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Abstract

Generative Adversarial Networks (GANs) have achieved state-of-the-art performance for
several image generation and manipulation tasks. Different works have improved the lim-
ited understanding of the latent space of GANs by embedding images into specific GAN
architectures to reconstruct the original images. In this paper, we investigate the capabil-
ities of the stochastic noise inputs of StyleGAN. We show that the stochastic noise inputs
of a StyleGAN model can be used to transfer content and encode color information by
presenting an encoder architecture that, together with a pre-trained and fixed StyleGAN
model, is able to faithfully reconstruct images from virtually any domain. Thus, we
demonstrate a previously unknown grade of generalizablility by training the encoder and
decoder independently and on different datasets. Our proposed architecture processes up
to 45 images per second on a single GPU, which is approximately 32× faster than previ-
ous approaches. Finally, as one example application, our approach also shows promising
results compared to the state of the art on image denoising tasks.

1 Introduction
Generative Adversarial Networks (GANs) are applied in various computer vision areas, e.g.,
image-to-image translation [15, 16, 31, 44], image superresolution [21, 30, 39], or uncondi-
tional generation of various image types [5, 10, 18, 23]. Over time, image quality, resolution,
and realism of synthesized images were improved by a large margin [10, 18, 19, 23]. The
StyleGAN architecture [19, 20] is one of the current state-of-the-art models for uncondi-
tional image generation. The architecture of StyleGAN with its projection into a semanti-
cally meaningful latent space W and the usage of noise inputs for stochastic variation not
only allows to generate a diverse range of images but also enables meaningful image editing
operations. Using recent GAN inversion techniques, it is also possible to perform similarly
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Figure 1: Our approach: a StyleGAN generator is trained on a dataset, e.g., FFHQ [19].
Then, we train an encoder for reconstruction and denoising tasks on a different dataset, with-
out updating the pre-trained StyleGAN which is used as a decoder.

meaningful edit operations on embeddings of real images in the latent space [1, 2, 26] (for
further details on related work see Section 2). However, to the best of our knowledge, pre-
vious work has not provided complete answers for the following open research questions in
the domain of GAN inversion and reconstruction: (1) Can the stochastic noise inputs provide
more than stochastic variations of the generated image? (2) Can we use a generator model
(i.e. StyleGAN) trained in one domain to effectively reconstruct images for a different do-
main? (3) Can we use an encoder model trained in one domain to reconstruct images for a
different domain effectively?

In this work, we strive to provide answers to these questions. To this end, we train an
encoder decoder architecture in multiple steps. First, we train a StyleGAN model for un-
conditional image generation on one dataset. Second, we freeze the trained model and train
an encoder model with the task to find such inputs to StyleGAN that the inputs gets recon-
structed. See Figure 1 and Section 3 for further details. In Section 4, we show that Style-
GAN models can use the stochastic noise inputs to faithfully reconstruct input images from
the domain the generator was trained on. We further show that encoders trained on a fixed
StyleGAN model can effectively reconstruct images from domains unseen during training.
For example, we show that a StyleGAN generator pre-trained on the FFHQ dataset [19] and
an encoder trained to reconstruct images from the FFHQ dataset can faithfully reconstruct
images from other datasets, such as the LSUN Church dataset [35]. We provide in-depth
insights into why our encoder can use the pre-trained StyleGAN generator to reconstruct
images from arbitrary domains. We conclude our work in Section 5. Overall, our contribu-
tions can be summarized as follows: (1) The first approach for faithful cross-domain image
reconstruction, based on a fixed generator model, tested on a large variety of images from
several domains. (2) Novel insights about the capabilities of the stochastic noise inputs in
StyleGAN. (3) A fast method that allows reconstruction of up to 45 images per second on a
single GPU (NVIDIA Tesla V100), which is much faster than other recent GAN inversion
models, e.g., [12], which can process approximately 1.4 images per second. (4) A practi-
cal application of our model in the area of image denoising, where we achieve competitive
results. Our code and trained models are available online1.

1https://github.com/Bartzi/one-model-to-reconstruct-them-all
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2 Related Work

GANs have �rst been proposed by Goodfellowet al. [10] in 2014. Since then, they have been
improved through different measures, such as training at different scales [18], adding novel
weight normalization techniques [23] or generating high-resolution images over a diverse set
of classes [5].

