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Abstract

In the field of autonomous driving, self-training is widely applied to mitigate distribu-
tion shifts in LiDAR-based 3D object detectors. This eliminates the need for expensive,
high-quality labels whenever the environment changes (e.g. geographic location, sen-
sor setup, weather condition). State-of-the-art self-training approaches, however, mostly
ignore the temporal nature of autonomous driving data.

To address this issue, we propose a flow-aware self-training method that enables un-
supervised domain adaptation for 3D object detectors on continuous LiDAR point clouds.
In order to get reliable pseudo-labels, we leverage scene flow to propagate detections
through time. In particular, we introduce a flow-based multi-target tracker that exploits
flow consistency to filter and refine resulting tracks. The emerged precise pseudo-labels
then serve as a basis for model re-training. Starting with a pre-trained KITTI model, we
conduct experiments on the challenging Waymo Open Dataset to demonstrate the effec-
tiveness of our approach. Without any prior target domain knowledge, our results show
a significant improvement over the state-of-the-art.

1 Introduction
In order to safely navigate through traffic, self-driving vehicles need to robustly detect sur-
rounding objects (e.g. vehicles, pedestrians, cyclists). State-of-the-art approaches leverage
deep neural networks operating on LiDAR point clouds [41, 42, 43]. However, training such
3D object detection models usually requires a huge amount of manually annotated high-
quality data [2, 9, 45]. Unfortunately, the labelling effort for 3D LiDAR point clouds is very
time-consuming and consequently also expensive – a major drawback for real-world appli-
cations. Most datasets are recorded in specific geographic locations (e.g. Germany [9, 10]),
with a fixed sensor configuration and under good weather conditions. Applied to new data
collected in other locations (e.g. USA [45]), with a different sensor (e.g. sparser resolu-
tion [2]) or under adverse weather conditions (i.e. fog, rain, snow), 3D detectors suffer from
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Figure 1: FAST3D scheme. The initial model Φsrc, pre-trained on source data, generates
non-confident detections on the target data for different scales. We leverage scene flow
information (a) to calculate box flow (b), i.e. the mean flow of an object. This allows us to
increase the recall and propagate labels through time (c). A final refinement step (d) reduces
false positives and false negatives to obtain high-quality pseudo-labels for re-training. Points
with the same colour originate from the same point cloud Ptar

n .

distribution shifts (domain gap). This mostly causes serious performance drops [50], which
in turn leads to unreliable recognition systems.

This can be mitigated by either manual or semi-supervised annotation [30, 48] of rep-
resentative data, each time the sensor setup or area of operation changes. However, this is
infeasible for most real-world scenarios given the expensive labelling effort. A more general
solution to avoid the annotation overhead is unsupervised domain adaptation (UDA), which
adapts a model pre-trained on a label-rich source domain to a label-scarce target domain.
Hence, no or just a small number of labelled frames from the target domain are required.

For 3D object detection, UDA via self-training has gained a lot of attention [40, 58, 63].
Similar to 2D approaches [3, 17, 38], the idea is to use a 3D detector pre-trained on a labelled
source dataset and apply it on the target dataset to obtain pseudo-labels. These labels are
leveraged to re-train the model. Both steps, label generation and re-training, are repeated
until convergence. However, generating reliable pseudo-labels is a non-trivial task.

Although most real-world data is continuous in nature, this property is rarely exploited
for UDA of 3D object detectors. As a notable exception, [63] leverages a probabilistic offline
tracker. Though simple and effective, a major weakness of probabilistic trackers is that
they heavily depend on the detection quality. Because of the domain gap, however, the
detection quality usually degrades significantly. Additionally, these trackers require a hand-
crafted motion model which must be adjusted manually. These limitations result in unreliable
pseudo-labels driven by missing and falsely classified objects.

To overcome these issues, we present our Flow-Aware Self-Training approach for 3D
object detection (FAST3D), leveraging scene flow [27, 28, 53] for robust pseudo-labels, as
illustrated in Fig. 1. Scene flow estimates per-point correspondences between consecutive
point clouds and calculates the motion vector for each point. Furthermore, although trained
on synthetic data [29] only, scene flow estimators already achieve a favourable accuracy on
real-world road data [53]. Thus, we investigate scene flow for UDA. In particular, we will
show that scene flow allows us to propagate pseudo-labels reliably, recover missed objects
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and discard unreliable detections. This results in significantly improved pseudo-label quality
which boosts the performance of self-training 3D detectors drastically.

