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Abstract

In spite of their remarkable success in many vision tasks, convolutional neural net-
works (CNNs) often has trouble counting people in crowded scenes due to the following
reasons. First, ordinary CNNs with fixed receptive fields are inadequate to handle diverse
sizes and densities of people. Second, CNNs for counting are sensitive to brightness and
contrast changes of input image. This paper proposes a new CNN for crowd counting
that resolves these two issues. First, we develop a new counting network called pyramid
feature selection network (PFSNet) that adapts its receptive fields dynamically to local
crowd densities of the input image. Second, we introduce a light-weight and effective
image enhancement network, which manipulates input image to normalize its condition
and make it more counting-friendly, leading to robust and improved crowd counting.
The concatenation of the two networks, dubbed E-PFSNet, achieves the state of the art
on three public benchmarks for crowd counting. Also, it outperforms previous arts in
terms of robustness against changes in image conditions as well as counting accuracy.

1 Introduction
Crowd counting is the task of counting the number of people in an image, and has attracted
increasing attention since it is essential to tackle timely problems such as visual surveil-
lance and communicable disease control. As this task assumes realistic crowd scenes where
a significantly large number of people are densely distributed, it has been typically formu-
lated as regression or classification problems that aim to predict the number of people di-
rectly while bypassing explicit pedestrian detection. Recently, convolutional neural networks
(CNNs) have been widely adopted for the direct prediction of the count.

In spite of their great potential, the common architecture and training strategy of CNNs
however have trouble counting people in real world scenarios because of the following two
issues. One of them, which is relatively well-known, is that sizes and densities of people
could vary significantly even within a single image due to different camera poses and per-
spective distortions as shown in Fig. 1(a); hence ordinary CNNs with fixed receptive fields
are not optimal. The other issue, which is one of the challenges in general computer vision
applications, is that CNNs for counting tend to be sensitive to image conditions and it has
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CAN -18.05 -7.74 -2.85 -3.53 -6.52
SDCNet -8.992 -0.407 +8.93 +8.95 +10.05
CFANet -2.84 +3.70 +8.25 +11.80 +16.27
SASNet -11.24 -1.46 +10.43 +12.41 +14.60
PFSNet -12.99 -2.42 +6.09 +9.98 +5.09
E-PFSNet +3.73 +3.15 -0.82 -3.24 -1.82
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Figure 1: Two challenges of crowd counting. (a) Diversity in sizes and densities of pedestri-
ans. The left side images show that sizes and densities of pedestrians could vary significantly
even in a single image. The right side visualizes the level of feature that received the most
attention in our PFSNet, and demonstrates that PFSNet is capable of selecting features ac-
cording to local pedestrian sizes. (b) Sensitivity to variations of image conditions. The table
shows disparities between predictions of counting models and ground-truth counts (i.e., pre-
diction minus ground-truth). Except E-PFSNet incorporating the image enhancer, all tested
models are largely affected by the brightness of the input image. The second row shows that
the enhanced image is robust to changes in brightness. These models are also sensitive to
brightness and contrast in entire datasets except E-PFSNet.

never been discussed in literature of crowd counting. In particular, we have found that their
predictions are affected by brightness and contrast of input image as reported in Fig. 1(b);
these results suggest that the counting networks would not be well-generalized to images
taken at different time or by different cameras.

In this paper, we present a new crowd counting model that resolves these two issues. To
address the first one, we design a new crowd counting CNN, called pyramid feature selection
network (PFSNet), that adapts its receptive fields dynamically to local crowd densities of
input image. Specifically, PFSNet computes multiple feature maps of diverse receptive fields
through a feature pyramid network (FPN) [27], and selects features appropriate for handling
local crowd densities through an attention module. The use of FPN allows to compute rich
features of various receptive fields effectively. Also, compared to previous work using FPN
with the same motivation [44], PFSNet is more efficient in size and computation.

