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Abstract

In this work, we extend a method originally devised for 3D body pose estimation
to tackle the 3D hand pose estimation task. Due to its compositionality and compact
Bio Vision Hierarchy (BVH) output, the resulting method can be combined with the
original 3D body pose estimation method. This is achieved based on a novel neural
network architecture combining key design characteristics of DenseNets, ResNets and
MocapNETs trainable to accommodate both bodies and hands. The resulting method is
assessed quantitatively in well-established hand and body pose estimation datasets. The
obtained results show that the proposed enhancements result in competitive performance
for hands, as well as on accuracy and performance benefits for the original body esti-
mation task. Moreover, we show qualitatively that due to its real-time performance and
easy deployment using off-the-shelf webcam equipped PCs, the proposed solution can
become a valuable perceptual building block supporting a variety of applications.

1 Introduction
After decades of research, during 2020 we witnessed a boom in commercial hand tracking
with affordable tether-less VR headsets that included ego-centric 3D hand pose estimation
capabilities [37] purchased by millions new users after the debut of Oculus Quest 2. How-
ever, full-body pose estimation is still a lacking feature as well as hand estimation when
hands are outside the relatively narrow view of headset cameras forcing popular new VR
platforms like VRChat [41] to adopt bulky and expensive active tracking systems [40].

In this paper, we present a method that estimates the articulated 3D pose of both hands
and bodies from monocular RGB sources in real-time. A formulation that generalizes over
different body parts is an important goal first described by the pioneering 1994 work of Rehg
and Kanade [75]. For our baseline we chose the MocapNET body tracker [72, 73] due to
its extensible architecture that had sufficient representational capabilities and performance
head-room to allow such a goal to be achieved in real-time. After introducing several novel
aspects, we tailor it to the 3D hand pose estimation task. Methodological improvements over
the baseline are multiple. Compared to the quadruple memory and training requirements
of [73] we achieve substantial savings by overcoming the need for orientation classifica-
tion [72, 73]. Our enhanced normalized signed rotation matrix (eNSRM) better encodes
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Figure 1: Method outline, series and concurrency of steps from an RGB image to a 3D body
+ hands BVH pose. Both hands are regressed via the same ensemble due to their symmetry.

pose structure while retaining the parameter count of the baseline NSRM [73]. Moreover,
we perform semi-supervised training of our ensembles using the hand kinematic limits in
contrast to the fully-supervised training of [72, 73] and handle both hands with the same
network leveraging 2D symmetries. To the best of our knowledge our 3D hand estimator is
the first to directly output Bio Vision Hierarchies (BVH) [65] and is thus compatible with 3D
animation software. Our mean hand pose estimation error is 9.9mm on the STB [24] dataset.

Back-porting our improvements to the original body estimation problem yields enhanced
results. We achieve a 9% accuracy boost compared to [73] in Human 3.6M (H36M) [45]
with a quarter of runtime memory and training time requirements. Our average CPU body
tracking execution time is 106Hz on an i7-4790 CPU an improvement from the 70Hz of [73].

Our hand pose estimator is then integrated to the body estimator. The encoder ensemble
we propose offers a novel dense architecture deepened using residual layers and generalizes
to accommodate both hands and body. The resulting ensemble output is not raw 3D points
but relative 3D angles across the kinematic hierarchy of all joints of each hand and, using
the full ensemble, the rest of the body. The complete proposed ensemble (Figure 1) handles
hands and body in CPU only execution with 2D to 3D regression frame-rates of 60Hz.

Our formulation offers unique advantages compared to other methods. Its modularity
permits execution of parts or all of it depending on the visibility of the subject. Occluded
ensemble sub-hierarchies can be organically culled from execution without interfering with
estimation for visible parts and scale changes can be handled in the same manner. When
users are far from the camera and sensor resolution does not allow clear, high-confidence 2D
joint estimations, execution can be gracefully skipped without causing erroneous 3D output.

To showcase the flexibility of our architecture we attempt to accommodate various chal-
lenging pose estimation scenarios. A particularly compelling application is VR while others
include affordable 3D motion capture, sign language recognition, sports and online videos.

