
SHIVAM ET AL.: RECOGNIZING UNSEEN CLASSES IN UNSEEN DOMAINS 1

Structured Latent Embeddings for
Recognizing Unseen Classes in Unseen
Domains
Shivam Chandhok1

shivam.chandhok@mbzuai.ac.ae

Sanath Narayan2

sanath.narayan@inceptioniai.org

Hisham Cholakkal1

hisham.cholakkal@mbzuai.ac.ae

Rao Muhammad Anwer13

rao.anwer@mbzuai.ac.ae

Vineeth N Balasubramanian4

vineethnb@iith.ac.in

Fahad Shahbaz Khan15

fahad.khan@mbzuai.ac.ae

Ling Shao2

ling.shao@ieee.org

1 Mohamed bin Zayed University
of AI, UAE

2 Inception Institute of Artificial
Intelligence, UAE

3 Aalto University School of Science,
Espoo, Finland

4 Indian Institute of Technology,
Hyderabad, India

5 Linköping University, Sweden

Abstract

Zero-shot learning and domain generalization strive to overcome the scarcity of task-
specific annotated data by individually addressing the issues of semantic and domain
shifts, respectively. However, real-world applications often are unconstrained and require
handling unseen classes in unseen domains, a setting called zero-shot domain general-
ization, which presents the issues of domain and semantic shifts simultaneously. Here,
we propose a novel approach that learns domain-agnostic structured latent embeddings
by projecting images from different domains and their class-specific semantic represen-
tations to a common latent space. Our method jointly strives for the following objec-
tives: (i) aligning the multimodal cues from visual and text-based semantic concepts;
(ii) partitioning the common latent space according to the domain-agnostic class-level
semantic concepts; and (iii) learning a domain invariance w.r.t the visual-semantic joint
distribution for generalizing to unseen classes in unseen domains. Our experiments on
challenging benchmarks such as DomainNet show the superiority of our approach over
existing methods with significant gains on difficult domains like quickdraw and sketch.

1 Introduction
In various real-world computer vision problems, obtaining task-specific labeled data can be
challenging due to several reasons: high annotation costs, dynamic addition of objects with
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new semantic content or in new domains, limited instances of rare objects, as noted in [35].
Two popular paradigms addressing such issues are: (i) zero-shot learning (ZSL) that employs
training data of related object categories from the same domain (e.g., sketches of cats as
training data for recognizing dogs in sketches); and (ii) domain generalization (DG) that uses
training data of the same categories from related domains (e.g., photos of dogs as training
data for recognizing dogs in sketches). While ZSL tackles the semantic shift caused by
different object categories during training and testing, DG handles the domain shift caused by
different domains in training and testing data. However, real-world applications often require
handling semantic and domain shifts simultaneously. Here, we investigate this challenging
problem of zero-shot domain generalization (ZSLDG) [26, 28], which leverages training
data of a related object category from a related domain for recognizing unseen classes in
unseen domains (e.g., photos of cats as training data for recognizing dogs in sketches).
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Figure 1: Our latent space is structured ac-
cording to class-level semantic concepts and is
domain-invariant w.r.t visual-semantic joint distri-
bution. This enables our model to map unseen
classes in unseen domains at test-time (camel from
clipart), based on their semantic concepts, to ap-
propriate subspaces within our latent space, thereby
aiding generalization. Best viewed in zoom.

In this work, we address ZSLDG by propos-
ing a unified solution that jointly tackles domain
and semantic shifts by relating the visual cues
of a class to its domain-invariant semantic con-
cepts. E.g., semantic cues such as <long neck,
long legs, has spots> of giraffe class are invari-
ant across domains such as real images (photos),
sketch or clipart (see Fig. 1). To this end, we
align common information from visual and se-
mantic spaces in a domain-agnostic latent space
that is structured according to class-level seman-
tic concepts. We then impose a domain invari-
ance w.r.t the visual-semantic joint distribution.
Since the semantic space is shared across all
classes and agnostic to the visual domains, im-
posing such invariance aids in generalizing to
unseen domains at test time (instead of overfitting to source domains), while improving the
visual-semantic interaction for effective knowledge transfer across seen and unseen classes.