Second, we introduce a light-weight and effective image enhancement network, which is
attached in front of PFSNet to address the second issue. This network is learned to normalize
brightness and contrast of input image so that the effects of these conditions are reduced and
the entire counting framework becomes insensitive to them consequently. Further, it not only
normalizes but also enhances input image to improve the accuracy of PFSNet since it is also
trained along with PFSNet in an end-to-end manner to minimize a counting loss.

Our final model is the combination of the image enhancer and PFSNet, which we call E-
PFSNet. Our model is evaluated and compared with previous work on six public benchmarks
for crowd counting [17, 18, 42, 51, 56], where it achieves the state of the art in almost every
dataset and evaluation metric. We also demonstrate that E-PFSNet is robust against variations
of image conditions, i.e., brightness and contrast, as intended. The main contribution of this
paper is three-fold:

• We propose a new crowd counting network dubbed PFSNet. It can adapt its receptive
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fields to local crowd densities dynamically, and is more effective and efficient than the
existing model based on the same motivation [44].

• To the best of our knowledge, this work is the first to reveal the sensitivity of crowd
counting models to brightness and contrast of input image. We also present an image
enhancement network as a solution to this issue, and it improves performance and
robustness of PFSNet substantially.

• The combination of the image enhancer and PFSNet, dubbed E-PFSNet, achieves the
state of the art on three public benchmarks for crowd counting. It also outperforms
existing models in terms of robustness against variations of image conditions.

2 Related work

2.1 Crowd Counting
Crowd counting has been tackled by detection-based approaches [13, 24, 26, 57], regression-
based approaches [4, 5, 6, 7, 28, 39, 40, 50], and density map estimation approach [23]
which is widely used recently. In addition, the side effect of imperfect ground-truth has been
alleviated for improved crowd counting [2, 48] and several works targeted the problem of
discrepancy between predicted density maps and point annotations [1, 34, 35, 49]. Recently
two large-scale congested crowd counting and localization datasets are released [42, 51].

In this section, we focus particularly on multi-scale CNN models that have been proposed
to address diverse scales and densities of people like our method. These models can be
categorized into two classes: Multi-column and multi-level models.
Multi-column CNNs. Since MCNN [56] proposes a multi-column CNN for crowd count-
ing which extracts multi scale objects, multi-branch network methods have poured out.
SANet [3] proposes a stacked multi-branch block to reflect a variety of receptive fields.
DADNet [15] studies a multi-dilated convolution to reflect a wider spatial context and a
deformable convolution for a high quality density map. These methods try to address the
scale variation problem by adopting multi-columns which have different receptive fields, but
introduce surplus features.
Multi-level CNNs. Methods in this category detect multi-scale objects using the intrinsic
layers of the backbone network. SaCNN [55] employs a single-column network and com-
bine the feature maps from different layers to obtain multi-scale representation. ANF [54]
introduces an encoder-decoder network with conditional random fields (CRFs) to aggregate
multi-scale features. TEDNet [21] hierarchically aggregates multi-scale features at different
encoding stages with multiple decoding paths. SASNet [44] automatically learns the inter-
nal level-scale correspondence using FPN [27] without extra annotations or scale estimation
strategies, and generates final predictions with weighted sum of level-wise predictions. Fol-
lowed by these methods, we adopts FPN to compute multi-scale features. Our goal is to
generate dynamic feature which dynamically adapts its receptive fields by applying the se-
lection not to predictions but muli-scale features.

2.2 Recognition-aware Image Enhancement
Vision models trained in controlled environments are easily degraded when input images
are distorted by weather conditions, blur, and noise in real-world applications. Recognition-
aware image enhancement has been studied as a way of resolving this issue. Instead of
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Figure 2: The overall framework of E-PFSNet. (a) An overview of E-PFSNet architecture
and training. (b) Detailed architecture of the image enhancement network.

improving perceptual quality of images, it focuses on enhancing images to improve per-
formance of recognition models. Diamond et al. [10] developed a differentiable image pro-
cessing module that is jointly learned with a classifier for blurred and noisy images. Liu et
al. [29] studied denoising networks for classification and semantic segmentation of noisy
images. Gomez et al. [14] studied networks that enhance images taken in difficult illumina-
tion conditions for robust visual odometry. Son et al. [43] proposed a universal enhancement
model that can cope with various types of image degradation for diverse vision tasks.