A recent work by Karraset al. [19] proposes a novel architecture inspired by recent work
on neural style transfer [14]. Karraset al. train their StyleGAN architecture on the FFHQ
dataset to generate high-quality, realistic images of human faces. Moreover, Karraset al.
propose several improvements regarding architecture and normalization methods for Style-
GAN in a more recent work [20]. In the following, we describe the prior art related to the
two tasks covered in our work, image reconstruction and image denoising.

2.1 Image Reconstruction (Embedding, Inversion)

Generative models usually operate on a latent code and/or random noise as an input to gen-
erate new images [10, 19, 20]. Previous work on GAN inversion attempts to understand and
interpret the underlying mechanisms of GANs by embedding existing images into a GAN
architecture. These works can be roughly divided into two categories.

On the one hand, a given image can be embedded into the latent space of a trained GAN
on a per-image basis [1, 2, 7, 43]. These methods achieve very faithful reconstructions but
require optimization or training of a model for each image, making image embeddings of
large-scale datasets infeasible.

On the other hand, there are works where an encoder network for embedding an image
is learned. Such an approach is used,e.g., in [4, 12, 25, 32]. It is computationally ef�cient
since the learned encoder can retrieve an encoding for a given image. However, learning a
code with semantic meaning proves to be a challenge, as stated by Zhuet al. [42].

2.2 Image Denoising

A typical application area for image reconstruction is image denoising, where the task is
to remove noise to restore the original image. Here, we focus on image denoising tech-
niques based on deep neural networks; for more detailed information about image denoising
research, please refer to the following survey papers [9, 11].

Several neural-network-based image denoising systems have been proposed in the past [6,
17, 21, 34, 36, 37, 38, 39]. Some works have been trained for image denoising at �xed noise
level [6], while others are able to denoise noisy images with various noise levels. Over
time, the most common approach shifted from directly predicting the denoised image to pre-
dicting residual/noise images which are then subtracted from the input image, returning the
denoised image [21, 36]. Based on this residual prediction strategy, further enhancements
have been proposed. Zhanget al. propose multiple extensions,i.e., using multiple denoising
networks and model based optimization [37], providing noise level maps as auxiliary input
to the network [38, 39], or creating speci�c network architectures for image denoising [39].
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Figure 2: The structure of our proposed model. The encoder consists of multiple ResNet
blocks, each followed by convolutional layers that predict a part of the latent code or a noise
input. These outputs are used by the decoder (a pre-trained StyleGAN) to reconstruct the
input image. Certain parts are only used for StyleGAN 2 or when usingZ , respectively.

3 Method

In this section, we describe our method that reconstructs arbitrary input images (not limited
to the training domain) using a generative model that has only been trained for unconditional
generation in one domain,e.g., face images (see Figure 1). We introduce the architecture of
our proposed encoder for arbitrary image reconstruction (see Figure 2). Finally, we describe
the training details used in our experiments.

3.1 StyleGAN

For our experiments, we use generators based on StyleGAN [19] and the improved version
of StyleGAN [20] as our decoder network. In the following we refer to the models based
on the �rst version of StyleGAN [19] as “StyleGAN 1” and models based on the improved
version of StyleGAN [20] as “StyleGAN 2”.

StyleGAN currently sets the state-of-the-art in unconditional high-resolution image gen-
eration for many different natural image categories such as faces or buildings.

In our work, we focus on the latent code and stochastic noise inputs. The latent code
de�nes the content of the image to generate and can also be used for semantic editing op-
erations [1, 32]. We embed into two latent spaces. First, we embed intoZ , which refers to
the input space of StyleGAN. Vectors fromZ are transformed by a mapping network to the
latent spaceW, which is the second space we embed to.

We also focus on the stochastic noise inputs, which are originally tasked with generating
stochastic details. It has been found that optimizing the noise inputs can lead to better image
embeddings/inversions [2, 20]. We introduce a novel view of the role of these noise inputs
and show that they can be used to encode the content and color of an input image.