Contributions: We propose a ZSLDG approach comprising a visual encoder that projects
multi-domain images from the visual space to a latent space, and a semantic encoder that
learns to map text-based class-specific semantic representations to the same latent space.
The key contributions are: (i) For aligning class-specific cues from visual and semantic la-
tent embeddings, we introduce a multimodal alignment loss term; (ii) We partition the latent
space w.r.t class-level semantic concepts across domains by minimizing intra-class variance
across different seen domains; (iii) The focus of our design is the introduction of a joint
invariance module that strives for domain invariance w.r.t the visual-semantic joint distribu-
tion, and thereby facilitates generalizing to unseen classes in unseen domains; and (iv) Ex-
periments on the challenging DomainNet and DomainNet-LS benchmarks [36] demonstrate
the efficacy of our approach over existing methods. Particularly, on the difficult quickdraw
domain, our approach achieves a significant gain of 1.6% over the best existing method [26].

2 Related Work
Domain Generalization (DG): Existing methods tackle the problem of domain shift, which
occurs when the training and testing data belong to different domains, in different ways.

Citation
Citation
{Ni, Zhang, and Xie} 2019

Citation
Citation
{Mancini, Akata, Ricci, and Caputo} 2020

Citation
Citation
{Maniyar, Joseph, Deshmukh, Dogan, and Balasubramanian} 2020

Citation
Citation
{Peng, Bai, Xia, Huang, Saenko, and Wang} 2019

Citation
Citation
{Mancini, Akata, Ricci, and Caputo} 2020



SHIVAM ET AL.: RECOGNIZING UNSEEN CLASSES IN UNSEEN DOMAINS 3

Most previous approaches aim to learn domain-invariance by minimizing the discrepancy
between multiple source domains [31, 49, 50] or by employing autoencoders and adversarial
losses [13, 23]. A few works [5, 21, 22] introduce specific training policies or optimization
procedures such as meta-learning and episodic training to enhance the generalizability of the
model to unseen domains. Similarly, [39, 42] employ data augmentation strategies to im-
prove the models robustness to data distribution shifts at test time. However, all these works
tackle the DG problem alone, where the label spaces at both train and test time are identical.
Zero-shot Learning (ZSL): Traditional ZSL methods [1, 2, 11, 37, 40] learn to project the
visual features onto a semantic embedding space via direct mapping or through a compatibil-
ity function. However, such direct mappings are likely to suffer from issues of seen class bias
and hubness [9, 18]. In contrast, the works of [33, 41] leverage joint multi-modal learning of
visual and textual feature embeddings for the task of ZSL. Recently, generative approaches
tackle the problem of seen class bias by generating unseen visual features from respective
class embeddings [6, 7, 10, 15, 24, 27, 30, 32, 38, 43, 45, 48]. However, all these methods
address only ZSL, where the domain remains unchanged during training and testing.
Zero-shot Domain Generalization (ZSLDG): The recent works of [26, 28] investigate the
challenging problem of ZSLDG. While [28] limits its real-world applicability by defining
different domains as variations in rotation of the same objects, CuMix [26] defines domains
as different ways of depicting an object, as in sketch, painting, cartoon, etc. and is closer
to the real-world settings. CuMix tackles the issue of domain shift through data augmen-
tation by mixing source domains, and handles semantic shifts by learning to project visual
features to the semantic space. However, relying on source domain-mixing is likely to result
in a model that could overfit to the source domains and their interpolations, thereby reducing
generalizability to unseen domains [23]. Furthermore, directly mapping the visual space to
the semantic space, as in [26], can lead to hubness issues (mapped points cluster as a hub due
to low variance) [9, 18], thereby reducing class-discriminability. In contrast, our approach
jointly handles the issues of domain and semantic shifts by learning a domain-agnostic latent
space that is partitioned based on domain-invariant class-level semantic concepts, onto which
the visual and semantic features are projected. Since enforcing domain-invariance w.r.t
marginal distribution of images is likely lead to overfitting towards seen domains [23, 25],
we tackle this by enforcing domain-invariance w.r.t the visual-semantic joint distribution. In
addition, this enables better interaction between visual and semantic spaces in a new latent
space, thereby improving the generalization to unseen classes in unseen domains.