Motivated by these methods, we for the first time reveal the fragility of crowd counting
models against image conditions, and propose a counting-aware enhancement network to
overcome the limitation.

3 Method
We propose E-PFSNet, a crowd counting network that is robust against variations of image
conditions and able to handle diverse crowd densities flexibly. An overview of its architec-
ture and training is illustrated in Fig. 2(a). E-PFSNet consists of two parts, image enhance-
ment network and PFSNet. The image enhancement network manipulates the input image
to improve accuracy and robustness of PFSNet, while PFSNet enables effective counting by
adapting its receptive fields dynamically according to local crowd densities. The remainder
of this section describes architecture details and the training strategy of the two components.

3.1 Image Enhancement Network
As demonstrated in Fig. 1(b), existing counting models are easily degraded by varying
brightness and contrast of input image. The reason in the case of regression-based counting
models [31, 38, 44] is that they use raw outputs of CNNs as-is as predicted counts although
such outputs are affected heavily by the image conditions. Interestingly, the classification-
based model [53] is not free from this issue either; we suspect that its ordinal classes (i.e.,
quantized counts) are highly correlated in particular when they are adjacent, so the ranks of
their activations are easily distorted by the image conditions. Indeed, this unexpected fragility
of counting models damages their accuracy, robustness, and generalization capability.

The image enhancement network of E-PFSNet alleviates the fragility by normalizing the
conditions of input image. Moreover, it enhances the image to improve the performance of
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Figure 3: Overall architecture of PFSNet.

the following counting model. As illustrated in Fig. 2(b), the image enhancer manipulates
the input image by rescaling and shifting individual pixel intensities. Specifically, it learns
to adaptively generate rescaling tensor γ and shift tensor β . The enhanced image X̂ is then
obtained by scaling and shifting the input image X through γ and β , respectively, and clipping
the range of output pixel intensities:

X̂ = clip(γ⊗X⊕β ), (1)

where X , X̂ , γ , and β are all real tensors of the same size, and⊗ and⊕ indicate element-wise
multiplication and summation, respectively.

As shown in Fig. 2(b), the image enhancer has a small encoder-decoder architecture to
minimize the computation burden it imposes: The encoder consists of two 3×3 convolution
layers and the decoder has three 3×3 convolution layers. Also, the aggressive downsampling
and upsampling operations between the layers allow the network to consider large contexts
when manipulating pixel intensities. ReLUs follow all convolution layers except for the last
layer, which is followed by a sigmoid function. Finally, the ranges of the generated γ and β

values are linearly transformed to [0,4] and [−1,1], respectively.

3.2 Pyramid Feature Selection Network
The overall architecture of PFSNet is illustrated in Fig. 3. FPN [27] is adopted as the back-
bone of PFSNet to compute multi-level feature representations in a hierarchical manner.
Then the final feature map with dynamic receptive fields is obtained by aggregating the
multi-level features in a channel-wise manner through an attention block. The final feature
map is in turn used to predict a crowd density map, which is integrated so as to count the
number of people. Two major components of PFSNet are elaborated below.
Feature blocks. A feature block is appended on top of each level of the FPN decoder to gen-
erate richer level-wise features, denoted by Fi. The block consists of three convolution layers
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and a skip connection. In particular, the last convolution layers of all feature blocks have
the same number of kernels so that their output features have the same channel dimension.
Further, their output features are upsampled to the same spatial resolution.
Attention block. From level-wise features, the attention block generates feature-level atten-
tion vectors for dynamic feature selection. We integrate information of all level-wise features
Fi ∈ Rw×h×C via element-wise summation with resolution w× h and C channels. Then we
embed integrated feature z ∈ R(C/r) by applying global average pooling to the summation
and reduction of the dimensionality for efficiency with the reduction rate r. In order to re-
ceive z as input and compute the attention vector ai for each level, a fully connected layer
exists for each level; the weight vector of the fully connected layer for the ith level is denoted
by ui ∈ RC×(C/r). We apply channel-wise softmax function to attention vectors.