2 Related Work
Decades of research in neural networks [55] yielded methods that robustly dealt with the
problem of classification in RGB images [54]. Building on these foundations, categoriza-
tion classifiers gradually specialized to human bodies with works like DeepPose [97] pro-
viding joint regressors that localized and pinpointed body joints at specific parts of RGB
images. Methods like OpenPose [12, 29] expanded the scope of the 2D networks to ac-
commodate bodies, hands and faces. Recent developments [23, 48] led to Total 3D Capture
techniques [101] that manage to tackle the combined RGB-to-3D problem. Until recently,
3D pose estimation research focused on specific body parts, so we will attempt to address the
literature likewise. A recent survey of state-of-the-art deep-learning methods for monocular
body pose estimation from RGB is provided by Chen et al. [28]. For hands, the survey of Li
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et al. [57] offers a comprehensive collection of contemporary hand pose estimation methods.
3D hand pose estimation: Notable field milestones include [70] that utilized GPGPU ac-
celeration and the Kinect RGB-D sensor to tackle 3D hand tracking in real-time using Par-
ticle Swarm Optimization (PSO) [50]. RGB-D methods dominated the field and algorith-
mic strategies where mainly divided to model-based generative approaches and data-driven
discriminative ones. Our method uses both concepts thus falling in the “hybrid” category.
Noteable generative optimization algorithms are Particle Swarm Optimization (PSO) [50],
Iterative Closest Point (ICP) [8], Levenberg-Marquardt [56] and Gauss-Newton [31] among
others, while discriminative algorithms include Support Vector Machines [90] and Random
Forests [88]. Depth data allowed many 3D hand tracking methods to utilize nearest object
or blob segmentation [30, 58, 64] while others utilized RGB skin detection [61, 81] or mark-
ers [76] to a similar end. The advent of NNs caused a transition to RGB that for hands
started taking place in 2014 after the influential work of Tompson et al. [96] that presented a
convolutional neural network (CNN) for 2D joint localization leading to methods like Zim-
mermann et al. [106] that tackled 3D hand pose estimation from RGB paving the way for
recent NN methods [34, 68, 87, 94] that continuously improve the state of the art.
3D body pose estimation: Notable works include LCR-Net [77, 78], VNect [62], XNect [63]
and a multitude of other neural network (NN) approaches to tackle the problem [22, 49, 71,
91, 93] that led to more recent works like MoVNect [43], MotioNet [82] and PoP-Net [35].

We use the core architecture of MocapNET [72, 73] which we adapt to a different domain
to create a novel 3D hand pose estimator, improve in terms of accuracy and performance on
the original body estimation task and fuse in a hand+body method that handles both. The
conceptually closest combined hand+body methods that perform the same task as we, are
“Monocular Total Capture” [101] and Frank Mocap Hand+Body [80], however we deal with
missing subhierarchies, achieve superior computational performance and output accessibil-
ity. 3D output models employed by methods exhibit incredible variety, since most use their
own internal models. Popular common choices are MANO [79] for hands and SMPL [59] for
bodies. Some use combinations like [101] with SMPL + frankenstein hand model [48]. Our
method uses the BVH [65] open standard with a motionbuilder [44] armature. We can thus
render our results using popular open-source tools like Blender [9] and MakeHuman [60].

3 Methodology
An illustrated outline of our method is presented in Figure 1. RGB frames from a monocular
camera are first converted to 2D joints using a real-time body+hand 2D joint estimator. For
our experiments we selected OpenPose [29] due to its robustness. The estimated 2D joints
are then encoded as enhanced Normalized Signed Rotation Matrices (eNSRMs), a descriptor
analyzed in the following paragraphs, and in-turn fed to NN ensembles that directly derive a
3D pose in a BVH container. Since every encoder of our ensembles (Figure 2) is condition-
ally independent, we expect only sporadic regression errors on the vector of BVH results.
To correct these imperfections and enable personalisation for specific hand/body types and
camera setups we perform a final fine tuning step using Hierarchical Coordinate Descent
(HCD) [73]. The resulting output vector can be immediately consumed by an application,
stored as a BVH file or be transmitted over WiFi to a device like a VR-headset.
Enhanced Normalized Signed Rotation Matrices (eNSRMs) for bodies:

We observe that the Normalized Signed Rotation Matrices (NSRMs) [73] of the baseline
method have diagonal elements that are not utilized. We proceed to fill them with distance
features in an attempt to enrich the descriptor without inflating parameter count. We coin the
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Figure 2: A NN encoder that regresses one d.o.f. of our problem. 319 hand 2D joint and
eNSRM input values are regressed through 12 densely connected layers to a single BVH
rotation angle. All layers except the final linear layer use SWISH [74] activations. Concate-
nating 34 such encoders with some structural constants yields a full BVH 3D hand.

