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Abstract

Generative Adversarial Networks (GANs) have achieved state-of-the-art performance for
several image generation and manipulation tasks. Different works have improved the lim-
ited understanding of the latent space of GANs by embedding images into specific GAN
architectures to reconstruct the original images. In this paper, we investigate the capabil-
ities of the stochastic noise inputs of StyleGAN. We show that the stochastic noise inputs
of a StyleGAN model can be used to transfer content and encode color information by
presenting an encoder architecture that, together with a pre-trained and fixed StyleGAN
model, is able to faithfully reconstruct images from virtually any domain. Thus, we
demonstrate a previously unknown grade of generalizablility by training the encoder and
decoder independently and on different datasets. Our proposed architecture processes up
to 45 images per second on a single GPU, which is approximately 32× faster than previ-
ous approaches. Finally, as one example application, our approach also shows promising
results compared to the state of the art on image denoising tasks.

1 Introduction
Generative Adversarial Networks (GANs) are applied in various computer vision areas, e.g.,
image-to-image translation [15, 16, 31, 44], image superresolution [21, 30, 39], or uncondi-
tional generation of various image types [5, 10, 18, 23]. Over time, image quality, resolution,
and realism of synthesized images were improved by a large margin [10, 18, 19, 23]. The
StyleGAN architecture [19, 20] is one of the current state-of-the-art models for uncondi-
tional image generation. The architecture of StyleGAN with its projection into a semanti-
cally meaningful latent space W and the usage of noise inputs for stochastic variation not
only allows to generate a diverse range of images but also enables meaningful image editing
operations. Using recent GAN inversion techniques, it is also possible to perform similarly
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Figure 1: Our approach: a StyleGAN generator is trained on a dataset, e.g., FFHQ [19].
Then, we train an encoder for reconstruction and denoising tasks on a different dataset, with-
out updating the pre-trained StyleGAN which is used as a decoder.

meaningful edit operations on embeddings of real images in the latent space [1, 2, 26] (for
further details on related work see Section 2). However, to the best of our knowledge, pre-
vious work has not provided complete answers for the following open research questions in
the domain of GAN inversion and reconstruction: (1) Can the stochastic noise inputs provide
more than stochastic variations of the generated image? (2) Can we use a generator model
(i.e. StyleGAN) trained in one domain to effectively reconstruct images for a different do-
main? (3) Can we use an encoder model trained in one domain to reconstruct images for a
different domain effectively?

In this work, we strive to provide answers to these questions. To this end, we train an
encoder decoder architecture in multiple steps. First, we train a StyleGAN model for un-
conditional image generation on one dataset. Second, we freeze the trained model and train
an encoder model with the task to find such inputs to StyleGAN that the inputs gets recon-
structed. See Figure 1 and Section 3 for further details. In Section 4, we show that Style-
GAN models can use the stochastic noise inputs to faithfully reconstruct input images from
the domain the generator was trained on. We further show that encoders trained on a fixed
StyleGAN model can effectively reconstruct images from domains unseen during training.
For example, we show that a StyleGAN generator pre-trained on the FFHQ dataset [19] and
an encoder trained to reconstruct images from the FFHQ dataset can faithfully reconstruct
images from other datasets, such as the LSUN Church dataset [35]. We provide in-depth
insights into why our encoder can use the pre-trained StyleGAN generator to reconstruct
images from arbitrary domains. We conclude our work in Section 5. Overall, our contribu-
tions can be summarized as follows: (1) The first approach for faithful cross-domain image
reconstruction, based on a fixed generator model, tested on a large variety of images from
several domains. (2) Novel insights about the capabilities of the stochastic noise inputs in
StyleGAN. (3) A fast method that allows reconstruction of up to 45 images per second on a
single GPU (NVIDIA Tesla V100), which is much faster than other recent GAN inversion
models, e.g., [12], which can process approximately 1.4 images per second. (4) A practi-
cal application of our model in the area of image denoising, where we achieve competitive
results. Our code and trained models are available online1.