We conduct experiments on the challenging Waymo Open Dataset (WOD) [45] consid-
ering two state-of-the-art 3D detectors, PointRCNN [41] and PV-RCNN [42], pre-trained
on the much smaller KITTI dataset [9, 10]. Without any prior target domain knowledge
(e.g. [50]), nor the need for source domain data (e.g. [58]), we surpass the state-of-the-art by
a significant margin.

2 Related Work
3D Object Detection 3D object detectors localize and classify an unknown number of ob-
jects within a 3D environment. Commonly, the identified objects are represented as tightly
fitting oriented bounding boxes. Most recent 3D detectors, trained and evaluated on au-
tonomous driving datasets, operate on LiDAR point clouds.

One way to categorize them is by their input representation. Voxel-based approaches [7,
22, 23, 51, 56, 57, 61, 64] rasterize the input space and assign points of irregular and sparse
nature to grid cells of a fixed size. Afterwards, they either project these voxels directly to the
bird’s eye view (BEV) or first learn feature representations by leveraging 3D convolutions
and project them to BEV afterwards. Finally, a conventional 2D detection head predicts
bounding boxes and class labels. Another line of work are point-based detectors [32, 41, 44,
60]. In order to generate proposals directly from points, they leverage PointNet [34, 35] to
extract point-wise features. Hybrid approaches [5, 12, 42, 43, 59, 65], on the other hand,
seek to leverage the advantages of both of the aforementioned strategies. In contrast to
point cloud-only approaches, multi-modal detectors [4, 20, 25, 26, 33, 55] utilize 2D images
complementary to LiDAR point clouds. The additional image information can be beneficial
to recognise small objects.

Since most state-of-the-art approaches operate on LiDAR point clouds only, we also fo-
cus on this type of detectors. In particular, we demonstrate our self-training approach using
PointRCNN [41] and PV-RCNN [42]. Both detectors have already been used in UDA set-
tings for self-driving vehicles [50, 58] and achieve state-of-the-art robustness and accuracy.

Scene Flow Scene flow represents the 3D motion field in the scene [47]. Recently, a rela-
tively new area of research aims to estimate point-wise motion predictions in an end-to-end
manner directly from raw point clouds [11, 27, 53]. With few exceptions [28], most ap-
proaches process two consecutive point clouds as input. A huge benefit of data-driven scene
flow models, especially regarding UDA, is their ability to learn in an unsupervised man-
ner [24, 31, 53]. The biggest drawback of these networks is their huge memory consumption
which limits the number of input points. To address this, [16] proposes a light-weight model
applicable to the dense Waymo Open Dataset [45] point clouds.

In our work, we use the 3D motion field to obtain robust and reliable pseudo-labels for
UDA by leveraging the motion consistency of sequential detections. To this end, we utilize
PointPWC-Net [53] which achieves state-of-the-art scene flow estimation performance.

Unsupervised Domain Adaptation (UDA) The common pipeline for UDA is to start with
a model trained in a fully supervised manner on a label-rich source domain and adapt it on
data from a label-scarce target domain in an unsupervised manner. Hence, the goal is to
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close the gap between both domains. There is already a large body of literature on UDA
for 2D object detection in driving scenes [6, 13, 14, 18, 37, 39, 49, 54, 66]. Due to the
growing number of publicly available large-scale autonomous driving datasets, UDA on 3D
point cloud data has gained more interest recently [1, 15, 36, 62].

For LiDAR-based 3D object detection, [50] demonstrate serious domain gaps between
various datasets, mostly caused by different sensor setups (e.g. resolution or mounting po-
sition) or geographic locations (e.g. Germany→ USA). A popular solution to UDA is self-
training, as for the 2D case [3, 17, 38]. For example, [58] initially train the detector with
random object scaling and an additional score prediction branch. Afterwards, pseudo-labels
are updated in a cyclic manner considering previous examples. In order to overcome the
need for source data, [40] performs test-time augmentation with multiple scales. The best
matching labels are selected by checking motion coherency.

In contrast to [63], where temporal information is exploited by probabilistic tracking,
we propose to leverage scene flow. This enables us to reliably extract pseudo-labels despite
initially low detection quality by exploiting motion consistency. As in [40], we also utilize
test-time augmentation to overcome scaling issues, but we only need two additional scales.