“enhanced” NSRM descriptor as “eNSRM” to disambiguate it from the original NSRM.
An eNSRM associated with M joints is derived as follows. The coordinates (ax,ay) of

each used 2D joint a are normalized to the input frame dimensions and are thus bounded
in the range [0,1]. Each joint is also associated with a visibility parameter av provided by
thresholding the 2D joint confidence values (with a 0 marking an occluded joint and 1 a
visible joint). For each pair of visible 2D joints a = (ax,ay), b = (bx,by) we can define a new
point c = (bx,by− | b−a |) that is the point b translated vertically by the length of vector ab.
Using the three points a,b,c we can encode the relation between points a and b as well as
their relative rotation towards a fixed vertical axis as follows:

eNSRM(a,b) =
{

tan−1((|~ab× ~cb|)/(~ab · ~cb) a 6= b,
|~aR| otherwise,

(1)

where · and × denote inner and cross products, respectively. Each resulting eNSRM(a,b)
angle is invariant to 2D point cloud translation and scale. The representation encodes the rel-
ative position of joints (albeit using the rotation formed from triangle ab̂c), as well as orien-
tation (since bc is parallel to the Y axis of the world). In contrast to the original NSRM [73]
derivation, diagonal matrix elements (a = b) contain Euclidean distances from the R root
joint, better encoding features that provide hints for the scale of the observed points intro-
ducing some resemblance to encoded Euclidean distances of EDMs [100] and NSDMs [72].
Enhanced Normalized Signed Rotation Matrices (eNSRMs) for hands: Our hand model
follows the MakeHuman [60] skeleton definitions and each of its five fingers consists of
four joints. We use the final three joints of each finger plus the wrist location to build our
eNSRM. This joint selection yields a total of M = 16 2D input points J2D = {p1, ..., p16}.
Out of those, we treat the wrist p1 as our special root point R and the rotation angle of
the wrist to middle finger proximal phalanx compared to the world Y axis as our Rr root
rotation. The eNSRM matrix we described above was capable to be used as a body pose
descriptor in constrained orientation scenarios like 2 way [72] or 4 way [73] orientation
grouping. However, hands exhibit a much larger variety of 3D rotations in space compared
to human torsos that are typically upright. In our effort to disencumber the neural networks
from the harder task, we perform an affine 2D rotation of all 2D joints using the inverse root
point orientation −Rr. This brings the wrist to middle finger vector to an upright orientation
parallel to the Y world axis. We record Rr and store it to the first (previously empty) diagonal
eNSRM element. Using this transformation hand poses become 2D rotation invariant except
for their first element. The problem resolved with eNSRMs can be better understood with
the following example. Assuming a hand pose, if we perform affine rotation of the observed
2D joints, we get NSRM matrices with large changes in all elements even if no articulation
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change occurred. All this variability has to be correctly handled by the NN despite essentially
encoding the same pose. eNSRMs are decorrelated from 2D rotation while allowing the
absolute 3D rotation of the hand to remain retrievable by the NN via the first element.
Overcoming the need for orientation classification: A major architectural design decision
in MocapNETs [72, 73] is to partition pose space in bounded orientation classes. This per-
mits training of ensembles that deal with subsets of the 3D pose estimation problem. As a
result, NN encoders become better specialized in distinguishing between similar poses. The
original MocapNET method [72] featured 2 partitions, front and back, while its improved
version [73] split orientations in 4 quadrants further reducing the scope of the problem han-
dled by each ensemble. Our initial tests followed the 4-way partitioning of [73]. However,
it quickly became apparent that even with the eNSRM descriptor that mitigates 2D rotation
variances, observed hands exhibited a much larger root 3D orientation variability compared
to the body pose problem. Initial efforts to treat the problem in a divide-and-conquer fashion
like [72, 73] led us to partition orientation space in 3D using an icosahedron solid with the
goal of training an ensemble for each of its twenty faces. Despite the best of our efforts
this approach overly encumbered the classifier creating a central point of failure for the pose
estimation of each hand. The best orientation classifier we where able to train achieved a
mediocre 82% classification accuracy on our randomized training data. Furthermore, train-
ing times and runtime memory demands increased twentyfold. Thus, we opted to forego
orientation classification and instead, increase the capacity of the ensemble.
The neural network ensemble: General NN improvement strategies include deepening
and increasing layer parameter counts for improved network capacity. Attempting this in a
densely connected network like [72, 73] however is not straightforward. Dense network pa-
rameter counts increase exponentially with added hidden layers and their ensembles quickly
become bulky, difficult to train and slow to execute. At the same time, an other adverse
effect of “full layer connectivity” is over-fitting. Even applying strong regularization via
dropout [7] at a high rate of 30% we get diminishing returns after 5 dense layers.

