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Abstract

Current mainstream methods adopt point regression and prior sizes to detect parking
slots. Although these methods are approved to be useful in majority of circumstances,
they have many limitations when they adapt to size and shape variations in more gener-
al slots because of a pre-defined fixed order, lack of holistic constraints and adequately
diverse data. To address them, we propose an order-independent matching strategy with
shape similarity to handle the more general slot sizes and shapes. The matching strategy
adopts a two-level procedure: the point-level and the parking slot-level, that finds optimal
order and association adaptively. More importantly, we adopt shape similarity to repre-
sent holistic geometry to rank slots so as to suppress the misshapen ones. Furthermore,
we collected a large-scale and remote-view parking slot dataset (LRPS) to improve data
diversity. It contains a large number of general parking environments, as well as slots of
various shapes and sizes across different cities, daytime and interior-exterior scenes. The
proposed approach is evaluated on the LRPS dataset and achieves superior performance
to previous methods.

1 Introduction
Vision-based parking slots detection aims to predict the generic shapes of parking slots in a
surrounded-view image, which is critical for the navigating of the Autonomous Valet Parking
(AVP) system [1, 7, 8, 12, 15]. The task requires the model to capture complex visual cues of
highly variable parking slot patterns, such as shapes or visibility in distinct traffic scenarios.

Mainstream methods [3, 4, 5, 11, 16, 17, 18, 19] first detect two entrance marking points
then generate the whole parking slots based on limited prior sizes and post-processing. Re-
cently, the single-stage pipeline [20] replaces the upper pipeline by directly regressing four
corner points to form more flexible slots. However, they still face three main challenges.
The first is the order-induced rotation problem that false rotated detection would be gener-
ated in critical poses. The second is the lacking holistic representation when the model is
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only trained with corner regression. With the same corner errors, the shape of slots would
change dramatically. The third is the lack of sufficient data to represent the complex light
environments and various slot shapes, sizes and appearances.

To tackle these issues, we propose an order-independent matching with shape similarity
to train a single-stage transformer-based network. The matching strategy consists of two lev-
els. The point-level seeks optimal order to assign each predicted corner with certain ground
truth. Except for the common distance cost of four corners, it incorporates shape similarity
to represent holistic geometry for further aligning different slots. By combining distance and
shape costs, the network will benefit from samples of similar shapes to predict more accurate
parking slots. Based on optimal orders, the parking slot-level constructs correspondence be-
tween prediction and ground truth to find positives and negatives for network learning. Such
matching processes can be formulated as two bipartite graph matching problems and solved
by the Hungarian algorithm efficiently. Besides, the used transformer-based architecture u-
tilizes the self-attention mechanism to model non-local dependencies, allowing the network
to better capture complex parking environment typologies and various slot shapes.

Furthermore, we collect a large-scale and remote-view parking slots dataset (LRPS) that
contains more diverse environments to benefit real applications. Images are synthesized from
four surrounded cameras at a remote view to include numerous parking slots. In addition,
the LRPS dataset considers more general scenarios and parking slot types to improve diver-
sity compared with the previous datasets. Finally, experiment results on the LRPS dataset
demonstrate that our method achieves superior performance than previous methods.

2 Related Work
Current vision-based methods of parking slot detection can be divided into two categories:
(1) marking points-based and (2) corner points-based. The marking points-based methods
[3, 5, 11, 16, 17, 18, 19] firstly estimate the two entrance marking points of each parking
slot, then use prior size standards to generate the whole slot. DeepPS [19] and DMPR-PS [5]
leverage geometric rules designed by the physical prior of real driving scenarios to post-
process the detected marking points of different entrances. APS [11] uses an additional graph
neural network to fine-tune the detected marking points and model the internal relationships.
Such methods achieve considerable performance but suffer from limited prior sizes, making
them inefficient to be applied for natural diverse driving environments.