3 Flow-Aware Self-Training
We now introduce our Flow-Aware Self-Training approach FAST3D, which consists of four
steps as illustrated in Fig. 1. First, starting with a model trained on the source domain, we
obtain initial 3D object detections for sequences of the target domain (Sec. 3.1). Second, we
leverage scene flow to propagate these detections throughout the sequences and obtain tracks,
robust to the initial detection quality (Sec. 3.2). Third, we recover potentially missed tracks
and correct false positives in a refinement step (Sec. 3.3). Finally, we extract pseudo-labels
for self-training to improve the initial model (Sec. 3.4).

Problem Statement Given a 3D object detection model Φsrc pre-trained on Nsrc source
domain frames {(Psrc

n ,Lsrc
n )}Nsrc

n=1, our task is to adapt to unseen target data with Ntar unlabelled

sequences {Star
i }Ntar

i=1 , where Star
i = {Ptar

n }
Ntar

i
n=1 with varying length Ntar

i . Here, Pn and Ln denote
the point cloud and corresponding labels of the nth frame. To obtain the target detection
model Φtar, we apply self-training which assumes that both domains contain the same set of
classes (i.e. vehicle/car, pedestrian, cyclist) but these are drawn from different distributions.
In the following, we show how to self-train a detection model Φtar without access to source
data or target label statistics (as e.g. [50]) and without modifying the source model in any
way (as e.g. [58]) to achieve performance beyond the state-of-the-art. Because we only work
with target domain data, we omit the domain superscripts to improve readability.

3.1 Pseudo-Label Generation

The first step, as in all self-training approaches (e.g. [40, 58, 63]), is to run the initial source
model Φsrc on the target data and keep high-confident detections. More formally, the jth

detection at frame n is represented by its bounding box b j,n = (p,d,θ) and confidence score
cb

j,n. Each box is defined by its centre position p = (cx,cy,cz), dimension d = (l,w,h) and
heading angle θ . Note that we can use any vanilla 3D object detector, since we do not
change the initial model at all, not even by adapting the mean object size of anchors (as
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in [58]). In order to deal with different object sizes between various datasets without pre-
training Φsrc on scaled source data [50, 58], we leverage test-time augmentation instead. In
particular, we feed Φsrc with three scales (i.e. 0.8, 1.0, 1.2) of the same point cloud, similar
to [40]. However, [40] requires to run the detector on 125 different scale levels (due to
different scaling factors along each axis). By leveraging scene flow, we only need three
scales to robustly handle both larger and smaller objects. We combine the detection outputs
at all three scales via non-maximum suppression (NMS) and threshold the detections at a
confidence of cb

j,n ≥ 0.8 to obtain the initial high-confident detections.

3.2 Flow-Aware Pseudo-Label Propagation

Keeping only high-confident detections of the source model gets rid of false positives (FP)
but also results in a lot of false negatives (FN). While this can partially be addressed via
multi-target tracking (MTT), e.g. [63], standard MTT approaches (such as [52]) are not suit-
able for low quality detections because of their hand-crafted motion prediction. Due to the
domain gap, however, the detection quality of the source model will inevitably be low.

To overcome this issue, we introduce our scene flow-aware tracker. We define a set of
tracks T = {t1, t2, . . . , tk} where each track tk contains a list of bounding boxes and is repre-
sented by its current state xk,n, i.e. its bounding box, and track confidence score ct

k,n. Fol-
lowing the tracking-by-detection paradigm, we use the high-confident detections and match
them in subsequent frames. Instead of hand-crafted motion models, however, we utilize
scene flow to propagate detections. More formally, given two consecutive point clouds Pn−1
and Pn, PointPWC-Net [53] estimates the motion vector vi,n−1 = (vx,vy,vz)i,n−1 for each
point pi,n−1 ∈ Pn−1. We then average all motion vectors within a track’s bounding box xk,n−1
to compute its mean flow vk,n−1. To get the predicted state xk,n|n−1 for the current frame n,
we estimate the position of each track as pk,n|n−1 = pk,n−1 + vk,n−1. We then assign detec-
tions to tracks via the Hungarian algorithm [21], where we use the intersection over union
between the detections b j,n and the predicted tracks xk,n|n−1.