Techniques to deepen networks typically improve information flow like Highway Net-
works [86]. Works like Deep Residual Learning [38] create residual learning blocks that
achieve this effect via alternative data paths or similarly [42] consists of dense blocks punc-
tuated by convolutional and pooling layers. Keeping these works in mind and influenced by
the study of Bianco et al. [27] that highlights the high accuracy and low resource consump-
tion on ResNets and Densenets, we attempt to fuse and combine their designs. After nu-
merous experiments with variations of the original architecture [72] we successfully extend
MocapNET encoders by stacking dense layers that feature residual connections to remedy
vanishing gradients. We retain the beneficial high dropout [67] to deal with over-fitting and
partly corrupted/missing input data in cases of occlusions. Figure 2 illustrates our proposed
architecture, a hybrid of the above mentioned design elements.

Our proposed architecture also employs the SWISH [74] activation function. This con-
sistently improved training accuracy compared to the SNN [51] function of [72, 73] by 0.1◦

up to 1◦ in each recovered d.o.f. During the course of development of our method we also
experimented with MISH [66], however despite its superior accuracy in benchmarks like
Cifar-10 [53] we found it not to perform better in our problem.

Each proposed hand encoder (Figure 2) has 149,288 parameters. Although the BVH
hand armature we use consists of 73 d.o.f, some joints are structural while other d.o.f. are
immobile due to the human bone and tendon structure. For example, human fingers can’t
twist. Thus 34 trained encoder outputs for the aggregate hand ensemble that use ≈ 5.0M
parameters (a number suitable for CPU execution) are enough to regress a 3D hand.

Using the same architecture for the upper/lower body pose ensembles, the aggregate body
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Figure 3: Our method accurately tracks the variety of hand poses featured on the STB
dataset [24] achieving a mean average 3D joint error of 9.9mm.

ensemble amounts to ≈ 13M parameters a number on par with the employed baseline [73].
This is the case because our eNSRM descriptor features the same total number of input
elements with NSRMs and because the layers and residual connections we introduce are
added to a relatively narrow part of the encoders that does not overly inflate parameter count.
Regressing more than one d.o.f. with a single encoder: Each employed encoder (Figure 2)
regresses 1 d.o.f of the BVH output. This design decision may initially look counter-intuitive
given that we aim at a compact real-time system. What is more, since all encoders share the
same inputs, it is reasonable to assume that subgroups of initial hidden layers of the final en-
semble may encode common intermediate representations of the input that could possibly be
merged (similar to autoencoder [6] internal organization). To investigate potential room for
improvement we attempted regressing multiple d.o.f. via a single encoder with experiments
summarized in Table 4. We regress 1, 2, 3 and 5 d.o.f. using a single encoder, and measure
the impact on accuracy achieved on the STB dataset without the HCD step for clear results.
We observe that accuracy degrades as more outputs are added. The average 3D joint error
increases by +2mm for groups of 2 d.o.f., +7mm for 3 d.o.f. and +9mm for 5 d.o.f. Accom-
modating 2x, 3x, or 5x times the d.o.f using the same number of weights is harder both due
to the finite network capacity as well as due to training difficulties. In contrast to classifica-
tion tasks where neural networks typically use categorical cross entropy loss functions, all
values have the same magnitude and only one of the the outputs is active for each sample, in
our 3D pose regression problem all values fluctuate in different rates and ranges at the same
time and not necessarily in a correlated fashion. Since the loss function for our regression
problem is MSE, calculated gradients and therefore the whole mini-batch SGD [39] pro-
cess will be negatively impacted due to mismatched outputs grouped together. For example,
grouping 2 outputs on each encoder, the second encoder will have to regress both a BVH
z-position value in millimeters as well as a rotation value of the hand that has a resolution
that is orders of magnitudes smaller. More outputs make this training problem increasingly
ill-posed. Although there is theoretical interest on the topic of multiple target regression [3]
along with potential benefits, the ensemble architecture with encoders that handle one d.o.f.
each proves a sensible choice for our problem that allows finer training control.
Leveraging hand symmetries: We observe that left and right hands have the same 2D
projections when mirrored. We leverage this total symmetry on the X axis to our advantage.
Instead of dealing with each one as a separate entity we perform an X flip on the right
hand normalized 2D coordinates, by converting each point (ax,ay) to (1− ax,ay). After
this operation, a 2D right hand appears identical to a 2D left hand and we can proceed to
execute the rest of the pipeline and regress it as such. The BVH output of the NN needs
sign inversions in the X position, Y rotation and all finger articulations to be converted back
to a 3D right hand output. An advantage of this approach is no bias while treating left or
right hands since they are regressed with the same network. We also halve runtime memory
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Figure 4: Qualitative results on hands+body. 1st row: Results on VR sessions on
Elixir/Hand Physics Lab. Row 2: Results on SIGNUM [99] dataset Row 3: Results from
the Leeds Sport Dataset [47]. Row 4: Pose estimation results in YouTube clips.