ac
i =

euc
i z

euc
1z + euc

2z + euc
3z + euc

4z + euc
5z , (2)

where uc
i is the cth row of ui and ac

i is cth element of ai. The final feature map G is obtained
by weighted summation of level-wise features Fi with soft attention vectors ai:

Gc =
5

∑
i=1

ac
i ·Fc

i (3)

where Gc and Fc
i is c-th channel of G and Fi, respectively. We call this final feature map

dynamic feature due to its dynamic receptive fields.
Counter. The counter generates a crowd density map of the input image from the dynamic
feature through a 1×1 convolution layer. The counter also computes level-wise density maps
from features of FPN during the training time to make feature blocks counting-aware more
directly, and it helps performance improvement.

3.3 Training
Training of E-PFSNet consists of two consecutive stages. In the first stage, PFSNet is solely
trained as in previous work on crowd counting. Then in the second stage, the image enhancer
is trained for normalizing image conditions and for improving crowd counting performance
of PFSNet at the same time. Each stage is described in detail below.
Stage 1: Learning PFSNet. The counting loss, denoted by Lcount , is the sum of the Eu-
clidean distances between predicted density maps and ground truth. The predicted density
maps are close to ground truth by minimizing the counting loss. Since PFSNet outputs the
final density map D f inal and five level-wise density maps D1, . . . ,D5, the loss is given by

Lcount = ||D f inal−DGT ||22 +
λ1

5

5

∑
i
||Di−DGT ||22, (4)

where λ1 is a hyper-parameter.
Stage 2: Learning the image enhancer. To train the image enhancement network, we first
generate several augmented versions of an input image by varying the contrast and bright-
ness of the image at random. The image enhancer then learns to generate the same image
from the augmented inputs through a consistency loss, for the purpose of normalizing image
conditions. Moreover, the network is trained along with PFSNet, which is previously trained
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and frozen in this stage, to minimize the counting loss in an end-to-end manner so that it
generates more counting-friendly images and improves counting performance consequently.

A straightforward form of the consistency loss is the difference between enhanced images
of the augmented inputs. However, minimizing such a loss leads to a degenerate solution in
which all the rescaling and shift factors are equal to zero thus image information is totally
lost; the enhancer should avoid this situation. Instead, our consistency loss is formulated as
the summation of the distances between the enhanced images and their mean. Specifically,
each enhanced image is vectorized by spatial pyramid pooling (SPP), where the vector form
is denoted by mi ∈Rd . The consistency loss, denoted by Lcons, is then defined as the average
of the Euclidean distances between mi and their mean vector µ:

Lcons =
1
N

N

∑
i
||mi−µ||22, (5)

where N is the number of augmented images. The total loss for the enhancer is given by

L= λ2Lcount +Lcons, (6)

where λ2 is a hyper-parameter.

4 Experiments
To demonstrate the effectiveness of E-PFSNet on real-world datasets, we conduct extensive
experiments on six challenging crowd counting datasets, including ShanghaiTech PartA&B
dataset [56], UCF_CC_50 dataset [17], UCF-QNRF dataset [18], JHU-CRWOD++ dataset[42],
and NWPU-Crowd dataset [51]. We use a Gaussian kernel with a fixed size of 15 and the
sigma of 4 to create the ground-truth density map following [56]. We use mean absolute er-
ror (MAE) and root mean squared error (MSE) as evaluation metrics. In the case of NWPU-
Crowd dataset, normalized absolute error (NAE) is also used.

4.1 Implementation Details
The first 13 convolutional layers in VGG16-BN [19, 41] that have been pre-trained on Im-
ageNet [9] are used as the backbone of PFSNet. We randomly select eight images for each
iteration during training and crop four images with a fixed size from each image. The crop
size is 128x128 for ShanghaiTech Part A, PartB, and UCF-CC-50, 224x224 for UCF-QNRF,

Method Feature selection Data aug. Normalization MAE MSE
Average predictions x x x 56.44 93.03
Average features Average x x 54.87 88.33
PFSNet (ours) Attention x x 52.49 81.15
A-PFSNet Attention X x 56.83 95.55
IN-PFSNet Attention x Non-adaptive 54.37 83.47
E-PFSNet (ours) Attention x Adaptive 51.00 80.88

Table 1: Ablation study of dynamic feature selection and image enhancer on ShanghaiTech
Part A. The ’Data aug.’ column indicates whether train dataset is augmented with bright-
ness/contrast conditions during training PFSNet.