1https://github.com/Bartzi/one-model-to-reconstruct-them-all
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2 Related Work

GANs have first been proposed by Goodfellow et al. [10] in 2014. Since then, they have been
improved through different measures, such as training at different scales [18], adding novel
weight normalization techniques [23] or generating high-resolution images over a diverse set
of classes [5].

A recent work by Karras et al. [19] proposes a novel architecture inspired by recent work
on neural style transfer [14]. Karras et al. train their StyleGAN architecture on the FFHQ
dataset to generate high-quality, realistic images of human faces. Moreover, Karras et al.
propose several improvements regarding architecture and normalization methods for Style-
GAN in a more recent work [20]. In the following, we describe the prior art related to the
two tasks covered in our work, image reconstruction and image denoising.

2.1 Image Reconstruction (Embedding, Inversion)

Generative models usually operate on a latent code and/or random noise as an input to gen-
erate new images [10, 19, 20]. Previous work on GAN inversion attempts to understand and
interpret the underlying mechanisms of GANs by embedding existing images into a GAN
architecture. These works can be roughly divided into two categories.

On the one hand, a given image can be embedded into the latent space of a trained GAN
on a per-image basis [1, 2, 7, 43]. These methods achieve very faithful reconstructions but
require optimization or training of a model for each image, making image embeddings of
large-scale datasets infeasible.

On the other hand, there are works where an encoder network for embedding an image
is learned. Such an approach is used, e.g., in [4, 12, 25, 32]. It is computationally efficient
since the learned encoder can retrieve an encoding for a given image. However, learning a
code with semantic meaning proves to be a challenge, as stated by Zhu et al. [42].

2.2 Image Denoising

A typical application area for image reconstruction is image denoising, where the task is
to remove noise to restore the original image. Here, we focus on image denoising tech-
niques based on deep neural networks; for more detailed information about image denoising
research, please refer to the following survey papers [9, 11].

Several neural-network-based image denoising systems have been proposed in the past [6,
17, 21, 34, 36, 37, 38, 39]. Some works have been trained for image denoising at fixed noise
level [6], while others are able to denoise noisy images with various noise levels. Over
time, the most common approach shifted from directly predicting the denoised image to pre-
dicting residual/noise images which are then subtracted from the input image, returning the
denoised image [21, 36]. Based on this residual prediction strategy, further enhancements
have been proposed. Zhang et al. propose multiple extensions, i.e., using multiple denoising
networks and model based optimization [37], providing noise level maps as auxiliary input
to the network [38, 39], or creating specific network architectures for image denoising [39].
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Figure 2: The structure of our proposed model. The encoder consists of multiple ResNet
blocks, each followed by convolutional layers that predict a part of the latent code or a noise
input. These outputs are used by the decoder (a pre-trained StyleGAN) to reconstruct the
input image. Certain parts are only used for StyleGAN 2 or when using Z , respectively.

3 Method

In this section, we describe our method that reconstructs arbitrary input images (not limited
to the training domain) using a generative model that has only been trained for unconditional
generation in one domain, e.g., face images (see Figure 1). We introduce the architecture of
our proposed encoder for arbitrary image reconstruction (see Figure 2). Finally, we describe
the training details used in our experiments.

3.1 StyleGAN

For our experiments, we use generators based on StyleGAN [19] and the improved version
of StyleGAN [20] as our decoder network. In the following we refer to the models based
on the first version of StyleGAN [19] as “StyleGAN 1” and models based on the improved
version of StyleGAN [20] as “StyleGAN 2”.

StyleGAN currently sets the state-of-the-art in unconditional high-resolution image gen-
eration for many different natural image categories such as faces or buildings.

In our work, we focus on the latent code and stochastic noise inputs. The latent code
defines the content of the image to generate and can also be used for semantic editing op-
erations [1, 32]. We embed into two latent spaces. First, we embed into Z , which refers to
the input space of StyleGAN. Vectors from Z are transformed by a mapping network to the
latent spaceW , which is the second space we embed to.