requirements and training time since we only need to perform it for left hands.
Training of the ensemble: We use the Tensorflow 2 [19] deep-learning framework, the
RMSProp optimizer with batch sizes of 128 samples, learning rate of 0.00013, e = 10−6

(see [16]) and train each encoder for 45 epochs (see [14]). The loss function is mean squared
error (MSE) between ground truth and each 3D joint rotation prediction. Our training order
follows the hand joint hierarchy order. We start from the wrist and progressively go through
each finger from pointer to pinky with the thumb trained last. Each encoder for each d.o.f. of
each joint is trained separately but initialized using its parent’s network weights in an attempt
to transfer knowledge previously acquired on our training session and to avoid trying to win
the randomized initialization “lottery ticket” [32] for each and every encoder. We terminate
training if loss improvement is less than 0.001 in 5 or more consecutive training epochs.
We also use model checkpoints [15] as an extra precaution against over-fitting selecting the
weights that achieved minimum loss in the training session regardless of chronological order.
Weakly-Supervised training dataset generation: In contrast to the baseline [72, 73] that
employed BVH MOCAP [36] from the Carnegie Mellon dataset [98] we could not identify
a similar BVH source for hands. In addition, research shift towards weakly/semi supervised
methods [11, 69, 85], the need for dataset filtering [73] and works that use MOCAP data
just to extract rotation limits [4] prompted a weakly supervised approach. Studying the
literature we find anatomically correct hand [17] and wrist [83] kinematic models which we
enforce in our random pose generator. Our baseline [73] relies on 2.2M samples for each
ensemble. This amounts to 8.8M samples covering all orientations. After several tests we
end-up with the following randomization scheme. All added hand poses feature randomized
3D positions and rotations. We add 2M fully random poses, 200K with all finger d.o.f. set
to zero and 600K with a naturally open hand and no finger movement. Finally each finger
gets 400K uniform random poses with all other fingers open and 400K where the rest of the
hand is closed. This randomization scheme emphasizes learning of 3D orientation, ensures
all fingers receive equal training samples and yields a total of ≈ 7.2M samples, a number
close both to the baseline sample number and our technical CPU/GPU memory limitations.
Pose fine-tuning: We adopt the Hierarchical Coordinate Descent (HCD) [73] as the final re-
fining step of our pipeline. In comparison to other solvers like CERES [26] or FABRIK [5],
HCD is purposefully built to deal with the sporadic conditionally independent errors en-
countered in the output of our NN ensemble. We define 6 kinematic chains C with C2 to C6
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Figure 5: Left: Hand pose estimation accuracy on STB [24] and RHD [106] for increments
of synthetic Gaussian noise. We observe that the impact of 2D noise is less pronounced
compared to the impact of non-temporally cohesive poses. Right: Proposed body pose
method accuracy on H36M [45] for increments of synthetic Gaussian noise vs baseline [73].
We observe consistent accuracy improvements despite the lack of an orientation classifier.