3 Proposed Method

Problem Setting: The goal of zero-shot domain generalization (ZSLDG) is to recognize
unseen classes in unseen domains. Let QTr = {(x,y,ay,d)|x ∈ X ,y ∈ Ys,ay ∈ A,d ∈ Ds}
denote the training set, where x is a seen class image in the visual space (X ) with cor-
responding label y from a set of seen class labels Ys. Here, ay denotes the class-specific
semantic representation that encodes the inter-class relationships, while d is the domain la-
bel from a set of seen domains Ds. Note that the semantic representations are typically
obtained from unsupervised text-based WordNet models (e.g., word2vec [29]) Similarly,
QT s = {(x,y,ay,d)|x ∈ X ,y ∈ Yu,ay ∈ A,d ∈ Du} is the test set, where Yu is the set of
labels for unseen classes and Du represents the set of unseen domains. In standard ZSL,
training and testing images belong to disjoint classes but share the same domain space, i.e.,
Ys ∩Yu ≡ /0 and Ds ≡ Du. In contrast, in the standard DG setting, training and testing im-
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Figure 2: Overall architecture of our approach. The proposed approach comprises a visual encoder f and a
semantic encoder g. The multimodal alignment module (Sec. 3.1) aligns the class-specific cues from the visual and
semantic latent embeddings (zv and za) in Z by employing an alignment loss term Lalign, The loss term Lcenter
ensures a domain-agnostic class-level partitioning (Sec. 3.2) of Z . Furthermore, the joint invariance module strives
to achieve domain invariance (Sec. 3.3) w.r.t the visual-semantic joint distribution by employing L joint−inv, thereby
enabling us to generalize to unseen classes in unseen domains.

ages belong to same classes in disjoint domain spaces, i.e., Ys ≡Yu and Ds∩Du ≡ /0. Here,
our goal is to address the more challenging ZSLDG setting for recognizing unseen classes in
unseen domains without having seen these novel classes and domains during training, i.e.,
Ys∩Yu ≡ /0 and Ds∩Du ≡ /0.
Overall Framework: The overall architecture of our proposed approach is shown in Fig. 2.
The proposed framework comprises a visual encoder f , semantic encoder g, semantic pro-
jection classifier h along with discriminators D1 and D2. In ZSLDG, the conditional dis-
tribution p(y|x) changes since x comes from different domains, i.e., pX (x|di) 6= pX (x|d j),
∀i 6= j. Our approach mitigates this issue by learning a domain-invariant semantic manifold
Z which is partitioned according to class-level semantic concepts (described in Sec. 3.1 and
Sec. 3.2), such that p(y|z) is stable and does not change across domains (where z = f (x)).
Furthermore, in order to ensure generalization to unseen classes in unseen domains at test
time, our joint invariance module achieves domain invariance w.r.t the visual-semantic joint
by employing L joint−inv (described in Sec. 3.3). This facilitates improved knowledge transfer
between class-specific (domain-invariant) visual cues and semantic representations in latent
space Z , thereby enhancing generalization to unseen classes in unseen domains at test-time.

3.1 Multimodal Alignment

The multimodal alignment module, learns to project both the visual and semantic represen-
tations to a common latent embedding spaceZ . Let f (x) :X →Z denote a feature extractor,
which maps an image x in the visual space X to a vector zv in the latent embedding space Z .
Furthermore, let the function g learn a mapping from semantic space to the latent embedding
space, i.e., g(n,ay) : N ×A → Z by taking a random Gaussian noise vector n concate-
nated with the semantic representation ay as input and mapping it to a vector za in Z . Let
D1 : Z ×A → R denote a conditional discriminator (conditioned on the semantic embed-
ding ay) . Then, the multimodal adversarial alignment of the visual and semantic embedding
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spaces is achieved by employing a Wasserstein GAN [4], as given by

