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Abstract

Localizing objects in image collections without supervision can help to avoid expensive
annotation campaigns. We propose a simple approach to this problem, that leverages the
activation features of a vision transformer pre-trained in a self-supervised manner. Our
method, LOST, does not require any external object proposal nor any exploration of the
image collection; it operates on a single image. Yet, we outperform state-of-the-art object
discovery methods by up to 8 CorLoc points on PASCAL VOC 2012. We also show that
training a class-agnostic detector on the discovered objects boosts results by another 7
points. Moreover, we show promising results on the unsupervised object discovery task.
The code can be found at https://github.com/valeoai/LOST.

Figure 1: Three applications of LOST to unsupervised single-object discovery (left), multi-object
discovery (middle) and object detection (right). In the latter case, objects discovered by LOST are
clustered into categories, and cluster labels are used to train a classical object detector. Although large
image collections are used to train the underlying image representation [13] and the detector [51], no
annotation is ever used in the pipeline. See Figure 3 and Tables 1, 3 for more experiments.

1 Introduction
Object detectors are now part of critical systems, such as autonomous vehicles. However, to
reach a high level of performance, they are trained on a vast amount of costly annotated data.
Various approaches have been proposed to reduce these costs, such as semi-supervision [41],
weak supervision [52], active-learning [3] and self-supervision [26] with task fine-tuning.
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We consider here the extreme case of localizing objects in images without any annotation.
Early works investigate regions proposals based on saliency [84] or intra-image similarity [65],
i.e., only between patches within the considered image (not across the image collection). How-
ever, these proposals have low precision and are produced in large quantities only to reduce
the search space in other tasks, such as supervised [27, 28] or weakly-supervised [9, 59] object
detection. Often using region proposals as input, unsupervised object discovery leverages
information from the entire image collection and explores inter-image similarities to localize
objects in an unsupervised fashion, e.g., with probabilistic matching [15], principal component
analysis [72], optimization [67, 68] and ranking [69]. However, because of the quadratic
complexity of region comparison among images, together with the high number of region
proposals for a single image, these methods hardly scale to large datasets. Other approaches
do not require annotations but exploit extra modalities, e.g., audio [2] or LiDAR [61].

We propose here a simple approach to localize objects in an image, that we then apply to
unsupervised object discovery. Our localization method stays at the level of a single image,
rather than exploring inter-image similarity, which makes it linear w.r.t. the number of images
and thus highly scalable. For this, we leverage high-quality features obtained from a visual
transformer pre-trained with DINO self-supervision [13]. Concretely, we divide the image of
interest into equal-sized patches and feed it to the DINO model. Instead of focusing on the
CLS token, we propose to use the key component of the last attention layer for computing the
similarities between the different patches. In doing so, we are able to localize a part of an
object by selecting the patch with the least number of similar patches, here called the seed.
The justification for this seed selection criterion is based on the empirical observation that
patches of foreground objects are less correlated than patches corresponding to background.
We add to this initial seed other patches that are highly correlated to it and thus likely to be
part of the same object, a process which we call seed expansion. Finally, we construct a binary
object segmentation mask by computing the similarities of each image patch to the selected
seed patches and infer the bounding box of an object as the box that tightly encloses the largest
connected component in this mask that contains the initial seed. In following this simple
method, we not only outperform methods for region proposals but also those for single-object
discovery. Even more, by training an off-the-self class-agnostic object detector using our
localized boxes as ground-truth boxes, we are able to derive a much more accurate object
localization model that is actually able to detect multiple objects in an image. We call this task
unsupervised class-agnostic object detection (which may resort to self-supervision despite
being called unsupervised). Finally, by using clustering techniques to group the localized
objects into visual consistent classes, we are able to train class-aware object detectors without
any human supervision, but using instead the predicted object locations and their cluster ids as
ground-truth annotations. We call this task unsupervised (class-aware) object detection. We
show that the predictions of our unsupervised detection model for certain clusters correlate
very well with labelled semantic classes in the dataset and reach for them detection results
competitive to object detectors trained with weak supervision [9, 59].