We also focus on the stochastic noise inputs, which are originally tasked with generating
stochastic details. It has been found that optimizing the noise inputs can lead to better image
embeddings/inversions [2, 20]. We introduce a novel view of the role of these noise inputs
and show that they can be used to encode the content and color of an input image.

We use the proposed decoder architectures, StyleGAN 1 and StyleGAN 2, as is and
without any changes.
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3.2 Encoder Architecture
Our architectural contribution is the encoder architecture (see Figure 2). Our encoder is a
fully convolutional network that predicts latent vectors either in Z or inW and noise maps
for each resolution of the generated images. Our network is a combination of a ResNet [13]
and a U-Net architecture [27]. We predict latent vectors and noise inputs (see the supple-
mentary material for further details). We use the predicted latent vectors and noise inputs
as input to a pre-trained StyleGAN 1 or StyleGAN 2 based generator, which is not updated
during the training process of the encoder.

We found that directly using our proposed encoder encourages the encoder to embed all
information into the stochastic noise inputs (see Figure 5(a)). To mitigate this, we propose
a two-stage training scheme that maximizes the latent code’s semantic meaning. Here, we
train the network in two stages. First, we disable learning (or usage) of the stochastic noise
inputs, forcing the model to only rely on the latent code for reconstruction. Second, we
train only the layers responsible for predicting the stochastic noise inputs to improve the
reconstruction quality.

3.3 Training Details and Loss Function
We use two different loss functions for the training of our models. These loss functions are
only used to update the weights of the encoder, the weights of the decoder (a pre-trained
StyleGAN) are fixed. On the one hand, we use Mean Squared Error (MSE) between the
pixels of the generated image and the reconstructed image. On the other hand, we utilize the
Learned Perceptual Image Patch Similarity (LPIPS) [40] metric for judging the reconstruc-
tion quality. The resulting loss function is the following: L(x,y) = Lmse(x,y)+Llpips(x,y).
With x,y ∈ R[3,H,W ] being the input image and desired output image with three channels,
height H and width W , respectively. Lmse and Llpips denote MSE and LPIPS loss, respec-
tively.

4 Results and Discussion
This section shows the experimental results of our approach on different datasets and two
different tasks, image reconstruction and image denoising. First, we show that we can faith-
fully reconstruct images with our presented encoder architecture using a pre-trained and fixed
StyleGAN decoder. Second, we show the results for cross-domain reconstruction, where the
encoder is trained on a different dataset than the fixed StyleGAN decoder (trained on FFHQ).
Third, we investigate how such high-quality reconstructions are possible by examining the
role of the noise inputs in StyleGAN. Afterward, we present the results for our two-stage
training method to increase the semantic meaning of the latent code. Finally, we show the
capabilities of our model when applied for the task of image denoising.

4.1 Experimental Setup
We implement our model using PyTorch [24]. We use the human faces dataset FFHQ [19]
and the two LSUN datasets Church and Bedroom [35], which only contain images of churches
or bedrooms, respectively. We follow related work and evaluate our model using the follow-
ing metrics on the given validation datasets: (1) The Frechet Inception Distance (FID) [29] of
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(a) Reconstruction Results using our Approach

Model
Dataset and Metric for Evaluation

FFHQ Church
FID↓ MSE↓ FID↓ MSE↓

FFHQ, 1, Z 9.85 0.004 7.17 0.01
FFHQ, 1, W 0.64 0.004 1.37 0.009
FFHQ, 2, Z 3.92 0.005 4.66 0.01
FFHQ, 2, W 0.75 0.002 1.23 0.006
Church, 1, Z 17.28 0.01 3.17 0.007
Church, 1, W 3.30 0.01 0.26 0.005
Church, 2, Z 12.24 0.01 3.17 0.007
Church, 2, W 2.33 0.008 0.21 0.004

(b) Reconstruction Results Reported in Related Work

Method
Dataset and Metric for Evaluation

FFHQ Church
FID↓ MSE↓ FID↓ MSE↓

Zhu et al. [42] 42.64 0.03 44.77 0.052
Pidhorsky et al. [26] 16.52 - - -
Abdal et al. [1]∗ 65.80 0.01 66.29 0.02
Abdal et al. [2]∗ 13.92 0.0003 10.92 0.0004
Tov et al. [32] 25.17 0.03 26.96 0.09
∗ We calculated the FID and MSE for these approaches
based on the reconstruction of 500 random images due to
limited compute time (10 minutes needed per image).