Citation
Citation
{Zhang, Zhou, Chen, Gao, and Ma} 2016

Citation
Citation
{Idrees, Saleemi, Seibert, and Shah} 2013

Citation
Citation
{Idrees, Tayyab, Athrey, Zhang, Al-Maadeed, Rajpoot, and Shah} 2018

Citation
Citation
{Sindagi, Yasarla, and Patel} 2020

Citation
Citation
{Wang, Gao, Lin, and Li} 

Citation
Citation
{Zhang, Zhou, Chen, Gao, and Ma} 2016

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009



8 KIM AND KWAK: ROBUST CROWD COUNTING

5.8
6.2
6.6

7
7.4
7.8

80% 90% 100%110%120%

M
AE

(iii) SHB, Brightness

50
52
54
56
58
60
62

80% 90% 100%110%120%

M
AE

(i) SHA, Contrast

50
52
54
56
58
60
62

80% 90% 100%110%120%

M
AE

(ii) SHA, Brightness

5.8
6.2
6.6

7
7.4
7.8

80% 90% 100%110%120%

M
AE

(iii) SHB, Contrast

(i) (ii)

(iii) (iv)

(b)(a)

PFSNetCFANet SASNet E-PFSNet A-PFSNet

Figure 4: (a) The graph of MAE according to image condition change. We denote the PF-
SNet trained using augmentation but without enhancer as A-PFSNet. SHA and SHB denote
ShanghaiTech PartA and PartB dataset, respectively (b) visualization of enhanced images.
(ii) and (iv) are enhanced images from the original image (i) and (iii) respectively.

and 256x256 for JHU-CROWD++. We also apply random horizontal flipping. The batch size
of each iteration is 32 for ShanghaiTech PartA, PartB, and UCF-CC-50, 64 for UCF-QNRF,
48 for JHU-CROWD++, and 160 for NWPU-Crowd. We optimize the model using Adam
optimizer [22]. The dimensionality reduction rate of the attention block is set to 4. Balance
weight λ1 and λ2 are set to 2. During training the image enhancer, λ1 is set to 0 and we make
ten copies of the input image and randomly change the brightness and contrast of images
between 50% to 150%.

4.2 Ablation Studies
Effectiveness of dynamic feature selection. In this part, two experiments were conducted
to screen out the effects of the dynamic feature. First, we compute the final density map
by averaging level-wise density maps, which is described as ‘Average predictions’ in Ta-
ble 1. Compared to ‘Average predictions’, PFSNet reduces the MAE by 7.0% and MSE by
12.8%. This result means that reflecting the dynamic receptive field at the feature level is
more effective for counting than reflecting at the density map level. Second, instead of us-
ing feature selection, we average level-wise features to generate the dynamic feature, which
is described as ‘Average features’ in Table 1. Compared to ‘Average features’, PFSNet re-
duces MAE by 4.3% and MSE by 8.1%. Our feature selection strategy is effective and the
dynamic feature contains richer counting information than level-wise features. PFSNet out-
performs the previous work based also on FPN [44] in ShanghaiTech PartA, UCF_CC_50,
and UCF-QNRF datasets. PFSNet is even 12.5% and 10.24% lighter, in terms of the number
of learnable parameters and FLOPS, respectively. Detailed values of model complexity are
in the supplementary material.
Effectiveness of image enhancement for recognition. This section evaluates the effective-
ness of the image enhancer in two aspects: robustness and performance improvement. As
shown in Fig. 4(a), existing crowd counting models are sensitive to changes in brightness
and contrast conditions. However, the image enhancer makes PFSNet robust to brightness
and contrast conditions and achieves improved performance. The bottom 3 rows in Table 1
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Method
ShanghaiTech PartA ShanghaiTech PartB UCF_CC_50 UCF_QNRF JHU-CROWD++
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