Our main contributions are as follows: (1) we show how to extract relevant features
from a self-supervised pre-trained vision transformer and use the patch correlations within
an image to propose a simple single-object localization method with linear complexity w.r.t.
to dataset size; (2) we leverage it to train both class-agnostic and class-aware unsupervised
object detectors able to accurately localize multiple object per image and, in the class-aware
case, group them to semantically-coherent classes; (3) we outperform the state of the art in
unsupervised object discovery with a significant margin.
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2 Related work
Object detection with limited supervision. Region proposal methods [4, 65, 84] generate
in an unsupervised way numerous class-agnostic bounding boxes with high recall but low
precision, to speed-up sliding window search. From supervised pre-trained networks, objects
can emerge by masking the input [7], interpreting neurons [81] or from saliency maps [54].
Weakly-supervised object detection (WSOD) uses image-level labels without bounding
boxes [9, 59] to learn to detect objects. The different instances of WSOD (each with specific
assumptions on the availability and amount of image-level and box-level annotations) are often
addressed as semi-supervised learning [23, 60] and leverage self-training [37, 49]. Recent
work replaces manual annotations with automatic supervision from a different modality, e.g.,
LiDAR [61] or audio [2]. In contrast, we do not use any annotations or other modalities at
any stage: we extract object candidates from the activations of a self-supervised pre-trained
network, compute pseudo-labels and then train an object detector.

Object discovery. Given a collection of images, object discovery groups images depicting
similar objects, and then localizes objects within these images. Early works [29, 53, 56,
58, 71] focus mostly on the first task and to, a lesser extent, on localization [53, 56, 78,
82]. On the contrary, [15, 38, 67, 68, 69] shift focus on the second task and achieve good
object localization on image collections in the wild. However, casting object discovery
as the selection of recurring visual patterns across an image collection involves expensive
computation and only [69] is able to scale to large datasets. Our work also discovers object
locations but does not consider inter-image similarity. Instead, we rely on the power of self-
supervised transformer features [13] and only consider intra-image similarity. Consequently,
our method can localize objects in a single image with little computation. Close to ours, [80]
is also able to localize objects from a single image by exploiting scale-invariant features.
Finally, some works [10, 20, 30, 43, 46] on object discovery attempt to simultaneously learn
an image representation and to decompose images into object masks. These works, however,
are only evaluated on image collections of very simple geometric objects.

Transformers. In this work, we leverage transformer representations to address object
discovery. Self-attention layers have been previously integrated into CNNs [11, 35, 70],
yet transformers for vision are very recent [14, 16, 18, 50] and still in an incipient stage.
Findings on training heuristics [62, 77] and architecture design [42, 63, 76] are released at
high pace. Early adaptations of transformers to different tasks (e.g., image classification [18],
retrieval [19], object detection [11, 42, 83] and semantic segmentation [42, 57, 74]) have
demonstrated their utility and potential for vision. Meanwhile, several works attempt to
better understand this new family of models from various perspectives [8, 13, 45, 47, 64].
Interestingly, transformers have been shown to be less biased towards textures than CNNs [47,
64], hinting that their features encapsulate more object-aware representations. These findings
motivate us to study manners of localizing objects from transformer features.

Self-supervised learning (SSL) is a powerful training scheme to learn useful representations
without human annotations. It does so via a pretext learning task for which the supervision
signal comes from the data itself [24, 48, 79]. SSL pre-trained networks have been shown to
outperform ImageNet pre-trained networks on several computer vision tasks, in particular
object detection [12, 25, 26, 31, 34]. For transformers, SSL methods also work well [13, 75],
bringing a few interesting side-effects. In particular, DINO [13] feature activations appear to
contain explicit information about the semantic segmentation of objects in an image. In the
same spirit, we extract another kind of transformer features to build our object localization.
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3 Proposed approach

Our method exploits image representations extracted by a vision transformer. In this section,
we first recall how such representations are obtained, then present our method.