LD1 = E[D1(zv,ay)]−E[D1(za,ay)]−λE[(||∇z̃D1(z̃,ay)||2−1)2], (1)

where zv = f (x) and za = g(n,ay) are the latent embeddings from the visual and semantic
spaces, respectively. Here, λ is a weighting coefficient, while z̃ = ηzv + (1− η)za with
η ∼U(0,1) represents a convex combination of zv and za. Eq. 1 is equivalent to minimizing
the (forward) Kullback-Leibler (KL) divergence between the visual and semantic latent em-
beddings, i.e., KL[(zv,ay)||(za,ay)]. Furthermore, to enhance the discriminability of learned
latent embeddings, we employ a compatibility based classifier using a semantic projection
function h : Z →A for constraining the latent embeddings (zv and za) to map back to their
corresponding semantic representations ay, given by,

LV (zv,ay) =−E(log
exp(〈h(zv),ay〉)

Σy∈Y s exp(〈h(zv),ay〉)
), LS(za,ay) =−E(log

exp(〈h(za),ay〉)
Σy∈Y s exp(〈h(za),ay〉)

).

(2)
Here, 〈·, ·〉 measures the similarity between its inputs, computed as the dot product between
them. The cyclic projection of mapping from visual/semantic space to a latent space and
then back to the semantic space minimizes the information loss and enhances the latent
embedding discriminabilty. We employ the multimodal alignment loss term (Lalign) to learn
the visual and semantic encoders along with the semantic projection classifier, given by

Lalign = E[D1(zv,ay)]−E[D1(za,ay)]+LV (zv,ay)+LS(za,ay)]. (3)

3.2 Structured Partitioning

Figure 3: Impact of our structured partition-
ing for the DG task on PACS [20]. Compared
to multimodal alignment alone (orange bars),
additionally partitioning the latent space ac-
cording to the semantic concepts along with
multimodal alignment provides notable per-
formance gains (blue bars), especially on the
most difficult unseen domain, i.e., sketch.

While the multimodal alignment module aligns the
visual and corresponding semantic embeddings in
the latent space, it does not learn a domain-agnostic
latent space, which is partitioned according to the se-
mantic concepts that relate to the different classes.
In order to achieve a structured and domain-invariant
latent space, we propose to cluster the latent em-
beddings based on class-level (domain-invariant) se-
mantic concepts across different domains. The la-
tent space is then conceptually structured, since the
visual latent embeddings zv and semantic latent em-
beddings za of a class are clustered together. To this
end, we adopt the center loss [44] in a multimodal
setting. Formally, we first randomly initialise S cen-
ters, i.e., {c j| j = 1, . . . ,S} for each of the seen classes
in the training set and compute the loss, Lcenter due
to each class y present in a mini-batch. Then, for every class y that is present in a mini-batch,
the center update ∆cy is computed for incrementing the corresponding center cy. The loss
Lcenter and update ∆cy are given by:

Lcenter = δ [E(||zv− cy||22)+E(||za− cy||22)]; ∆cy = E[cy− zv]+E[cy− za]. (4)

Here, cy denotes the center of class label y in the latent space, while zv and za correspond to
the visual and semantic embeddings of class y, and δ is weighing factor for center loss. Con-
sequently, the intra-class and inter-domain variances for each class get minimized, resulting
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in a structured and domain-agnostic latent space. Furthermore, since both the visual and se-
mantic latent representations of a class are clustered together, the latent space is partitioned
based on class-level semantic concepts.

In order to validate our hypotheses that a domain-agnostic structured latent space helps
to stabilize p(y|z) and generalize to new domains, we conduct an experiment as a proof of
concept. Fig. 3 presents a comparison for the standard domain generalization (DG) setting
on the PACS dataset [20] using ResNet-18 backbone. We see that structuring the latent space
(blue bars) provides performance gains on all domains and enhances the average gain, com-
pared to employing multimodal alignment alone (orange bars). The highest gain is achieved
for the most difficult sketch domain that has a large domain shift from the source domains
(photo, art, cartoon), demonstrating the advantage of our domain-agnostic partitioning.