We use the proposed decoder architectures, StyleGAN 1 and StyleGAN 2, as is and
without any changes.
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3.2 Encoder Architecture

Our architectural contribution is the encoder architecture (see Figure 2). Our encoder is a
fully convolutional network that predicts latent vectors either inZ or in W and noise maps
for each resolution of the generated images. Our network is a combination of a ResNet [13]
and a U-Net architecture [27]. We predict latent vectors and noise inputs (see the supple-
mentary material for further details). We use the predicted latent vectors and noise inputs
as input to a pre-trained StyleGAN 1 or StyleGAN 2 based generator, which isnot updated
during the training process of the encoder.

We found that directly using our proposed encoder encourages the encoder to embed all
information into the stochastic noise inputs (see Figure 5(a)). To mitigate this, we propose
a two-stage training scheme that maximizes the latent code's semantic meaning. Here, we
train the network in two stages. First, we disable learning (or usage) of the stochastic noise
inputs, forcing the model to only rely on the latent code for reconstruction. Second, we
train only the layers responsible for predicting the stochastic noise inputs to improve the
reconstruction quality.

3.3 Training Details and Loss Function

We use two different loss functions for the training of our models. These loss functions are
only used to update the weights of theencoder, the weights of the decoder (a pre-trained
StyleGAN) are�xed. On the one hand, we use Mean Squared Error (MSE) between the
pixels of the generated image and the reconstructed image. On the other hand, we utilize the
Learned Perceptual Image Patch Similarity (LPIPS) [40] metric for judging the reconstruc-
tion quality. The resulting loss function is the following:L (x;y) = L mse(x;y) + L lpips(x;y):
With x;y 2 R[3;H;W] being the input image and desired output image with three channels,
heightH and widthW, respectively.L mse andL lpips denote MSE and LPIPS loss, respec-
tively.

4 Results and Discussion

This section shows the experimental results of our approach on different datasets and two
different tasks, image reconstruction and image denoising. First, we show that we can faith-
fully reconstruct images with our presented encoder architecture using a pre-trained and �xed
StyleGAN decoder. Second, we show the results for cross-domain reconstruction, where the
encoder is trained on a different dataset than the �xed StyleGAN decoder (trained on FFHQ).
Third, we investigate how such high-quality reconstructions are possible by examining the
role of the noise inputs in StyleGAN. Afterward, we present the results for our two-stage
training method to increase the semantic meaning of the latent code. Finally, we show the
capabilities of our model when applied for the task of image denoising.

4.1 Experimental Setup

We implement our model using PyTorch [24]. We use the human faces dataset FFHQ [19]
and the two LSUN datasets Church and Bedroom [35], which only contain images of churches
or bedrooms, respectively. We follow related work and evaluate our model using the follow-
ing metrics on the given validation datasets: (1) The Frechet Inception Distance (FID) [29] of



6 BARTZ, BETHGE, YANG, MEINEL: ONE MODEL TO RECONSTRUCT THEM ALL

(a) Reconstruction Results using our Approach

Model
Dataset and Metric for Evaluation

FFHQ Church
FID# MSE# FID# MSE#

FFHQ, 1,Z 9.85 0.004 7.17 0.01
FFHQ, 1,W 0.64 0.004 1.37 0.009
FFHQ, 2,Z 3.92 0.005 4.66 0.01
FFHQ, 2,W 0.75 0.002 1.23 0.006
Church, 1,Z 17.28 0.01 3.17 0.007
Church, 1,W 3.30 0.01 0.26 0.005
Church, 2,Z 12.24 0.01 3.17 0.007
Church, 2,W 2.33 0.008 0.21 0.004

(b) Reconstruction Results Reported in Related Work

Method
Dataset and Metric for Evaluation

FFHQ Church
FID# MSE# FID# MSE#

Zhuet al. [42] 42.64 0.03 44.77 0.052
Pidhorskyet al. [26] 16.52 - - -
Abdalet al. [1]� 65.80 0.01 66.29 0.02
Abdalet al. [2]� 13.92 0.0003 10.92 0.0004
Tov et al. [32] 25.17 0.03 26.96 0.09

� We calculated the FID and MSE for these approaches
based on the reconstruction of 500 random images due to
limited compute time (10 minutes needed per image).

Table 1: Our experimental results on image reconstruction (a) compared to other approaches
(b). We denote the dataset our models are trained on (FFHQ, or LSUN Church), the Style-
GAN variant, and the projection target (Z ;W). The best overall results are indicated inbold
and our own best result initalic.

reconstructed images with the original images (using a sample size of 50000 images). Fur-
thermore, we calculate (2) the MSE between each input and its corresponding reconstructed
image to measure the reconstruction quality. Further details on our system, number of iter-
ations, optimizer, learning rate, and data pre-processing can be found in the supplementary
material.