CAN [31] 62.3 100.0 7.8 12.2 212.2 243.7 107.0 183.0 101.1 314.0
TEDNet [21] 64.2 109.1 8.2 12.8 249.4 354.5 113 188 - -
BL [34] 62.8 101.8 7.7 12.7 229.3 308.2 88.7 154.8 75.0 299.9
S-DCNet [53] 58.3 95.0 6.7 10.7 204.2 301.3 104.4 176.1 - -
SANet+SPANet [8] 59.4 92.5 6.5 9.9 232.6 311.7 - - - -
PaDNet [46] 59.2 98.1 8.1 12.2 185.8 278.3 96.5 170.2 - -
DUBNet [37] 64.6 106.8 7.7 12.5 243.8 329.3 105.6 180.5 - -
HYGNN [33] 60.2 94.5 7.5 12.7 184.4 270.1 100.8 185.3 - -
SDANet [36] 63.6 101.8 7.8 10.2 227.6 316.4 - - - -
SOFA-Net [11] 57.5 92.12 6.80 10.38 185 281 96.2 158.7 - -
ASNet [20] 57.78 90.13 - - 174.84 251.63 91.59 159.71 - -
ADSCNet [2] 55.4 97.7 6.4 11.3 198.4 267.3 71.3 132.5 - -
LibraNet [30] 55.9 97.1 7.3 11.3 181.2 262.2 88.1 143.7 - -
AMRNet [32] 61.59 98.36 7.02 11.00 184.0 265.8 86.6 152.2 - -
AMSNet [16] 56.7 93.4 6.7 10.2 208.4 297.3 101.8 163.2 - -
M-SFANet [45] 59.69 95.66 6.76 11.89 162.33 276.76 85.60 151.23 - -
CG-DRCN-VGG16 [42] 64.0 98.4 8.5 14.4 - - 112.2 176.3 82.3 328.0
CG-DRCN-Res101 [42] 60.2 94.0 7.5 12.1 - - 95.5 164.3 71.0 278.6
MNA [48] 61.9 99.6 7.4 11.3 - - 85.8 150.6 67.7 258.5
DM-Count [49] 59.7 95.7 7.4 11.8 211.0 291.5 85.6 148.3 - -
CFANet [38] 56.1 89.6 6.5 10.2 203.6 287.3 89.0 152.3 - -
UOT [35] 58.1 95.9 6.5 10.2 - - 83.3 142.3 60.5 252.7
TopoCount [1] 61.2 104.4 7.8 13.7 184.1 258.3 89 159 60.9 267.4
SASNet [44] 53.59 88.38 6.35 9.9 161.4 234.46 85.2 147.3 - -
PFSNet (ours) 52.49 81.15 6.509 9.82 155.05 228.48 80.87 138.96 61.2 257.8
E-PFSNet (ours) 51.00 80.88 6.10 9.56 137.40 210.80 79.91 138.34 60.6 252.7

Table 2: Comparisons with state-of-the-art methods.

compares normalizing strategies in the aspect of performance improvement. First, we sim-
ply normalize the input image using an instance normalization layer [47] and train PFSNet,
which is denoted as ‘IN-PFSNet’. Differ to the image enhancer, the instance normalization
removes contrast condition by rescaling and shifting image to same mean and standard devi-
ation. From the results that IN-PFSNet performs worse than PFSNet, instance normalization
degrades counting performance. Second, we augment train data by randomly changing the
brightness and contrast of an input image and train PFSNet without the image enhancer,
which is indicated as ‘A-PFSNet’. From the result that A-PFSNet performed similarly to
PFSNet, the performance improvement by the image enhancer is not a simple augmentation
effect. As illustrated in Fig 4(b), the enhanced image roughly divides the human area, al-
though only dot annotation is provided. The image enhancer reflects the recognition process
of PFSNet to improve counting accuracy.