3.3 Joint Invariance Module
As discussed above, the multimodal alignment and conceptual partitioning result in a struc-
tured and domain-agnostic latent embedding space that disentangles semantic and domain-
specific information. Such a disentanglement of semantic and domain-specific information
is sufficient for standard domain-generalization setting where images during training and
testing come from same categories. However in our ZSLDG setting, the disentanglement
may not hold for unseen semantic categories during testing, as previously found in [26]. In
order to address this issue and enable generalization to unseen classes in unseen domains,
we propose to learn the domain-invariance w.r.t the joint distribution of visual and semantic
representations of a class. Formally, any given image x comprises of a class-specific content
Cy and a domain-specific transformation Ti(·) which depicts the class y in that particular do-
main di. Thus, each image x ∈ X belonging to domain di can be represented as x = Ti(Cy).
In order to enable generalization to unseen class in unseen domains, we propose to match the
visual-semantic joint distribution p(Ti(Cy),ay) under different domain transformations Ti(·)
in order to disentangle the domain-specific information. Since the semantic space is shared
between seen and unseen classes, learning domain invariance w.r.t the joint distribution of
visual and semantic representations of a class, i.e., p( f (Ti(Cy)),ay) or p( f (x),ay) enables
us to enhance generalization.

Specifically, we aim to match the visual-semantic joint distribution from the visual en-
coder (zv,ay), semantic encoder (za,ay) and projection classifier (za, ây). To this end, we
employ a triple adversarial loss, to stabilize the visual-semantic joint distribution across dif-
ferent domains. This also enhances visual-semantic interaction for learning class-specific
discriminative features in the visual and semantic embedding spaces. This is achieved by
employing a discriminator D2 : Z×A→ R and optimizing:

LD2 = E[D2(za,ay)]−αE[D2(za, ây)]−βE[D2(zv,ay)]

−λE[(||∇z̃D2(z̃, ãy),∇ãD2(z̃, ãy)||2−1)2] (5)

Here, ây = h(za) is output from projection classifier h, which represents the projection of
the latent embedding za onto the semantic space A. Also, z̃ = ηza +(1−η)(αza + βzv)
and ãy = ηay +(1−η)(α ây + βay) with β = 1−α and η ∼ U(0,1). Additionally, λ is
a weighting coefficient. Note that D2 is different from the vanilla discriminator D1 and
has a triple adversarial formulation [19]. Firstly, by incorporating the projection classifier
output ây, it enables to jointly train the visual encoder f , semantic encoder g and projection
classifier h while imposing domain-invariance. In addition, we design Eq. 5 to treat (za,ay)
as real samples and (zv,ay) , (za, ây) as fake samples. This acts as a minimizer of the reverse
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KL divergence i.e., KL[(za,ay)||(zv,ay)] [34] (in contrast to D1 that minimizes forward KL
as described in Sec. 3.1) between the visual and semantic spaces. We find that this leads to
better generalization by alleviating the mode collapse issue, and thus enables our model to
capture multiple modes of the data distribution [34]. Next, the semantic projector classifier
h is updated to minimize:

Lcls =−αE[ph(y|za)D2(za, ây)]+ γ[LV (zv,ay)+LS(za,ay)], (6)

where ph(y|za) is the probability distribution after taking softmax of semantic projection
classifier h, output logits. Weighting the D2 output with the class probabilities helps in
achieving stable training [19]. Finally, we update the visual and semantic encoders ( f and g)
to minimize discrepancy between the embeddings (za and zv) in the latent space, given by:

Lgen = E[D2(za,ay)]−βE[D2(zv,ay)]. (7)

Then, the joint invariance loss term L joint−inv is defined as L joint−inv = Lcls +Lgen. Con-
sequently, the adversarial loss terms in Eq. 5 and L joint−inv together enable us to jointly
train f ,g,h and learn a domain-invariant space, which can generalize to unseen domains and
classes at test time, by capturing class-specific discriminative visual-semantic relationships
across domains.

3.4 Training and Inference
Training: In a single training iteration, we update the discriminators D1 and D2 to maximize
the losses in Eq. 1 and 5. We update the discriminators 5 times for every update of the rest
of the functions ( f ,g,h), as in WGAN [14]. Following this, the parameters θ f ,θg,θh,θc
corresponding to f ,g, h and class centers, respectively, are updated to minimize:

Ltotal = Lalign +Lcenter +L joint−inv. (8)

Inference: A test image xt from a unseen domain and class (in Du and Yu) is projected by
encoder f to obtain the corresponding latent embedding zt = f (xt). The semantic projection
classifier h computes pairwise similarities between zt and the unseen class embeddings ay,
where y ∈ Yu. These similarity scores are converted to class probabilities to obtain the final
prediction ŷ, given by ŷ = argmaxy∈Yu P(y|xt ;Φ).