Recently, the corner-based method Faster-PS [20] has been proposed. It directly predicts
four corners to generate flexible parking slots without any post-processing and achieves con-
vincing performance. However, it pre-defines the order of four corners to be fixed aligned
with ground truth, resulting in unsuspected rotated false detection for certain poses. Be-
sides, it only adopts location error, flawed to distinguish holistic deformations, leading to
bad generality.

Different from them, our method is an end-to-end one that estimates four corners while e-
liminating the false rotation and shape deformation. The proposed order-independent match-
ing drops the pre-defined fixed order by adaptively assigning each predicted corner with a
slot corner, enabling the network to seek the best-matched order automatically. Besides, the
incorporated shape cost further punish deformed predictions which have the same location
errors but are not similar in shape. This filters out ineffective training samples to benefit the
corner regression for generalized slot shapes.

In addition to training strategy, sufficiently diverse data is also indispensable. Previous
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Figure 1: A visualization of LRPS dataset. a ∼ b represent the complex topology among different
parking slots. c ∼ f are the common types of parking slots, where c,d denote indoor and e, f denote
outdoor. More general conditions are displayed in g∼ l, including U-shape with arc (g), U-shape with
right angle (h), T-shape with dashed line ( j), arc aligned (k) and abrasion (i) (l).

PS1.0 [9], PS2.0 [19], and PSDD [17] have collected lots of images and annotated parking
slots. However, most images only include three or fewer slots on average and represent
regular parking slots, resulting in a huge gap between them and the real driving scenarios.

To boost the development of real-world driving applications on automated parking, we
have collected and released the largest dataset named large-scale and remote-view parking
slots (LRPS) that contains 26k images (2x) and 87k annotated slots (3x). The LRPS dataset
comprises scenes with significant lights, road textures, and slot appearance changes. Besides,
each image has more general slots with random sizes, shapes, and typology.

3 LRPS Dataset

A large-scale and remote-view parking slots detection dataset is present in this paper. We
firstly record more than twenty hours of video through four wide-angle cameras mounted
around the ego-vehicle. The videos are collected in Xi’an and Shanghai, China, during
daytime from typical scenarios and they include different kinds of parking slots.

The LRPS dataset synthesizes the images from four cameras at a remote view. Unlike
existing datasets are usually collected by only concentrating on parking slots near the ego-
vehicle, LRPS provides more images containing numerous parking slots, thus increasing the
challenge during detection. A more specific comparison is depicted in Tab. 1 (a). Further-
more, these images also exhibit complicated topology among the numerous parking slots, as
illustrated in Fig. 1 (a and b).

Besides, the LRPS dataset demonstrates a wide diversity of parking slot shapes. Except
for the common types of parking slots, the LRPS dataset additionally introduces U-shape
with right angle (g) and arc (h), T-shape with dashed line (j), arc aligned parking slots (k)
and abrasion (i and l), as Fig.1 shows. A statistical comparison is shown in Tab. 1 (b). In
detail, the LRPS dataset totally comprises 25929 surround-view images and 87121 parking
slots, which is nearly 2× larger and contains 3× parking slots than the PSDD dataset [17].
For each surround-view image, the spatial resolution is 1024×1024, which corresponds to
a 10m × 10m physical region. We have divided the dataset into 22132 images for training,
1282 images for validation and 2515 images for testing.
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LRPS PSDD [17] PS2.0 [19]

K
0 2 ∼3 5 ∼6 8 ∼9 11 ∼12 15 ∼16 18∼

Table 1: (a) is the line chart corresponding to the number of parking slots in the image (K). (b) is the
property of existing dataset and our LRPS. The third row to the seventh row demonstrates different
types of parking slots with the same definitions as shown in Fig. 1.

4 Methodology

In this section, we define the output and explain the details of our detection approach, in-
cluding a transformer-based architecture and a matching strategy for training.