Table 1: Our experimental results on image reconstruction (a) compared to other approaches
(b). We denote the dataset our models are trained on (FFHQ, or LSUN Church), the Style-
GAN variant, and the projection target (Z,W). The best overall results are indicated in bold
and our own best result in italic.

reconstructed images with the original images (using a sample size of 50000 images). Fur-
thermore, we calculate (2) the MSE between each input and its corresponding reconstructed
image to measure the reconstruction quality. Further details on our system, number of iter-
ations, optimizer, learning rate, and data pre-processing can be found in the supplementary
material.

4.2 FFHQ-based Image Reconstruction
In our first set of experiments, we determined how well our architecture (introduced in Sec-
tion 3) is able to reconstruct images of the FFHQ [19] and LSUN Church dataset [35], when
using a StyleGAN model pre-trained on the FFHQ dataset and compare it to results found in
related work. In this line, we trained a range of different encoders, using both StyleGAN 1
and StyleGAN 2 decoders. Furthermore, we examined the influence of different latent code
projection strategies. On the one hand, we project into Z . On the other hand, we project into
W .

The quantitative results (see the first block of Table 1(a)) show, that our encoder is able
to perform reconstruction for different datasets with high quality. Even though both encoder
and decoder were only trained on FFHQ, they show a high reconstruction quality when
evaluated on the LSUN Church dataset. Compared to the results reported in related work
(see Table 1(b)), our method outperforms almost all other methods. The exception is the
MSE achieved by Abdal et al. [2], but our method is magnitudes faster than their approach
(see Section 4.4).

The qualitative results also show nearly no perceptual differences (see the first row of
Figure 3(a)). However, we can see that the models based on StyleGAN 1 exhibit the “bubble”
artifacts typical for images produced by StyleGAN 1 [20]. The absence of these artifacts in
the reconstructed images of the StyleGAN 2 based models is most likely the reason for the
better quantitative results.

Cross-Domain Image Reconstruction Intrigued by our results on the FFHQ dataset, we
trained a different set of encoder models that use the same pre-trained and fixed StyleGAN
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original

(a) Reconstruction results based on a StyleGAN
pre-trained on the FFHQ dataset. Each row shows
reconstructions with images from the FFHQ dataset,
LSUN Church dataset, and LSUN Bedroom dataset,
respectively. The columns show the reconstruction
result produced by: StyleGAN variant, latent pro-
jecting strategy.

(b) Shifting the noise maps shows that they can not only en-
code the content of an image, but also color and contrast. The
columns represent “shifting” the noise map shown in the first
column by multiplying it with −2, −0.75, 0.5, 1.75, and 3.

Figure 3: Figure (a) shows our reconstruction results, Figure (b) our color shift experiment.

generator but use different LSUN datasets for training the encoder part of our model. The
quantitative results of experiments on the LSUN Church dataset are shown in the bottom
block of Table 1(a). Further, we show the qualitative results of the encoders trained on
churches and bedrooms in rows 2 and 3 of Figure 3(a), respectively. These results show that
our cross-domain models can reconstruct images with high perceptual quality and scores.

The Significance of Noise for Image Reconstruction We examined the latent code and
the stochastic noise inputs predicted by our model to understand how our reconstruction
model can produce such high-quality results. First, we directly visualize the (normalized)
stochastic noise inputs predicted by our encoder (see Figure 4). It is visible that the encoder
learns to use the stochastic noise inputs to retain the input image’s content, especially in the
stochastic noise inputs of higher resolution. Although Karras et al. [20] made a brief note
that it is required to regularize the noise inputs to prevent the retaining of image content, the
possible effects were not discussed in detail. To the best of our knowledge, other works also
have not examined this phenomenon.