3.1 Transformers for Vision

Input. Vision transformers operate on a sequence of patches of fixed size P×P. For a color
image I of spatial size H×W , we have N = HW/P2 patches of size 3P2 (we assume for
simplicity that H and W are multiples of P). Each patch is first embedded in a d-dimensional
latent space via a trained linear projection layer. An additional, learned vector called the “class
token”, CLS, is adjoined to the patch embeddings, yielding a transformer input in R(N+1)×d .

Self-attention. Transformers consist of a sequence of multi-head self-attention layers and
multi-layer perceptrons (MLPs) [18, 66]. Three different learned linear transformations
are applied to an input X ∈ R(N+1)×d of a self-attention layer to produce a query Q, a
key K and a value V, all in R(N+1)×d . The output of the self-attention layer is Y =
softmax

(
d−1/2 QK>

)
V ∈ R(N+1)×d , where softmax is applied row-wise. For simplicity,

we describe here the case of a single-head attention layer, but attention layers usually contain
multiple heads. In this work, we concatenate the keys (or queries, or values) from all heads in
the last self-attention layer to obtain our feature representations.

Features for object localization. We use transformers trained in a self-supervised manner
using DINO [13]. Caron et al. [13] show that sensible object segmentations can be obtained
from the self-attention of the CLS query produced by the last attention layer. We adapt
this strategy in section 4 to perform object localization, providing a baseline (‘DINO-seg’)
that produces fair results. However, we found that its does not fully exploit the potential
of the self-supervised transformer features. We propose a novel and effective strategy for
localizing objects using another way to extract and use features. Our method, called LOST,
is constructed by computing similarities between patches of a single image, using this time
patch keys kp∈Rd , p = 1, . . . ,N, extracted at the last layer of a transformer.

3.2 Finding objects with LOST

Our method takes as input d-dimensional image features F ∈ RN×d extracted from a single
image via a neural network; N denotes the spatial dimension (number of patches) of the image
features F, while fp ∈ Rd is the feature vector of the patch at spatial position p ∈ {1, . . . ,N}.
We assume that there is at least one object in the image and LOST tries to localize one of
them given the input features. To that end, it relies on a selection of patches that are likely to
belong to an object. We call these patches “seeds”.

Initial seed selection. Our seed selection strategy is based on the assumptions that (a) re-
gions/patches within objects correlate more with each other than with background patches and
vice versa, and (b) an individual object covers less area than the background. Consequently, a
patch with little correlation in the image has higher chances to belong to an object.

To compute the patch correlations, we rely on the distinctiveness of self-supervised
transformer features, which is particularly noticeable when using transformer’s keys. We
empirically observe that using these tranformer features as patch representation meets assump-
tion (a) in practice: patches in an object correlate positively with each other but negatively
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Figure 2: Initial seed, patch similarities and patch degrees. Top: images from Pascal VOC2007.
Middle: initial seed p∗ (in red) and patches similar to p∗ (in grey), i.e., such that f>pfq ≥ 0 hence ap∗q = 1.
Bottom: map of inverse degrees 1/dp of all patches p (yellow to blue, for low to high degrees). The
initial seed p∗ is the patch with the lowest degree. Figure is best viewed in color.

with patches in the background. Therefore, based on assumption (b), we select the first seed
p∗ by picking the patch with the smallest number of positive correlations with other patches.

Concretely, we build a patch similarity graph G per image, represented by the binary
symmetric adjacency matrix A=(apq)1≤p,q≤N ∈ {0,1}N×N such that

apq =

{
1 if f>p fq ≥ 0,
0 otherwise.

(1)

In other words, two nodes p,q are connected by an undirected edge if their features fp, fq are
positively correlated. Then, we select the initial seed p∗ as a patch with the lowest degree dp:

p∗ = argmin
p∈{1,...,N}

dp where dp =
N

∑
q=1

apq. (2)

We show in Figure 2 examples of seeds p∗ selected in four different images. A representation
of the degree map for each of these images is also presented. We remark that the patches with
lowest degrees are the most likely to fall in an object. Finally, we also observe in this figure
that the few patches that correlate positively with p∗ are also likely to belong to an object.