4.1 Parking slot representation

We denote {c,p1,p2,p3,p4} as an available parking slot. c ∈ {0,1,2} is the class label of
the parking slot where 0 is background, 1 is a free parking slot and 2 is an occluded parking
slot as shown in Fig. 2 (a). {pi =

(
xi,yi

)
|i ∈ {1,2,3,4}} are the coordinates of four corner

points, which we do not stipulate the order of these corner points. For the ground truth corner
points {p̂1, p̂2, p̂3, p̂4} of a parking slot, we only arrange them in an anti-clockwise order and
do not designate the starting point as Fig 2 (b) shows, which is different from [20].

4.2 Prediction Network

The network is built by a transformer structure following DEtection TRansformer (DE-
TR) [2] with only two encoder layers and two decoder layers. As is illustrated in Fig. 3, giv-

ing an input image I∈R3×H0×W0 , we apply a CNN to extract the feature map F∈RC×H0
32 ×

W0
32

from input image, where the number of feature map channels C is set to 128. Then, F is
added by a sinusoidal positional embedding Ep and transmitted in to the transformer en-
coder (TRE). Ep owns the same shape as F . After that, the transformer encoder outputs a
representation sequence Senc ∈ RC× HW

32×32 , which contain the topological relations of clus-
tered parking slots. Next, the transformer decoder (TRD) receives Senc and a set of learned
query embedding El ∈RC×N as inputs, and outputs the hidden states Sdec ∈RC×N . Here we
set the length of queries N as 50. Finally, a fully-connected layer transforms Sdec to predict
the categories of parking slots and generate N class labels {ci}N

i=1. Meanwhile, a three-layer
feed-forward network (FFN) predicts four corner points and also with an additional cen-
ter point pc

i to capture the global information of the target parking slot, which results in N
parking slots predictions {gi,pc

i }N
i=1, gi =

(
p1

i ,p2
i ,p3

i ,p
4
i
)
.
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Figure 2: Problem illustration. (a) The yellow lines represent free parking slots and the blue lines
represent occluded slots. For (b)-(d), predictions are displayed in blue points and yellow dashed lines.
(b) The corner annotation of a free parking slot. Four corners are marked in red. Notice that we do
not stipulate the first point and just arrange them in an anti-clockwise order. (c) The points matching
problem of a single pair of prediction and ground truth (left). (d) The shape discrepancy problem. With
the same distance cost, the shape would changed.

F encS

FC

FFN

decS
...

...

1c

2c

Nc

PS-levelPoint-level

Network
OISS 

...I

...

TRE

1c

2c
s

... ... ...

1
g

2
g

N
g

...

1
pc

2
pc

N
pc

1
g

N
g

1
g

N
g

1
pc

1
g

2
g

N
g

1c

2c

Nc

2
pc

N
pc

Nc

1
pc

2
pc

N
pc

1
g

2
g

N
g

lE

pE

TRD

Figure 3: Overall structure. The structure consists of a transformer based network and an order-
independent matching strategy with shape similarity.

4.3 Training with OISS
The Order-Independent matching with Shape Similarity (OISS) aims at adaptively matching
the corner order and parking slot between predictions and ground truth to handle general slot
shapes and sizes. In our setting, the corner order of a predicted slot is independent of certain
ground truth, shown in Fig. 2 (c). More importantly, the shape similarity is introduced to
represent the holistic geometry to rank predicted slots. In Fig. 2 (d), both slots have the
same distance error, but the right-most would be suppressed due to its wrong deformation.
After that, the association between the set of predictions and ground truth is also unknown.
Therefore, OISS adopts two levels matching, including a point-level matching and a parking
slot (PS)-level matching. The point-level firstly associates a single pair of prediction and
ground truth to find an optimal order of corners by jointly considering distance and shape
costs. The PS-level constructs correspondence between all predictions and ground truth to
select training positives and negatives. The following step is that the loss function adopts a
linear combination of classification loss and corner regression loss.