corresponding to each finger. In contrast to the baseline body [73] estimation that always
executes on the same chains, we implement a logic switch that alters C1 from standalone to
holistic operation depending on occlusions. In case of an upper body present in our observa-
tions, C1 begins at the shoulder joint including elbow, wrist and finger metacarpal bones as
end points. If 2D observations carry no body information C1 begins at the wrist extracting an
absolute 3D orientation of the hand.Thus, C1 acts as a mediator chain, propagating knowl-
edge of the upper body to hands and vice versa. Regardless of C1, HCD concurrency is not
affected since e.g. hand optimization has no bearing in lower body results. Dependencies
only rise on upper body+hand execution but we are still able to execute all HCD sessions in
parallel syncing solution updates on each iteration for 35 HCD iterations of 30 epochs each.

We introduce two novel sets of optimization limits to enhance HCD [73]. The first set en-
forces mechanical hand limits as hard constraints across all updates. This guarantees output
in the range of valid rotations. The second set increases HCD efficiency. We often observe
exploding gradients that needlessly occupy CPU time since despite error diverging HCD ex-
ecution continues. To combat this, we note loss/MAE achieved for each NN hand encoder
which informs us about the average expected HCD correction. Using training MAE as a
delta limit for each HCD epoch, gradient explosions are suppressed improving efficiency.

4 Experiments
For the quantitative assessment of our method we relied on well-established standalone hand
and body pose datasets. This is possible due to our formulation that can addresses them
in isolation. For qualitative evaluation we use a number of diverse use cases. We record
VR sessions in retail applications to ensure realistic scenarios, we showcase our method on
the SIGNUM dataset [99] that has a variety of distinct sign language gestures. We attempt
body+hand pose estimation at the Leeds Sports Dataset [47] since hand pose has not been
considered at it. Finally, we capture challenging performances “in-the-wild” from YouTube.
Quantitative hand pose estimation experiments: Our method’s compositionality allows
hand tracking execution isolated from the rest of the pipeline. This allows experiments that
can compare our method with standalone 3D hand pose estimators. The STB [24] dataset
features a variety of hand poses recorded using a depth camera with annotated ground truth.
Position of the root joint and global scale is aligned to ground truth in the literature [101, 106]
a practice we also follow for comparable results. A dataset issue is that it features a palm
joint instead of a wrist. Most hand models, including our own, feature wrist joints since
armatures mimic the natural bone structure of hands. Following the literature, we handle this
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Input Dir Dis Eat Gre Pho Pos Pur Sit Smo Pho Wai Wal Dog WaT Sit. Avg

Our Method 71 78 107 86 98 79 113 121 99 98 84 100 122 104 138 99
MNET20 [73] 76 93 107 88 102 86 143 147 104 111 97 96 143 88 162 108
MNET19 [72] 135 140 145 143 153 137 174 215 156 150 151 156 166 134 246 160

Table 1: Comparison of our method with the baseline on body pose estimation. Methods are
trained on CMU and tested using H36M Blind Protocol 1. All numbers are in millimeters.

[72] [18] [52] [10] [104] [103] [73] [105] [92] Our [25] [95] [49] [77] [13] [20] [21] [89]
160 119 118 116 113 108 108 107 101 99 93 88 88 88 82 80 72 40

Table 2: Comparison of 3D body estimators on H36M Protocol 1 (Method / MPJPE in mm).