Seed expansion. Once the initial seed is selected, the second step consists in selecting
patches correlated with the seed that are also likely to fall in the object. Again, we achieve this
step relying on the empirical observations that pixels within an object tend to be positively
correlated and to have a small degree in G. We select the next best seeds after p∗ as the
pixels that are positively correlated with fp∗ : S = {q | q ∈ Dk and f>q fp∗ ≥ 0} within Dk, the
k patches with the lowest degree. (In case of patches with equal degrees, we break ties
arbitrarily to ensure that |Dk|= k.) Note that p∗ ∈ Dk and a typical value for k is 100.
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Figure 3: Object localizations on VOC07. The red square represents the seed p∗, the yellow box is
the box obtained using only the seed p∗, and the purple box is the box obtained using all the seeds S.

Box extraction. The last step consists in computing a mask m ∈ {0,1}N by comparing the
seed features in S with all the image features. The qth entry of the mask m satisfies

mq =

{
1 if ∑s∈S f>q fs ≥ 0,
0 otherwise.

(3)

In other words, a patch q is considered as part of an object if, on average, its feature fq
positively correlates with the features of the patches in S. To remove the last spurious
correlated patches, we finally select the connected component in m that contains the initial
seed and use the bounding box of this component as the detected object. An illustration of the
detected boxes before and after seed expansion is provided in Figure 3.

3.3 Towards unsupervised object detection

We exploit the accurate single-object localization of LOST for training object detection models
without any human supervision. Starting from a set of unlabeled images, each one assumed
to contain at least one prominent object, we extract one bounding box per image using LOST.
Then, we train off-the-shelf object detectors using these pseudo-annotated boxes. We explore
two scenarios: class-agnostic and (pseudo) class-aware training of object detectors.

Class-agnostic detection (CAD). A class-agnostic detection model localizes salient objects
in an image without predicting nor caring about their semantic category. We train such a
detector by assigning the same “foreground” category to all the boxes produced by LOST,
which we call “pseudo-boxes” afterwards, as they are obtained with no supervision. Unlike
LOST, the trained detector can localize multiple objects per image, even if it was trained on a
dataset containing only one pseudo-box annotation per image. The experiments confirm that
the trained detector can output multiple detections and the quantitative results (Table 1) show
that this trained detector is in fact even better than LOST in terms of localization accuracy.

Class-aware detection (OD). We now consider a typical detector that both localizes objects
and recognizes their semantic category. To train such a detector, apart from LOST’s pseudo-
boxes, we also need a class label for each of these boxes. In order to remain fully-unsupervised,
we discover visually-consistent object categories using K-means clustering. For each image,
we crop the object detected by LOST, resize the cropped image to 224×224, feed this image
in the DINO pre-trained transformer, and extract the CLS token at the last layer. The set of
CLS tokens are clustered using K-means and the cluster index is used as a pseudo-label for
training the detector. At evaluation time, we match these pseudo-labels to the ground-truth
class labels using the Hungarian algorithm [39], which give names to pseudo-labels.
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4 Experiments
We explore in this section three variants of the object localization problem, in order of in-
creasing complexity: (1) localizing one salient object in each image (single-object discovery)
in §4.2, (2) using the corresponding bounding boxes as ground-truth to train a binary classifier
for foreground object detection (unsupervised class-agnostic object detection), and (3) using
clustering to capture an unsupervised notion of object categories, and detect the corresponding
instances (unsupervised object detection). Both are discussed in §4.3. None of the building
blocks of this pipeline uses any annotation, just a large number of unlabelled images to
sequentially train, in a self-supervised way, the DINO transformer, the class agnostic fore-
ground/background classifier, and finally the classifier using the cluster identifier as labels.
Also, we provide more qualitative results in supplementary.

4.1 Experimental setup
Backbone networks. Unless otherwise specified, we use the ViT-S model introduced in [13],
which follows the architecture of DEiT-S [62]. It is trained using DINO [13], with a patch size
of P = 16 and the keys K (without the entry corresponding to the CLS token) of the last layer
as input features F, with which we achieve the best results. Results obtained alternatively
with the attention, the queries and values are presented and discussed in the supplementary
material. For comparison, we also present results using the base version of ViT (ViT-B),
ViT-S with a patch size of P = 8, as well as with features of the last convolutional layer of
a dilated ResNet-50 [32] and of a VGG16 [55] pre-trained either following DINO, or in a
supervised fashion on Imagenet [17].