Therefore, we further analyzed the noise inputs by shifting the value of each pixel in a
noise input with a factor from the interval [−2,3] and examined the reconstructed image. The
results (see Figure 3(b)) show that the encoder uses the noise inputs not only to capture the
content of the image but can also (at least to some degree) encode the colors of each pixel in
these noise inputs. We found a similar behavior when shifting the value of the noise inputs
on unconditionally generated images and provide details about this in our supplementary
material.

4.3 Semantic Image Reconstruction
We examined the semantic meaningfulness of the latent code with sample interpolations
between two images (see Figure 5(a)) based on a StyleGAN 2 decoder trained on FFHQ.
This visualization shows that a model trained for reconstruction using our method is not
able to perform semantic interpolation. It is visually more similar to an alpha blending
between two images. Thus, it seems the influence of the latent code is degraded in such a
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Input 16x16 16x16 32x32 32x32 64x64 64x64 128x128 128x128 256x256 256x256

Figure 4: The stochastic noise inputs predicted by our model show that all content infor-
mation is saved in the noise inputs (normalized individually, input image on the left). The
progressive level of detail increases with each layer, corresponding to the architecture of
StyleGAN.

(a) Regular training approach. (b) Two-stage training with two networks.

Figure 5: The behaviour of our models when interpolating latent code and noise inputs
between two reconstruction images (embedded usingW of a StyleGAN 2 pre-trained on the
FFHQ dataset). The rows show the interpolation of: (1) predicted latent code and noise at
the same time, (2) only latent code (with fixed random noise), and (3) only noise inputs (with
fixed latent code of the left image).

way that it is only used to provide some basic colors for the resulting image and the resulting
reconstruction mostly depends on the predicted noise maps.

We also tested our improved two-stage training strategy (see Section 3.2) to find a more
meaningful (semantic) latent code and enable meaningful semantic interpolations. The re-
sults (see Figure 5(b)) show that the semantic latent code captures the coarse structure of the
content, but the predicted noise inputs still add fine details. We also observe that the interpo-
lations seem to be more reasonable, but the visual quality of images reconstructed by using
only the latent code is visibly lower than the original images. Nevertheless, we can see that
the intermediate latent spaceW seems to be a general latent space that could be used to gen-
erate any kind of image. However, the StyleGAN 2 generator trained on the FFHQ dataset is
not general enough to faithfully generate images from another domain using only the latent
code. When incorporating the predicted stochastic noise inputs on top of the semantic la-
tent codes, the quality increases but can not achieve the same level as our other experiments
(metrics and further interpolations for can be found in the supplementary material).
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Figure 6: Qualitative results of image denoising tasks (BSD68 on the left, Set12 on the
right). The noisy image is created with additive gaussian white noise (σ = 50). We use an
encoder embedding intoW of a StyleGAN 2 pre-trained on FFHQ.

Dataset Set12 BSD68
σ 15 25 50 15 25 50

Liu et al. [21] 33.15/0.90 30.79/0.87 27.74/0.81 31.86/0.90 29.41/0.84 26.53/0.74
Zhang et al. [38] 32.75/ - 30.43/ - 27.32/ - 31.63/ - 29.19/ - 26.29/ -
Zhang et al. [39] 33.25/ - 30.94/ - 27.90/ - 31.91/ - 29.48/ - 26.59/ -
StyleGAN 1, Z 24.67/0.82 24.13/0.76 22.27/0.60 24.59/0.86 24.48/0.83 23.71/0.73
StyleGAN 1, W 26.42/0.87 25.93/0.81 24.18/0.64 25.17/0.91 25.02/0.87 24.78/0.77
StyleGAN 2, Z 26.02/0.84 25.58/0.80 23.88/0.67 24.70/0.85 24.76/0.83 24.30/0.75
StyleGAN 2, W 27.46/0.88 27.08/0.85 24.94/0.71 27.57/0.92 27.46/0.89 26.22/0.81

Table 2: Average PSNR/SSIM results of our model compared to state-of-the-art image
denoising models. Bold font indicates the best performing result.

