.org/10.1145/1073204.1073209


14 SHAO, BUI: WP2-GAN

[37] Jiangfeng Zeng, Xiao Ma, and Ke Zhou. Photo-realistic face age progression/regression
using a single generative adversarial network. Neurocomputing, 366:295–304, Nov.
2019. ISSN 09252312. doi: 10.1016/j.neucom.2019.07.085. URL https://
linkinghub.elsevier.com/retrieve/pii/S0925231219310926.

[38] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial
network. arXiv preprint arXiv:1609.03126, 2016.

[39] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of the
IEEE international conference on computer vision, pages 2223–2232, 2017.

https://linkinghub.elsevier.com/retrieve/pii/S0925231219310926
https://linkinghub.elsevier.com/retrieve/pii/S0925231219310926