4 Experiments
Datasets: We evaluate our method on the DomainNet and DomainNet-LS benchmarks for
the task of ZSLDG, as in [26]. DomainNet [36]: It is a large-scale dataset and is currently the
only benchmark dataset for the ZSLDG setting [26]. It consists of nearly 0.6 million images
from 345 categories in 6 domains: painting, clipart, sketch, infograph, quickdraw and real.
For the task of ZSLDG, we follow the same training/validation/testing splits along with the
training and evaluation protocol described in [26]. In particular, 45 out of 345 are fixed as
unseen classes and training is performed using only the remaining seen class images. Among
the 6 domains in DomainNet, the seen class images from 5 domains are provided during
training, and the model is evaluated on the 45 unseen classes in the held-out (unseen) domain.
We repeat experiments with each of the domains as the unseen domain. Following [26], the
real domain is never held out since a ResNet-50 backbone, pre-trained on ImageNet [8], is
employed. Average per-class accuracy is used as the performance metric for evaluation on
the held-out domain [26, 47]. Similarly, we use the word2vec [29] representations as the
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Table 1: State-of-the-art comparison for the task of ZSLDG on the DomainNet benchmark using ResNet-50
backbone [26]. For a fair comparison, all reported results employ the same backbone, metrics, protocol and splits,
as described in [26]. Best results are in bold.

Method AVG Target Domain
DG ZSL painting infograph quickdraw sketch clipart

-
DEVISE [11] 14.4 17.6 11.7 6.1 16.7 20.1
ALE [3] 16.2 20.2 12.7 6.8 18.5 22.7

SPNet [46] 19.4 23.8 16.9 8.2 21.8 26.0

DANN [12]
DEVISE [11] 13.9 16.4 10.4 7.1 15.1 20.5
ALE [3] 15.7 19.7 12.5 7.4 17.9 21.2

SPNet [46] 19.1 24.1 15.8 8.4 21.3 25.9

EpiFCR [22]
DEVISE [11] 15.9 19.3 13.9 7.3 17.2 21.6
ALE [3] 17.5 21.4 14.1 7.8 20.9 23.2

SPNet [46] 20.0 24.6 16.7 9.2 23.2 26.4

CuMix (Mixup-img-only) 19.2 24.4 16.3 8.7 21.7 25.2
CuMix (Mixup-two-level) 19.9 25.3 17 8.8 21.9 26.6

CuMix [26] 20.7±0.34 25.5±0.40 17.8±0.20 9.9±0.33 22.6±0.30 27.6±0.50

Ours 21.9±0.29 26.6±0.30 18.4±0.40 11.5±0.18 25.2±0.3 27.8±0.28

Table 2: State-of-the-art comparison using standard accuracy for the task of ZSLDG on DomainNet using ResNet-
50 backbone. CuMix [26] results are reproduced using the public code. For a fair comparison, we employ the same
backbone, protocol and splits, as in [26]. Best results are in bold.

Method AVG Target Domain
painting infograph quickdraw sketch clipart

CuMix [26] 21.5 27.6 16.3 9.7 25.9 27.8
Ours 22.7 28.8 17.6 11.5 26.3 29.1

semantic information for inter-relating seen and unseen classes, as in [26]. The DomainNet-
LS benchmark is more challenging, where the source domains during training are limited to
real and painting only, whereas testing is conducted on the remaining four unseen domains.
Since only two source domains are used in training, it is more challenging to learn domain-
invariance and generalize at test-time.
Implementation Details: The semantic encoder g, semantic projection classifier h and the
discriminators D1 and D2 are implemented as fully connected (FC) networks. The semantic
encoder g is a two-layer FC network with hidden layer of size 4,096. Its output dimension of
2,048 matches the output dimension of the visual encoder f . While the discriminators D1 and
D2 are also two-layer FC networks with hidden layers of size 4,096, the semantic projection
classifier h is a single-layer FC network. Leaky ReLU activation is used everywhere, except
at the output of g, which has a ReLU non-linearity. The visual encoder f is the standard
ResNet-50 [16] backbone, as in [26]. The semantic projection classifier with loss LV is
trained first for a few iterations as a warm-up followed by an end-to-end training for all
modules. We use the Adam optimizer [17] with a learning rate of 10−4. We do not use
any special scheduling procedure for the learning rate. We set δ = 0.01 and α = 0.5 for all
domains. Similarly, we find that best results are obtained for γ ∈ [5,7] for all domains.