4.3 Comparisons with State of the Art

Table 2 reports the results of five challenging datasets and Table 3 report the results of
NWPU-Crowd dataset. Bold numbers indicate the best performance, and underlined num-
bers indicate the second best.
ShanghaiTech Dataset. ShanghaiTech dataset consists of two parts: ShanghaiTech PartA
and ShanghaiTech PartB. PartA contains highly congested scenes than PartB, while PartB
is gathered from a busy street and contains relatively sparse scenes. Our E-PFSNet achieves
the best performance on both PartA and PartB.
UCF_CC_50 Dataset. UCF_CC_50 is a tiny crowd counting dataset with only 50 images in
extremely congested scenes with heavy background noise. The number of head annotations
within an image varies from 96 to 4633. To evaluate model performance, We perform 5-fold
cross-validation following in [17]. Our E-PFSNet outperforms the previous state-of-the-art

Citation
Citation
{Liu, Salzmann, and Fua} 2019

Citation
Citation
{Jiang, Xiao, Zhang, Zhen, Cao, Doermann, and Shao} 2019

Citation
Citation
{Ma, Wei, Hong, and Gong} 2019

Citation
Citation
{Xiong, Lu, Liu, Liu, Cao, and Shen} 2019

Citation
Citation
{Cheng, Li, Dai, Wu, and Hauptmann} 2019

Citation
Citation
{Tian, Lei, Zhang, and Wang} 2019

Citation
Citation
{Oh, Olsen, and Ramamurthy} 2020

Citation
Citation
{Luo, Yang, Li, Nie, Jiao, Zhou, and Cheng} 2020

Citation
Citation
{Miao, Lin, Ding, and Han} 2020

Citation
Citation
{Duan, Wang, and Guan} 2020

Citation
Citation
{Jiang, Zhang, Xu, Zhang, Lv, Zhou, Yang, and Pang} 2020

Citation
Citation
{Bai, He, Qiao, Hu, Wu, and Yan} 2020

Citation
Citation
{Liu, Lu, Zou, Xiong, Cao, and Shen} 2020{}

Citation
Citation
{Liu, Yang, and Ding} 2020{}

Citation
Citation
{Hu, Jiang, Liu, Zhang, Han, Cao, and Doermann} 2020

Citation
Citation
{Thanasutives, Fukui, Numao, and Kijsirikul} 2020

Citation
Citation
{Sindagi, Yasarla, and Patel} 2020

Citation
Citation
{Sindagi, Yasarla, and Patel} 2020

Citation
Citation
{Wan and Chan} 2020

Citation
Citation
{Wang, Liu, Samaras, and Hoai} 2020

Citation
Citation
{Rong and Li} 2021

Citation
Citation
{Ma, Wei, Hong, Lin, Qiu, and Gong} 2021

Citation
Citation
{Abousamra, Hoai, Samaras, and Chen} 2021

Citation
Citation
{Song, Wang, Wang, Tai, Wang, Li, Wu, and Ma} 2021

Citation
Citation
{Ulyanov, Vedaldi, and Lempitsky} 2016

Citation
Citation
{Idrees, Saleemi, Seibert, and Shah} 2013



10 KIM AND KWAK: ROBUST CROWD COUNTING

Method Backbone
Overall Scene Level (only MAE) Luminance (only MAE)