We initialize a new track for each unassigned detection. This naive initialisation ensures
that we include all object tracks, whereas potentially wrong tracks can easily be filtered in
our refinement step (Sec. 3.3). Initially, we set a track’s confidence ct

k,n to the detection con-
fidence cb

j,n. For each assigned pair, we perform a weighted update based on the confidence

scores as xk,n|n =
ct

k,n−1xk,n|n−1+cb
j,nb j,n

ct
k,n−1+cb

j,n
and update the track confidence ct

k,n =
(ct

k,n−1)
2+(cb

j,n)
2

ct
k,n−1+cb

j,n
.

Note that we update the track’s heading angle only if the orientation change is less than
30◦, otherwise we keep its previous orientation. For boxes with only very few point corre-
spondences, the flow estimates may be noisy. To suppress such flow outliers, we allow a
maximum change in velocity of 1.5 m/s, along with the maximum orientation change of 30◦.
If the estimated flow exceeds these limits, we keep the previous estimate.

For track termination, we distinguish moving (i.e. vk,n−1 > 0.8 m/s) and static objects.
For moving objects, we terminate their tracks if there are no more points within their bound-
ing box. Static object tracks are kept alive as long as they are within the field-of-view. This
ensures that even long term occlusions can be handled, as such objects will eventually con-
tain points or be removed during refinement.
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(a) Recovery via flow consistency. (b) Backward tracking.

Figure 2: Track refinement to address the initially low detection quality on the target domain.
The valid track, false negative (missed) and true positive detections are illustrated in green,
red and blue, respectively. Green and red arrows show valid and inconsistent flow (high
change in orientation/velocity), respectively. (a) Flow consistency recovers object tracks
with low detection hit ratio. (b) Starting from the first detection, backward tracking propa-
gates the bounding box back in time to recover missing tails. Refined tracks are marked by
the dashed orange regions.

3.3 Pseudo-Label Refinement
Due to our simplified track management (initialisation and termination), we now have tracks
covering most of the visible objects but suffer from several false positive tracks. However,
these can easily be corrected in the following refinement step.

Track Filtering and Correction We first compute the hit ratio for each track, i.e. the
number of assigned detections divided by the track’s length. Tracks are removed if their hit
ratio is less than 0.3. Additionally, we discard tracks shorter than 0.5 s (i.e. 5 frames at the
typical LiDAR frequency of 10 Hz) and tracks which detections never exceed 15 points (to
suppress spurious detections).

In our experiments, we observed that detections are most accurate on objects with more
points (as opposed to the confidence score which is usually less reliable due to the domain
gap). Thus, we sort a track’s assigned detections by the number of contained points and
compute the average dimension over the top three. We then apply this average dimension to
all boxes of the track. Additionally, for static cars we also apply the average position and
heading angle to all boxes of the track since these properties cannot change for rigid static
objects.

Track Recovery This conservative filtering of unreliable tracks ensures a lower number
of false positives. However, true positive tracks with only very few detections might be re-
moved prematurely. In order to recover these, we leverage flow consistency. As illustrated in
Fig. 2(a), we consider removed tracks with at least two non-overlapping detections (i.e. mov-
ing objects). For these tracks, we propagate the first detection by solely utilizing the scene
flow estimates. If this flow-extrapolated box overlaps with the other detections (minimum
IoU of 0.3), we recover this track.

Backward Completion A common drawback of the tracking-by-detection paradigm is
late initialization caused by missing detections at the beginning of the track. To overcome
this issue, we look backwards for each track as illustrated in Fig. 2(b) to extend missing tails.
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Hence, we leverage scene flow in the opposite direction and propagate the bounding box back
in time. We propagate backwards as long as the flow is consistent, meaning no unreasonable
changes in velocity or direction, and the predicted box location contains points. To avoid
including the ground plane in the latter condition, we count only points within the upper
70% of the bounding box volume.

3.4 Self-Training

We use the individual bounding boxes of the refined tracks as high-quality pseudo-labels to
re-train the detection model. To this end, we use standard augmentation strategies, i.e. ran-
domized world scaling, flipping, rotation, as well as ground truth sampling [42, 56]. As
we don’t need to modify the initial model Φsrc, we also use its detection loss Ldet without
modifications for re-training.

4 Experiments

In the following, we present the results of our flow-aware self-training approach using two
vanilla 3D object detectors. Additional evaluations demonstrating the improved pseudo-label
quality are included in the supplemental material.