Point-level matching. We now denote gi =
(
p1

i ,p2
i ,p3

i ,p
4
i
)

and ĝ j =
(
p̂1

j , p̂2
j , p̂3

j , p̂
4
j
)

as the
corner points of i-th predicted parking slot and j-th ground truth. It should be noticed that
two sets of corner points are not aligned. In order to search for the optimal matching rela-
tions between the predicted and ground truth corner points, we define the following bipartite
matching problem:

ẑ = argmin
z

di, j
(
gi, ĝ j,z

)
, (1)
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where ẑ : gi→ ĝ j is the optimal permutation of 4 points and di, j is the matching cost function.
Here we define di, j = Ld +Ls, where Ld and Ls are defined as follows:

Ld =
4

∑
n=1

L1

(
p̂n

j ,p
z(n)
i

)
,Ls =

4

∑
n=1

(
1− cosθ

n
i j
)
, (2)

z(n) denotes the index of the predicted points to be matched with n-th ground truth corner
points, n ∈ {1, ...,4}. Eq. 2 is composed of two terms to calculate the position and shape
differences. (1) Distance cost Ld . Ld is calculated by using the average absolute error L1
function to obtain the distance between the ground truth and the corresponding predicted
points under a certain permutation. (2) Shape Cost Ls. Ls measures the shape difference

between the quadrilaterals that enclosed by gi and ĝ j. The θ n
i j is

〈−−−−→
p̂n

j p̂
S(n)
j ,
−−−−−−−→
pz(n)

i pz(S(n))
i

〉
,

which represents the angle of two edges. Here S (n) = n mod 4+1. The proposed shape cost
is necessary to distinguish deformed predictions since only a distance cost can not punish
the wrongly deformed slots. After solving Eq. 1 by using the Hungarian algorithm [14], we
define d∗i, j = di, j

(
gi, ĝ j, ẑ

)
.

PS-level matching. Consider the parking slot prediction as Y = {yi}N
i=1, where N is larger

than the maximum parking slot number in the image of the dataset. The ground-truth set of
parking slots are represented as Ŷ = {ŷi}N

i=1, which are padded with /0 (non-instance). The
matching between Y = {yi}N

i=1 and Ŷ = {ŷi}N
i=1 can be formulated as a bipartite matching

problem to search for an injective function σ̂ : Y → Ŷ with the lowest costs:

σ̂ = argmin
σ

N

∑
i

li
(

ŷi,yσ(i)

)
, (3)

where σ (i) represents the index of the predicted parking slots to be matched with the i-th
ground truth and li is the matching cost function. For the i-th ground truth parking slot
ŷi = (ĉi, ĝi, p̂c

i ), where ĉi and ĝi are the target class label and corner points. The ground
truth center point p̂c

i is calculated by averaging the corresponding four corner points. For the
σ (i)-th predicted parking slot, pσ(i) (ĉi) is the probability of class ĉi and pc

σ(i) is the predicted
center point. With above notations we define the matching cost function li as follows:

li =−ω1 pσ(i) (ĉi)+1{ĉi 6=0}ω2L1

(
p̂c

i ,p
c
σ(i)

)
+1{ĉi 6=0}ω3d∗

σ(i),i. (4)

The first term −ω1 pσ(i) (ĉi) is the classification cost. The second term L1

(
p̂c

i ,pc
σ(i)

)
mea-

sures the distance cost of center points. The third term d∗
σ(i),i is the optimal point-level

matching cost between the σ (i)-th predicted and the i-th ground truth corner points, as is
mentioned in the previous paragraph. We define 1(·) as an indicator function, and ω1, ω2
and ω3 are the coefficients to adjust the weights of different terms. After solving Eq. 3 by
using the Hungarian algorithm, we acquire the optimal parking slots matching permutation
σ̂ .