4.2 FFHQ-based Image Reconstruction

In our �rst set of experiments, we determined how well our architecture (introduced in Sec-
tion 3) is able to reconstruct images of the FFHQ [19] and LSUN Church dataset [35], when
using a StyleGAN model pre-trained on the FFHQ dataset and compare it to results found in
related work. In this line, we trained a range of different encoders, using both StyleGAN 1
and StyleGAN 2 decoders. Furthermore, we examined the in�uence of different latent code
projection strategies. On the one hand, we project intoZ . On the other hand, we project into
W.

The quantitative results (see the �rst block of Table 1(a)) show, that our encoder is able
to perform reconstruction for different datasets with high quality. Even though both encoder
and decoder wereonly trained on FFHQ, they show a high reconstruction quality when
evaluated on the LSUN Church dataset. Compared to the results reported in related work
(see Table 1(b)), our method outperforms almost all other methods. The exception is the
MSE achieved by Abdalet al. [2], but our method is magnitudes faster than their approach
(see Section 4.4).

The qualitative results also show nearly no perceptual differences (see the �rst row of
Figure 3(a)). However, we can see that the models based on StyleGAN 1 exhibit the “bubble”
artifacts typical for images produced by StyleGAN 1 [20]. The absence of these artifacts in
the reconstructed images of the StyleGAN 2 based models is most likely the reason for the
better quantitative results.

Cross-Domain Image Reconstruction Intrigued by our results on the FFHQ dataset, we
trained a different set of encoder models that use the same pre-trained and �xed StyleGAN
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(a) Reconstruction results based on a StyleGAN
pre-trained on the FFHQ dataset. Each row shows
reconstructions with images from the FFHQ dataset,
LSUN Church dataset, and LSUN Bedroom dataset,
respectively. The columns show the reconstruction
result produced by: StyleGAN variant, latent pro-
jecting strategy.

(b) Shifting the noise maps shows that they can not only en-
code the content of an image, but also color and contrast. The
columns represent “shifting” the noise map shown in the �rst
column by multiplying it with� 2, � 0:75, 0:5, 1:75, and 3.

Figure 3: Figure (a) shows our reconstruction results, Figure (b) our color shift experiment.

generator but use different LSUN datasets for training the encoder part of our model. The
quantitative results of experiments on the LSUN Church dataset are shown in the bottom
block of Table 1(a). Further, we show the qualitative results of the encoders trained on
churches and bedrooms in rows 2 and 3 of Figure 3(a), respectively. These results show that
our cross-domain models can reconstruct images with high perceptual quality and scores.

The Signi�cance of Noise for Image Reconstruction We examined the latent code and
the stochastic noise inputs predicted by our model to understand how our reconstruction
model can produce such high-quality results. First, we directly visualize the (normalized)
stochastic noise inputs predicted by our encoder (see Figure 4). It is visible that the encoder
learns to use the stochastic noise inputs to retain the input image's content, especially in the
stochastic noise inputs of higher resolution. Although Karraset al. [20] made a brief note
that it is required to regularize the noise inputs to prevent the retaining of image content, the
possible effects were not discussed in detail. To the best of our knowledge, other works also
have not examined this phenomenon.

Therefore, we further analyzed the noise inputs by shifting the value of each pixel in a
noise input with a factor from the interval[� 2;3] and examined the reconstructed image. The
results (see Figure 3(b)) show that the encoder uses the noise inputs not only to capture the
content of the image but can also (at least to some degree) encode the colors of each pixel in
these noise inputs. We found a similar behavior when shifting the value of the noise inputs
on unconditionally generated images and provide details about this in our supplementary
material.

4.3 Semantic Image Reconstruction

We examined the semantic meaningfulness of the latent code with sample interpolations
between two images (see Figure 5(a)) based on a StyleGAN 2 decoder trained on FFHQ.
This visualization shows that a model trained for reconstruction using our method is not
able to perform semantic interpolation. It is visually more similar to an alpha blending
between two images. Thus, it seems the in�uence of the latent code is degraded in such a