4.1 Results: Comparison with State-of-the-art
Results on DomainNet: Tab. 1 shows the comparison of our proposed framework with
state-of-the-art methods and all baselines, as established in [26], on the ZSLDG task. Fol-
lowing protocol established in [26], we report Average per-class accuracy as the performance
metric for evaluation on the held-out domain. We first report the performance of standalone
ZSL approaches such as DEVISE [11], ALE [3] and SPNet [46] on the ZSLDG task, fol-
lowed by the performance achieved by coupling these ZSL approaches with standard DG
approaches like DANN [12] and EpiFCR [22]. It is worth noting that coupling the stan-
dalone ZSL methods with DANN achieves lower performance than the ZSL method alone
in the case of ZSLDG, since standard domain alignment methods have been shown to be
ineffective on the DomainNet dataset, leading to negative transfer in some cases [36]. Fur-
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Table 3: Results on DomainNet-LS with only real and
painting as source domains and ResNet-50 backbone,
following protocol in [26]. Best results are in bold.

Model AVG quickdraw sketch infograph clipart

SPNet[46] 14.4 4.8 17.3 14.1 21.5
Epi-FCR[22]+SPNet[46] 15.4 5.6 18.7 14.9 22.5
CuMix(MixUp-img-only)[26] 14.3 4.8 17.3 14.0 21.2
CuMix(MixUp-two-level)[26] 15.8 4.9 19.1 16.5 22.7
CuMix (reverse)[26] 15.4 4.8 18.2 15.8 22.9
CuMix[26] 16.5 5.5 19.7 17.1 23.7
Ours 16.9 7.2 20.5 16 24

Table 4: Ablation study for different components of
our framework on DomainNet dataset for ZSLDG set-
ting. Best results are in bold.

Model AVG painting infograph quickdraw sketch clipart

M1: Lalign 18.5 22.6 16.2 9.6 20.8 23.7
M2: M1 + Lcenter 20.5 25.4 16.9 9.8 24.0 26.4
M3: M2 + L joint−inv 21.9 26.6 18.4 11.5 25.2 27.8

thermore, as noted by [26], coupling EpiFCR (a standalone DG method) with the standalone
ZSL approaches is not straightforward, since it requires careful adaptation that includes re-
structuring of the loss terms. In particular, the approach of EpiFCR+SPNet achieves an
average accuracy (AVG) of 20.0 over different target domains. The recently introduced
CuMix [26] approach that targets ZSLDG, employs a curriculum-based mixing policy to
generate increasingly complex training samples by mixing up multiple seen domains and
categories available during training. The current state-of-the-art CuMix improves ZSLDG
performance over EpiFCR+SPNet, achieving an average accuracy of 20.7 across the target
domains. Our approach outperforms CuMix with an absolute average gain of 1.2% across
domains (∼ 5.8% relative increase) and achieves an average accuracy of 21.9 across the five
target domains, setting a new state of the art. Furthermore, our method achieves consistent
gains over CuMix on each of the target domains.

In addition, to facilitate a holistic evaluation, Tab. 2 shows the performance comparison
of our proposed method with the best existing CuMix [26] approach using the standard
accuracy metric. Our approach achieves consistent gains over all domains and improves over
CuMix when using standard accuracy as the metric, with an absolute average gain of 1.2%
across domains ( ∼ 5.6% relative gain), including significant relative gains of about 18%
for harder domains like quickdraw. These results show that the proposed method obtains
favorable performance over existing approaches on different evaluation metrics.
Results on DomainNet-LS: Tab. 3 shows the performance comparison on the DomainNet-
LS benchmark. The SPNet [46] (for standard ZSL) achieves an average accuracy of 14.4,
while its integration with EpiFCR [22] (a standard DG approach) improves the performance
to 15.4. The best existing CuMix [26] approach for ZSLDG achieves 16.5 as the average
accuracy across the unseen domains. Despite the limited information available during train-
ing (and higher domain shift at test time), our approach improves over CuMix by achieving
an average accuracy of 16.9 (2.4% relative gain), thereby showing better generalization.