4.1 Datasets and Evaluation Details

Datasets We conduct experiments on the challenging Waymo Open Dataset (WOD) [45]
with a source model Φs pre-trained on the KITTI dataset [9, 10]. We sample 200 sequences
(∼25%) from the WOD training set for pseudo-label generation and 20 sequences (∼10%)
from the WOD validation set for testing. With this evaluation, we cover various sources of
domain shifts: geographic location (Germany→ USA), sensor setup (Velodyne→Waymo
LiDAR) and weather (broad daylight→ sunny, rain, night). In contrast to recent work, we do
not only consider the car/vehicle class, but also pedestrians and cyclists. Because the initial
model Φs is trained on front view scans only (available KITTI annotations), we stick to this
setup for evaluation.

Evaluation Metrics We follow the official WOD evaluation protocol [45] and report the
average precision (AP) for the intersection over union (IoU) thresholds 0.7 and 0.5 for ve-
hicles, as well as 0.5 and 0.25 for pedestrians and cyclists. AP is reported for both bird’s
eye view (BEV) and 3D – denoted as APBEV and AP3D – for different ranges: 0m− 30m,
30m−50m and 50m−75m. Additionally, we calculate the closed gap as in [58].

Comparisons The lower performance bound is to directly apply the source model Φs on
the target data, denoted source only (SO). The fully supervised model (FS) trained on the
whole target data (∼ 25% of WOD) on the other hand defines the upper performance bound.
Statistical normalization (SN) [50] is the state-of-the-art on UDA for 3D object detection
and leverages target data statistics. The recent DREAMING [63] approach also exploits
temporal information for UDA. Finally, we also compare against the few shot [50] approach
which adapts the model using a few fully labelled sequences of the target domain.
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Implementation details We demonstrate FAST3D with two detectors, PointRCNN [41]
and PV-RCNN [42] from OpenPCDet [46], configured as in their official implementations.
To compensate for the ego-vehicle motion, we project all frames of a sequence into the
world coordinate system by computing the ego-vehicle poses [45]. We slightly increase the
field-of-view (FOV) from approximately 45◦ to 60◦, which simplifies handling pseudo-label
tracks at the edge of the narrower FOV. In each self-training cycle, we re-train the detector
for 4 epochs with Adam [19] and a learning rate of 3×10−4 until we reach convergence (i.e.
PointRCNN 2 cycles, PV-RCNN 3 cycles).

We estimate the scene flow using PointPWC-Net [53]. Although PointPWC-Net, similar
to other flow estimators [24, 31], could be fine-tuned in a self-supervised fashion, we use the
off-the-shelf model pre-trained only on synthetic data [29]. This allows us to demonstrate the
benefits and simplicity of leveraging 3D motion without additional fine-tuning. To prepare
the point clouds for scene flow estimation, we use RANSAC [8] to remove ground points (as
in [53]) and randomly subsample the larger input point cloud to match the smaller one.

4.2 Empirical Results

In Table 1 we compare FAST3D for two detectors with the source only (SO) and fully su-
pervised (FS) strategies, which define the lower and upper performance bound, respectively.
Across all classes and different IoU thresholds, we manage to close the domain gap signif-
icantly (36% to 87%), achieving almost the fully supervised oracle performance although
our approach is unsupervised and does not rely on any prior knowledge about the target
domain. To the best of our knowledge, we are the first to additionally report adaptation
performance for both pedestrians and cyclists as these vulnerable road users should not be
neglected in evaluations. We focus this evaluation on AP3D because (in contrast to APBEV)
this metric also penalizes estimation errors along the z-axis (i.e. vertical centre and height).
Consequently, APBEV scores are usually much higher than AP3D.

Since reporting the closed domain gap has only been proposed very recently [58], no
other approaches reported this closure for KITTI→WOD yet. We can, however, relate the
results for the most similar setting, i.e. adaptation of PV-RCNN for the car/vehicle class,
where we achieve a closed gap of 76.5% (KITTI→WOD, vehicles within all sensing ranges)
in contrast to 70.7% of [58] (WOD→KITTI, cars within KITTI’s moderate difficulty). De-
spite the different settings, we achieve a favourable domain gap closure while evaluating on
the more challenging KITTI→WOD. In particular, according to [50], starting from KITTI as
the source domain is the most difficult setting for UDA, as it has orders of magnitude fewer
samples than other datasets. Additionally, KITTI contains only sunny daylight data and its
car class does not include trucks, vans or buses which are, however, contained in the WOD
vehicle class.