Loss Function After generating σ̂ and ẑ, we define the loss function as follows:

LP =
N

∑
i=1

[
−ω1 log pσ̂(i) (ĉi)+1{ĉi 6=0}ω2L1

(
p̂c

i , p̂
c
σ̂(i)

)
+1{ĉi 6=0}ω3d∗

σ̂(i),i

]
. (5)
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Figure 4: (a) Quantitative evaluation on the LRPS dataset. (b) Evaluation on the PS2.0 dataset [19].

The first term is classification loss and remaining terms are points regression loss. ω1,ω2 and
ω3 are the coefficients to adjust the influence of the loss terms. They have the same value as
Eq. 4.

5 Experiments
Datasets. Experiments are conducted on the LRPS dataset described in section 3 and PS2.0
dataset [19]. The widely used PS2.0 dataset [19] contains 12165 samples collected by using
an AVM (around view monitoring) system from typical indoor and outdoor scenarios. The
resolution of each image is 600×600. Every parking slot in the PS2.0 dataset is annotated
as an entrance line connected by two marking entrance points.

Implementation Details. The height H0 and width W0 of an input image are set to 384.
Each input image is processed by the augmentation of color jittering, rotating, scaling, flip-
ping and cropping. We adopt the Resnet-18 as the backbone CNN. Loss coefficients ω1, ω2
and ω3 are set to 1, 3 and 1. The selection of query length N follows LSTR [10] by evaluating
from 20 to 80 in increments of 5. We trained the detection network on a single GTX 3090
for 300k iterations. The initial learning rate is set to 0.0001 and decayed ten times every
100k iterations. We adopt the Adam [6] optimizer and the batch size is set to 16. For the
experiments conducted on the PS2.0 [19] dataset, the FFN layer of the transformer predicts
two marking points for each output query.

Evaluation Metrics. For the LRPS dataset, the performance of parking slots detection is
evaluated through the mean average precision (mAP) introduced in [20]. A predicted park-
ing slot ŝi is considered as a true positive when it is matched with a ground truth parking slot
s j under the following conditions: ĉi = ci, IOU (ŝi,s j)> δ . We adopt intersection over union
(IOU) to measure the deviation between ŝi and s j. δ is the corresponding IOU threshold. For
the PS2.0 dataset, the performance is verified through euclidean distances between ground
truth and detected marking points of entrance lines [19]. Specially, for a labeled ground
truth {p̂1

i , p̂2
i }, a certain predicted parking slot {p1

j ,p2
j} is determined as a true positive when

L2

(
p̂t

i,pt
j

)
< δl , t ∈ {1,2}. Here we adopt the square error function L2 to obtain the eu-
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Figure 5: Comparative results on LRPS test set. Red lines represent the false positive and green lines
are the true positive.

clidean distance and δl is the distance threshold. δl is set to 12 in the following experiments.

5.1 Comparision with the state-of-the-art method

Fig. 4 (a) shows the performance on the LRPS dataset. We adopt Faster-PS [20] as our
baseline, which is a corner points-based parking slot detection method modified on a faster-
rcnn structure [13]. From the results, our approach fully surpasses Faster-PS by 16.58% on
mAP70, 13.86% on mAP50 .

Fig. 4 (b) shows the performance of the PS2.0 dataset. OISS outperforms Faster-PS [20]
by 5.67% on the recall and 0.09% on the precision. Comparing with current two-stage frame-
works, OISS implemented in an end-to-end (one-stage) manner at the cost of comparatively
lower precision and recall values. Furthermore, OISS is capable of directly predicting the
entrance lines without any extra post-processing operations like filtering or matching in pre-
vious methods [3, 5, 9, 17].

Visualization results on the LRPS dataset are illustrated in Fig. 5. Our method performs
more accurate predictions under different scenarios than Faster-PS, especially for clustered
parking slots. We attribute this to (1) the OISS strategy makes our method more robust to the
deformation of input images. Details will be claimed in the next section. (2) The transformer
network can capture non-local dependencies to benefit detection in complex slot topology.
More examples are illustrated in supplementary materials.