4.2 Ablation Study
We perform an ablation study to understand the efficacy of each component in our proposed
method for the ZSLDG task. Tab. 4 shows the performance gains achieved (on Domain-
Net [36]) by integrating one contribution at a time, in our approach, as below:

• The model learned by employing our multimodal alignment loss term Lalign alone
(detailed in Sec. 3.1) is denoted as M1

• Similarly, M2 denotes the model learned by integrating Lalign with our loss term
Lcenter, which achieves a structured latent space (Sec. 3.2).

• M3 denotes our overall framework, which is learned by integrating our joint invariance
loss term L joint−inv (Sec. 3.3) with Lalign and Lcenter.

The M1 model, which performs multimodal adversarial alignment achieves an average accu-
racy (denoted as AVG in Tab. 4) of 18.5 across the target domains. Learning a structured la-
tent embedding space along with the multimodal alignment enables the M2 model to achieve
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Figure 4: Robustness analysis of our proposed approach w.r.t the parameters α , γ and δ

on different domains (right corner) in DomainNet. It can be seen that our approach exhibits
fairly stable trend with variations in α , γ and δ .

an average gain of 2.0 over M1 on the target domains. We note that the gains in M2 due to the
integration of Lcenter with Lalign are considerably high on the easier target domains (clipart,
painting and sketch). This suggests that Lcenter is able to achieve an improved structuring of
the latent embedding space. Our overall framework (M3) obtains the best results by achieving
an average accuracy of 21.9 on the five target domains. Since M3 additionally involves learn-
ing the domain invariance w.r.t the visual-semantic joint by employing L joint−inv, it aids in
improving ZSLDG performances on harder target domains such as quickdraw and infograph.
These results clearly indicate that along with the multimodal alignment (Lalign), structuring
the latent space (Lcenter) and learning the domain invariance w.r.t the visual-semantic joint
(L joint−inv) are important for recognizing unseen classes in unseen domains.

4.3 Effect of Hyperparameter Variations
Fig. 4 shows the performance variation of our method for different choices of hyperparam-
eters. Our framework consists mainly of three important hyperparameters, that is, α , γ and
δ (as defined in Eq. 5, 6 and 4, respectively). Note that β = 1−α , as defined in Sec 3.3.
We notice that (Fig. 4, left) our approach achieves the best performance at α=0.5 for all
domains. This implies that it is important to match joint distributions (za, ây) from the se-
mantic projection classifier and (zv,ay) from the visual encoder; with the joint distribution
(za,ay) from semantic encoder in Eq. 5. In addition, we notice that (Fig. 4, middle) the
performance improves as γ increases likely due to enhanced discriminability of embeddings
in latent space Z . The best results are obtained for γ ∈ [5,7], after which the performance
saturates and tends to slowly drop. Furthermore, we observe that (Fig. 4, right) δ = 0.01
obtains the best performance on all domains. We also notice that for both relatively easier
and harder domains, the trend of performance is consistent and fairly stable with change in
hyperparameters. Additional ablations and analysis are presented in the supplementary.

5 Conclusions
We propose a novel approach to address the challenging problem of recognizing unseen
classes in unseen domains (ZSLDG). Our method learns a domain-agnostic structured latent
embedding space which is achieved by employing a multimodal alignment loss term that
aligns the visual and semantic spaces, a center loss term that separates different classes in
the latent space and a joint invariance term that aids in handling new classes from unseen
domains. Our experiments and ablation studies on challenging benchmarks (DomainNet,
DomainNet-LS) show the superiority of our approach over existing methods. Future di-
rections include leveraging self-supervision to obtain domain-invariant features and tackle
dynamic changes in the label space of categories.
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