Table 2 reports the results in AP3D split by their detection range for different intersection
over union (IoU) thresholds. We can observe that our self-training pipeline significantly
improves the initial model on all ranges. The only notable outlier are cyclists within the far
range of 50–75 meters, where even after re-training both detectors achieve rather low scores.
This is due to the low number of far range cyclists within the WOD validation set, i.e. only
a few detection failures already drastically degrade the AP3D for the cyclist class.
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Class
PointRCNN PV-RCNN

SO FAST3D FS Closed Gap SO FAST3D FS Closed Gap
A

P 3
D 0.

7 Vehicle 8.0 58.1 65.6 87.0 % 10.3 63.6 80.0 76.5 %
0.

5 Pedestrian 18.9 36.8 47.8 62.0 % 13.7 44.7 74.4 51.1 %
0.

5 Cyclist 24.2 48.0 60.0 66.5 % 14.6 35.6 72.9 36.0 %

A
P 3

D 0.
5 Vehicle 60.0 77.3 80.9 82.8 % 50.3 85.1 95.2 77.5 %

0.
25 Pedestrian 30.8 41.7 52.2 50.9 % 21.6 57.2 85.4 55.8 %

0.
25 Cyclist 31.8 66.2 69.0 92.5 % 32.5 49.4 75.5 39.3 %

Table 1: Our FAST3D compared to lower (source-only, SO) and upper (fully-supervised,
FS) bound, on KITTI→Waymo Open Dataset (WOD) for different IoU thresholds.

Class
PointRCNN PV-RCNN

0m - 30m 30m - 50m 50m - 75m 0m - 30m 30m - 50m 50m - 75m

A
P 3

D 0.
7 Vehicle 70.3 58.7 37.0 74.9 64.6 44.0

0.
5 Pedestrian 66.2 45.7 14.6 66.5 55.0 22.7

0.
5 Cyclist 76.7 65.7 4.9 64.4 46.0 1.4

A
P 3

D 0.
5 Vehicle 86.9 79.3 63.5 91.2 85.9 70.4

0.
25 Pedestrian 74.1 50.3 17.4 78.0 67.3 36.4

0.
25 Cyclist 93.9 76.2 33.6 90.6 54.4 5.0

Table 2: Detailed results at different sensing ranges (KITTI → WOD) for two detectors at
different IoU thresholds.

4.3 Comparison with the State-of-the-Art

To fairly compare with the state-of-the-art in Table 3, we follow the common protocol and
report both AP3D and APBEV on the vehicle class. We clearly outperform the best approach
(statistical normalization), even though this method utilizes target data statistics and is thus
considered weakly supervised, whereas our approach is unsupervised. We also outperform
the only temporal 3D pseudo-label approach [63] by a huge margin for all ranges, especially
at the high-quality IoU ≥ 0.7. Moreover, we perform on par with the few shot approach
from [50] on close-range data and even outperform it on medium and far ranges.

Method
IoU 0.7 IoU 0.5

0m - 30m 30m - 50m 50m - 75m 0m - 30m 30m - 50m 50m - 75m
SO 29.2 / 10.0 27.2 / 8.0 24.7 / 4.2 67.8 / 66.8 70.2 / 63.9 48.0 / 38.5
SN [50] 87.1 / 60.1 78.1 / 54.9 46.8 / 25.1 - - -
DREAMING [63] 51.4 / 13.8 44.5 / 16.7 25.6 / 7.8 81.1 / 78.5 69.9 / 61.8 50.2 / 41.0
FAST3D (ours) 81.7 / 70.3 75.4 / 58.7 52.4 / 37.0 87.2 / 74.9 81.2 / 64.6 68.6 / 44.0

Few Shot [50] 88.7 / 74.1 78.1 / 57.2 45.2 / 24.3 - - -

FS 86.2 / 78.5 77.8 / 63.7 60.8 / 48.1 91.7 / 92.1 83.7 / 78.3 73.3 / 69.7

Table 3: Comparison to the state-of-the-art for KITTI → WOD. All approaches adapt
PointRCNN. Following the common protocol, results are listed for the vehicle class at dif-
ferent sensing ranges reported in APBEV / AP3D.
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5 Conclusion
We presented a flow-aware self-training pipeline for unsupervised domain adaptation of 3D
object detectors on sequential LiDAR point clouds. Leveraging motion consistency via scene
flow, we obtain reliable and precise pseudo-labels at high recall levels. We do not exploit
any prior target domain knowledge, nor do we need to modify the 3D detector in any way.
As demonstrated in our evaluations, we surpass the current state-of-the-art in self-training
for UDA by a large margin.
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