Datasets. We evaluate the performance of our approach on the three variants of object
localization on VOC07 [21] trainval+test, VOC12 [22] trainval and COCO_20K [40, 68].
VOC07 and VOC12 are commonly used benchmarks for object detection [27, 28]. COCO_20k
is a subset of the COCO2014 trainval dataset [40], consisting of 19817 randomly chosen
images, used as a benchmark in [68]. When evaluating results on the unsupervised object
discovery task, we follow a common practice and evaluate scores on the trainval set of the
different datasets. Such an evaluation is possible as the task is fully unsupervised. We follow
the same principle for the unsupervised class-agnostic task: we generate boxes on VOC07
trainval, VOC12 trainval and COCO_20k, use them to train a class-agnostic detector, and then
evaluate again on these datasets (against ground-truth boxes this time). For unsupervised class-
aware object detection, we generate boxes and train the detector on VOC07 trainval and/or
VOC12 trainval, but evaluate the detector on the VOC07 test set to facilitate comparisons to
weakly-supervised object detection methods. Note that for unsupervised object discovery,
some previous works [67, 68, 69, 72] evaluate on subsets of VOC07 trainval and VOC12
trainval. For completeness, we present the object discovery performance of our method on
these reduced datasets in the supplemental material.

4.2 Application to unsupervised object discovery
Similar to methods for unsupervised single-object discovery, LOST produces one box for
each image. It therefore can be directly evaluated for this task. Following [15, 67, 68, 69, 80],
we use the Correct Localization (CorLoc) metric, i.e., the percentage of correct boxes, where
a predicted box is considered correct if it has an intersection over union (IoU) score superior
to 0.5 with one of the labeled object bounding boxes.
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Method VOC07_trainval VOC12_trainval COCO_20k

Selective Search [65] 18.8 20.9 16.0
EdgeBoxes [84] 31.1 31.6 28.8
Kim et al. [38] 43.9 46.4 35.1
Zhang et al. [80] 46.2 50.5 34.8
DDT+ [72] 50.2 53.1 38.2
rOSD [68] 54.5 55.3 48.5
LOD [69] 53.6 55.1 48.5

DINO-seg (w. ViT-S/16) 45.8 46.2 42.1
LOST (ours) 61.9 64.0 50.7

rOSD [68] + CAD 58.3 62.3 53.0
LOD [69] + CAD 56.3 61.6 52.7
LOST (ours) + CAD 65.7 70.4 57.5

Table 1: Single-object discovery. CorLoc performance on VOC07 trainval, VOC12 trainval and
COCO_20k. We compare LOST to state-of-the-art object discovery methods [38, 68, 69, 72, 80], as
well as to two object proposal methods [65, 84]. We also compare to the segmentation method proposed
in DINO [13], denoted by DINO-seg. Additionally, we train a class-agnostic dectector (+ CAD) using
as ground-truth either our pseudo-boxes or the boxes of rOSD [68] or LOD [69].

Comparison to prior work. In Table 1, we present the CorLoc of our method, in comparison
to state-of-the-art object discovery methods [38, 68, 69, 72, 80] and region proposals [65, 84].

Despite its simplicity, we see that LOST outperforms the other methods by large margins.
We also compare against an adapted version of the segmentation method proposed in [13].
Concretely, we extract the self-attention of the CLS query at the last layer of the transformer,
create a binary mask where the 0.6N largest entries of this self-attention are set to 1, retrieve
the largest spatially-connected component from this binary mask, and use the bounding box
of this component as the detected object. This method returns one box per self-attention head
and we report results obtained with the best performing head over the entire dataset, noted
as DINO-seg. LOST improves over DINO-seg by 8 to 17 of CorLoc points, demonstrating
the efficacy of our approach for object localization based on self-supervised pre-trained
transformer features.