5.2 Ablation study

Effect of the OISS matching strategy. To verify the effect of OISS strategy, we compare it
with the consistent ordering matching (COM) strategy proposed in [20]. The COM strategy
makes the model regress the four corner points of each parking slot in a clockwise direction
that starts from a specific point according to their angles with respect to the center of the
parking slot. For the training of COM, we preprocess the label to fix the order. Comparing
to OISS, the consequence of COM strategy is 2.55 % lower on mAP70, 3.14 % lower on
mAP50. We also display the predicted results to better understand how OISS works. As is
illustrated in Fig. 6, when the vehicle is steering, the OISS strategy can accurately predict
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Figure 6: Predicted parking slots of OISS and COM strategies when vehicle is steering. Both of them
are generated based on a transformer network.

Slot ID: 10

Slot ID: 7

Slot ID: 28
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28
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 (96, 64)

 (64, 96)

 (224, 320)

 (288, 288)

(64, 96)

(96, 64)

(224, 320)

(288, 288)

Figure 7: Attention maps in the transformer network. Left: encoder attention maps for different sam-
pling points. Right: decoder attention maps between output slots and encoder feature.

the parking slots at some critical observation angles, while the COM strategy fails to predict
the corner points between the ground truth.

Shape cost and center point prediction. The effect of shape cost and center point are also
evaluated. Without the addition of shape cost, the prediction performance of OISS dropped
by 1% of mAP70, 1.5% of mAP50. We visualize the predictions under some challenging
shapes in Fig. 8 to better understand the shape cost. From Fig. 8, OISS strategy without shape
cost sometimes performs poorly on inclined parking slots detection. Moreover, the addition
of center point prediction also slightly promotes the performance by 1.32% of mAP70 and
2.54% of mAP50, which demonstrates that the center prediction is beneficial to capture the
global pattern of each parking slot.

Attention maps in the transformer network. Fig. 7 displays the intermediate attention
maps in the transformer network. The left part visualizes the attention maps for several
reference points in the last encoder stage. Two points on the upper part of the image are more
interested to the nearby parking slots, thus making the encoder to capture the topological
relations in the inclined area more effectively. A similar pattern is also exhibited for the
remaining points at the bottom of the image. The right part demonstrates the attention maps
in the cross-attention module of the last decoder stage. Each attention map interprets the
relations between the encoder features and an output query slot. We notice that the attention
is clearly reflected on the local regions of different parking slots. As a result, specific slots
in the adjacent area are separated and distinguished.
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w/o SCw/ SC w/ SC w/o SC

Figure 8: Effect of the shape cost. By introducing the shape cost (SC), our method can predict the
aligned shape of parking slots.

Figure 9: Failure cases under some special situations. The same color coding (see Fig. 5) is adopted.

Failure cases. Some failure cases are displayed in Fig. 9. Our OISS fails in predicting
parking slots under unique situations. For example, the left three images show the OISS fails
to identify the slot-like pattern in traffic scenarios. Such slot-like patterns are usually formed
with the signs or lanes on the road. The remaining images show the prediction errors under
some extremely adverse conditions, like abrasion (fourth) and underground (fifth).

6 Conclusion

In this work, we propose the order-independent matching with shape similarity and a large-
scale remote-view parking slots towards accurate, generalized, and scale-able parking slot
detection. The introduced matching strategy adopts a two-level pipeline that solves the order-
induced rotated false detection and shape deformations by adaptive order association and
holistic shape cost. Furthermore, the collected LRPS dataset demonstrates more diverse
traffic scenarios and shapes of different parking slots, making it more possible and practical
for the autonomous driving society to confront more generalized parking slot detection in the
real world. In the future, we plan to add the marking points detection for further improving
the localization performance.
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