MAE MSE NAE Avg. S0 ∼ S4 Avg. L0 ∼ L2
MCNN [56] From scratch 232.5 714.6 1.063 1171.9 356.0 / 72.1 / 103.5/ /509.5/ /4818.2 220.9 472.9 / 230.1 / 181.6
SANet [3] From scratch 190.6 491.4 0.991 716.3 432.0 / 65.0 / 104.2 / 385.1 / 2595.4 153.8 254.2 / 192.3 / 169.7
CSRNet [25] VGG-16 121.3 387.8 0.604 522.7 176.0 / 35.8 / 59.8 / 285.8 / 2055.8 112.0 232.4 / 121.0 / 95.5
CAN [31] VGG-16 106.3 386.5 0.295 612.2 82.6 / 14.7 / 46.6 / 269.7 / 2647.0 102.1 222.1 / 104.9 / 82.3
SCAR [12] VGG-16 110.0 495.3 0.288 718.3 122.9 / 16.7 / 46.0 / 241.7 / 3164.3 102.3 223.7 / 112.7 / 73.9
BL [34] VGG-19 105.4 454.2 0.203 750.5 66.5 / 8.7 / 41.2 / 249.9 / 3386.4 115.8 293.4 / 102.7 / 68.0
SFCN+ [52] ResNet-101 105.7 424.1 0.254 712.7 54.2 / 14.8 / 44.4 / 249.6 / 3200.5 106.8 245.9 / 103.4 /78.8
MNA [48] VGG-19 96.9 534.2 0.223 608.1 218.7 / 10.7 / 35.2 / 203.3 / 2572.5 93.2 214.0/ 99.6 / 60.0
DM-Count [49] VGG-19 88.4 388.6 0.169 498.0 146.7 / 7.6 / 31.2 / 228.7 / 2075.8 88.0 203.6 / 88.1 / 61.2
UOT [35] VGG-19 87.8 387.5 0.185 566.5 80.7 / 7.9 / 36.3 / 212.0 / 2495.4 95.2 240.3 / 86.4 / 54.9
TopoCount [1] VGG-16 107.8 438.5 - - - - -
E-PFSNet (ours) VGG-16 93.5 369.9 0.234 588.6 38.4 / 12.1 / 42.7 / 230.4 / 2619.3 101.6 253.9 / 90.9 / 62.9

Table 3: Comparisons with state-of-the-art methods on the NWPU-Crowd test set. NWPU-
Crod divides test set into following fine-grained subsets: S0 ∼< S4 respectively indicates five
categories according to the different number range: 0, (0, 100], ..., ≥ 5000. There are three
more subsets based on images’ average luminance values in the YUV color space, which
are, L0 ∼ L2 respectively denotes three luminance levels on the test set: [0, 0.25], (0.25, 0.5],
and (0.5, 0.75].

method [44] with a 14.9% relative improvement.
UCF-QNRF Dataset. UCF-QNRF dataset is a large-scale crowd counting dataset which
contains extremely congested scenes where the maximum count of an image can reach
12865. We limit the maximum size of images to 1920 pixels due to the availability of high-
resolution images. Our E-PFSNet achieves the second-best performance with 79.91 MAE
and 138.34 MSE, even with the missing information introduced by the downsampling.
JHU-CROWD++ Dataset. JHU-CROWD++ is a large-scale and congested crowd count-
ing and localization dataset under diverse scenarios and environmental conditions, such as
different weathers and illumination, consisting 4,372 images. The number of head and box
annotation varies from 0 to 25,791. The high-resolution images are resized to 2048 pixels
with the original aspect ratio and we do not use box annotation in our experiments. We
achieve 60.6 MAE, 252.7 MSE which is compatible performance of state-of-the-art.
NWPU-Crowd Dataset. NWPU-Crowd dataset is a large-scale and congested crowd count-
ing and localization dataset, consisting 5,109 images with 351 negative sample (scenes with-
out people), which are similar to congested crowd scenes in terms of texture features. The
ground truth counts for test images are not opened, and the results on the test set must be ob-
tained by submitting to the evaluation server. The high-resolution images are resized to 2048
pixels with the original aspect ratio and we do not use box annotation in our experiments.
We achieve 93.5 MAE which is best score in the models which use VGG-16 as backbone
network and 369.9 MSE which is state-of-the-art.

5 Conclusion

In this paper, we propose a new CNN for crowd counting E-PFSNet which is robust against
variations of images and able to handle diverse crowd densities flexibly. PFSNet adapts its
receptive fields dynamically to local crowd densities of the input image by selecting fea-
tures. The image enhancer alleviates the fragility by normalizing the condition of the input
image. E-PFSNet achieves the state of the art on three public benchmarks for crowd count-
ing and also outperforms existing models in terms of robustness against variation of image
conditions.
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