Finally, we also evaluate our unsupervised class-agnostic detector (denoted by ‘+ CAD’)
for single-object discovery. To this end, we return for each image the box that the detector
assigns the highest score. It can be seen that training a class-agnostic detector on LOST’s
outputs further improves the performance by 4 to 7 CorLoc points. In total, our method
surpasses the prior state of the art by at least 10 CorLoc points on each evaluated dataset.

Impact of the backbone architecture. Table 2 studies the effect of the backbone on LOST.
We see that transformer representations are better suited for our method (best results with
ViT-S/16). In contrast, our performance using the DINO-pre-trained ResNet-50 is significantly
lower. It indicates that the performance of our method is not only due to the contributions of
self-supervision but also to the property and quality of the specific features we extract.

4.3 Unsupervised object detection

Here we explore the application of LOST in unsupervised object detection. To that end, we
use LOST’s pseudo-boxes to train a Faster R-CNN model [51] on the datasets. We measure
detection performance using the Average Precision at IoU 0.5 metric (AP@0.5), which is
commonly used in the PASCAL detection benchmark. As Faster R-CNN backbone, we use a
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Backbone pre-training VOC07_trainval VOC12_trainval COCO_20k

VGG16 supervised 42.0 47.2 30.2
ResNet50 supervised 33.5 39.1 25.5

ResNet50 DINO 36.8 42.7 26.5
ViT-S/8 DINO 55.5 57.0 49.5
ViT-S/16 DINO 61.9 64.0 50.7
ViT-B/16 DINO 60.1 63.3 50.0

Table 2: Impact of the backbone. We evaluate LOST on features originating from different backbones:
ViT [18] small (ViT-S) and base (ViT-B) with patch size P=8 or 16, ResNet50 [32] pre-trained following
DINO [13], and VGG16 [55] and ResNet50 trained in a fully-supervised fashion on Imagenet [17].
Method Supervis. aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
WSDDN [9] weak 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
PCL [59] weak 54.4 9.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5

rOSD [68] + OD none 38.8 44.7 25.2 15.8 0.0 52.9 45.4 38.9 0.0 16.6 24.4 43.3 57.2 51.6 8.2 0.7 0.0 9.1 65.8 9.4 27.4
LOST pseudo-boxes none 42.8 0.0 16.4 3.9 0.0 32.4 17.1 26.2 0.0 14.2 11.3 28.1 43.9 15.8 2.2 0.0 0.1 5.6 39.9 2.3 15.1
LOST + OD none 57.4 0.0 40.0 19.3 0.0 53.4 41.2 72.2 0.2 24.0 28.1 55.0 57.2 25.0 8.3 1.1 0.9 21.0 61.4 5.6 28.6
LOST + OD† none 62.0 38.5 49.3 23.1 4.2 57.0 41.9 70.4 0.0 3.6 18.9 30.8 52.8 45.5 12.5 0.6 9.1 9.0 67.2 0.8 29.9

Table 3: Object detection. Results (AP@0.5 %) on VOC07 test. LOST+ OD and rOSD [68] + OD are
trained on VOC07 trainval. LOST + OD† is trained on the union of VOC07 and VOC12 trainval sets.

ResNet50 pre-trained with DINO self-supervision, thus making our training pipeline fully-
unsupervised. We trained the Faster R-CNN models using the detectron2 [73] implementation
(more details in the supplementary material).
Pseudo-labels. To generate pseudo-labels for the class-aware detectors, we apply K-means
clustering on DINO-ViT-S tokens using as many clusters as the number of different classes in
the dataset. Since the cluster-based pseudo-labels are “anonymous”, to evaluate the detection
results we must map the clusters to the ground-truth classes. Following prior work in image
clustering [5, 6, 36], we use Hungarian matching [39] for that. We stress that this matching is
only for reporting evaluation results; we do not use any human labels during training.
Unsupervised class-aware detection. Table 3 provides results of unsupervised class-aware
object detectors trained with LOST (entry ‘LOST + OD’). We are not aware of any prior
work that addresses unsupervised object detection on real-world images of complex scenes,
as those in PASCAL, that does not use extra modalities. We could not compare to [1, 61] as
we focus on image-only benchmarks.