4.4 Reconstruction Speed
We reproduced the approach of Abdal et al. [1, 2] which individually optimizes the latent
code and noise maps iteratively. We measured its speed on a Tesla V100 GPU and found
it needs approximately 10 minutes for a single image. The approach of Guan et al. [12] is
much faster but still needs about 0.71 seconds per image on a Tesla V100 GPU, meaning
they can process about 1.4 images per second. For comparison, our model can process
approximately 45/30 (StyleGAN 1/StyleGAN 2) images per second on a Tesla V100 GPU,
while still producing reconstructions with very high perceptual quality. Such throughput is
possible since we only need to compute a forward pass of an image (or a batch of images)
through our encoder network, which directly predicts the latent code and noise maps needed
to reconstruct the original image(s).

4.5 Image Denoising
As an example task, we tested the capabilities of our approach on the application of image
denoising.
For image denoising, we trained multiple models and compare them to the state of the art in
image denoising on the BSD68 [28] and the SET 12 [22] benchmark datasets. We trained
models based on StyleGAN 1 and StyleGAN 2 (both pre-trained on the FFHQ dataset), with
latent code embedding into Z and W , and use the ImageNet dataset [8] for training the
encoder. We report the average PSNR and SSIM [33] of our model on different noise levels
σ = 15,25, and 50 on the benchmark datasets in Table 2. The qualitative results can be
seen in Figure 6. The results show that our model is able to set new state-of-the-art results
on the BSD68 dataset in terms of SSIM, even though our network has not been designed
with the application of image denoising in mind. The results also show that our model
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works best on color images, as the denoising results on Set12, a grayscale dataset, show. We
think our model performs better on colored images because our model uses the values of the
stochastic noise inputs (see Section 4.2) to encode the color information of images. Some
ideas mentioned in related work, e.g., network design decisions, similar to [21] or [39], could
be used to boost the performance of our model, but such improvements are out of the scope
of this work.

The results are nonetheless quite interesting, considering that the generator has never
been trained for image reconstruction and also never for the creation of images apart from
faces of the FFHQ dataset. We also observe that our model removes noise from an image and
performs a slight shift in colors similar to a color correction operation. This behavior is an
interesting property and opens up further application possibilities of our proposed network
in future work.

5 Conclusion
In this work, we examined the capabilities of the stochastic noise inputs of StyleGAN mod-
els. We showed that it is possible to design simple encoders for high-quality cross-domain
image reconstruction. Our model is highly efficient and can be used to reconstruct images
from virtually any dataset, even if trained on only one specific dataset, such as the FFHQ [19]
dataset. In this paper, we mainly focused on an in-depth analysis of the reasons why Style-
GAN models are able to reconstruct images from virtually any data distribution. We found
that the stochastic noise inputs, which are only meant to produce stochastic variations, can
capture tiny details and manipulate the colors of images generated by StyleGAN without
using the latent code. We further found that the intermediate latent space (W), where the
mapping network of StyleGAN projects to, might be used to generate images from data dis-
tributions other than the original training distribution of a pre-trained StyleGAN model. We
also provided one practical example of our architecture, where we showed that our architec-
ture can be used for practical applications, such as image denoising.

We think that there are three more suitable applications for our approach based the
stochastic noise inputs of a StyleGAN model: (1) We assume that super-resolution is a viable
task for the application of our proposed approach, thanks to the capabilities of StyleGAN to
produce high-quality images combined with the stochastic noise inputs providing details.
(2) Based on the results of our image denoising experiments it should be possible to use our
findings for models working on video restoration. This task should be a good usecase for our
model because we can train a generator model directly on video images and optimize an en-
coder on other synthetically degraded images and then apply the resulting encoder-decoder
model on the original degraded images. (3) Our encoder architecture should also be able to
perform quite well on the task of image segmentation. In this case, we assume the model can
be combined with semantic segmentation approaches incorporating StyleGAN [3, 41] with
our proposed encoder architecture to directly perform pixel-wise semantic segmentation of
images using a generative model.
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