We see that, although fully-unsupervised, our method learns to accurately detect several
object classes. For example, detection performance for classes “aeroplane”, “bus”, “dog”,
“horse” and “train” is more than 50.0%, and for “cat” it reaches 72.2%. Even more so, for
some classes our method achieves better AP than the weakly-supervised methods WSDDN [9]
and PCL [59], which require image-wise human labels. Although the results are not entirely
comparable due to backbone differences between our method and the weakly-supervised ones
(self-supervised ResNet50 vs. supervised VGG16), they still demonstrate the efficacy of our
method in unsupervised object detection, which is an extremely hard and ill-posed task.

We also evaluate the AP of our pseudo-boxes (with their assigned cluster id as pseudo-
labels) when generated for VOC07 test (entry ‘LOST pseudo-boxes’). Evidently, training the
detector on pseudo-boxes leads to a significantly higher AP than the initial pseudo-boxes.

Finally, switching our pseudo-boxes with those of rOSD [68] for the detector training
(adding pseudo-labels to rOSD pseudo-boxes by clustering DINO features in exactly the same
way as in our method) leads to performance degradation (entry ‘rOSD + OD’).
Unsupervised class-agnostic detection. In Table 4, we report class-agnostic detection re-
sults obtained using pseudo-boxes from our method (‘LOST + CAD’) as well as from
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VOC07 VOC12 COCO20k
Training set (when applicable) trainval trainval trainval
Evaluation set trainval test trainval trainval

EdgeBoxes [84] 3.6 4.4 4.8 1.8
Selective Search [65] 2.9 3.6 4.2 1.6

rOSD [68] + CAD 24.2 25.2 29.0 8.4
LOD [69] + CAD 22.7 23.7 28.4 8.8
LOST + CAD 29.0 29.0 33.5 9.9

Table 4: Class-agnostic unsupervised object detection results (in AP@0.5 %). Trainings, corre-
sponding to ‘method + CAD’, are performed on the bare images and rely only on the fully-unsupervised
methods rOSD [68], LOD [69] and LOST (ours). Evaluation of unsupervised object detection may thus
be performed on the same images as those used for unsupervised training (without manual annotations).
The classic methods EdgeBoxes [84] and Selective Search [65] do not involve any training.

rOSD [68] (‘rOSD + CAD’) and LOD [69] (‘LOD + CAD’). As we see, our method leads to a
significantly better detection performance. We also report detection results using the Selective
Search [65] and EdgeBox[84] proposal algorithms, which perform worse than our method.

4.4 Limitations and future work
Despite the good performance of LOST, it exhibits some limitations.

LOST, as it stands, can separate same-class instances that do not overlap (as it only keeps
the connected component of the initial seed to create a box), but it is not designed to separate
instances when overlapping. This is actually a challenging problem, related to the difference
between supervised semantic [44] and instance [33] segmentation methods, which, as far as
we know, is an open problem in the absence of any supervision. A potential lead could be to
use a matching algorithm such as Probabilistic Hough Matching to separate instances within
image regions found in multiple images.

Another issue is when an object covers most of the image. It violates our second assump-
tion for the initial seed selection (expressed in subsection 3.2) that an individual object covers
less area than the background, thus possibly causing the seed to fall in the background instead
of a foreground object. Ideally, we would like to filter out such failure cases, e.g., by using
the attention maps of the CLS token. We leave this as future work.

5 Conclusion
We have presented LOST, a simple, yet effective method for localizing objects in images with-
out any labels, by leveraging self-supervised pre-trained transformer features [13]. Despite its
simplicity, LOST outperforms state-of-the-art methods in object discovery by large margins.
Having high precision, the boxes found by LOST can be used as pseudo ground truth for
training a class-agnostic detector which further improves the object discovery performance.
LOST boxes can also be used to train an unsupervised object detector that yields competitive
results compared to weakly-supervised counterparts for several classes.

Future work will be dedicated to investigate other applications of LOST boxes, e.g.,
high-quality region proposals for object detection tasks, and the power of self-supervised
transformer features for unsupervised object segmentation.
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