palm/wrist dislocation via linear approximation between the wrist and metacarpal [24, 101]
and do not consider the wrist joint in error calculations. We achieve a mean average error
(MAE) in the sub 10mm zone. STB dataset poses are consecutive and use only the left hand.
We test on the RHD dataset [106] that has no temporal continuity and features both hands
to gain more insight on our method accuracy. Our method manages to retain a MAE of
25.37mm indicative of the expected accuracy and rate of recovery in cases of abrupt multi-
frame hand occlusions. The Percentage of Correct Keypoints (PCK) curves are reported in
Figure 5 and comparison with other methods is summarized in Table 3. Despite an average
3.22 mm higher STB error than SOTA we manage an excellent accuracy / performance ratio
since the only other real-time method of Table 3 is [46], it uses GPGPUs, and we achieve
similar frame-rates to it on CPU-only execution while also computing the body pose.
Quantitative body pose estimation experiments: We “back propagate” our methodologi-
cal improvements for hand pose estimation to the body estimation task. Evaluation is per-
formed on the H36M dataset [45] through mean per joint estimation error (MPJPE) after
Procrustes alignment [33] compared to ground truth. We use the Blind P1 [72, 73] protocol
to have results that are directly comparable with [72, 73]. Table 1 offers an accuracy break-
down for H36M exhibiting improvements across most tasks. Results reveal an error reduc-
tion of 9% relative to the baseline [73] despite the 51% frame-rate increase from 70Hz [73] to
106Hz. Table 2 shows our accuracy compared to competing body pose estimation methods.
Ablation study: We perform experiments to examine the 3D hand pose estimation accuracy
effects of HCD, training sample size, eNSRM vs NSRM [73] descriptors, SELU [51] vs
SWISH [74] activation functions and multiple d.o.f. regression via the same encoder. Due
to space limitations, the detailed results have been published along with the project source
code [1]. We observe (a) the importance of HCD, particularly in temporarily cohesive input
like STB [24], (b) that larger randomized sample sizes improve resulting trained encoders
especially using the more complex eNSRM descriptor, (c) that SWISH and SELU perform
similarly and (d) that while regressing multiple d.o.f. from each encoder is feasible, it quickly
degrades output accuracy as more d.o.f. share the capacity of a single encoder.
Qualitative results in VR scenarios: We employ two retail Oculus Quest VR applications,
Elixir and Hand Physics Lab (HPL), for qualitative assessment of our method. They are

[106] Our [68] [102] [84] [34] [46] [94] [87]
RHD 30.42 25.37 20.89 19.95 19.73 17.11 15.77 15.61 13.88
STB 8.68 9.93 7.95 8.66 8.56 7.27 - 6.93 6.71

Table 3: Comparison of 3D hand estimators tested on RHD/STB (Method / MPJPE in mm).
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1 Output 2 Outputs 3 Outputs 5 Outputs
STB 18.28 19.80 25.58 27.03

Table 4: Multiple output regression experiments via a single encoder on STB [24] (Method
/ MPJPE in mm). We do not perform the HCD step to measure the unskewed NN result. We
observe deteriorating accuracy as more outputs are regressed using the same encoder.

both state of the art in terms of the provided onboard VR hand tracking experience and
feature a variety of interesting to track in-game tasks and interactions. Elixir takes place in
a room-sized space requiring lateral movement while HPL doesn’t since all in-game objects
are within arms reach. Our camera faces the user in the initial orientation of the application
when it first loads. Testing both scenarios allows us to study our method while controlling for
body pose variations. We observe high fidelity 3D BVH skeletons throughout the activities.

Qualitative results in sports: Leeds Sport Dataset [47] consists of standalone frames depict-
ing various sport activities with no temporal, subject or activity cohesion. It bears similarities
to RHD [106] albeit targeting bodies with non synthetic images. Our method accommodates
this challenging task extracting BVH skeletons including hands for the first time.

Qualitative results in sign language: The SIGNUM dataset [99] is a multi person monocu-
lar RGB dataset designed for sign language system training. We use it to qualitatively test our
hand+body pose estimation ensemble with its fast, complex and challenging sign language
gestures. Our method manages to generalize across multiple users of different genders and
body types and we observe high fidelity 3D pose capture. The lower-body is constantly
cropped out of the input feed, testing the ensemble occlusion tolerance properties [73].

Qualitative results in in-the-wild Youtube videos: We browse YouTube and collect videos
that contain dancing and instrument performances that show interesting body and hand mo-
tions. We proceed to successfully track them despite the videos exhibiting unknown camera
setups, rapid camera changes, rapid motions, self-occlusions and motion blur.

Sample qualitative results are illustrated in Figure 4. More results appear in the supple-
mentary video [2] accompanying this paper.

5 Discussion

We successfully adapted a body pose estimation method to tackle the hand pose estimation
problem. The proposed methodological novelties not only allowed us to achieve this goal,
but yielded improved results on the original body pose estimation problem. The combined
human+body pose estimation ensemble we propose has many interesting properties. Hierar-
chies that are occluded or very far can be dropped from execution without impacting visible
parts, output is directly derived in the popular BVH file format making the method accessible
to a wide audience and its resource efficiency allows it to be deployed on generic PCs match-
ing most RGB webcam frame-rates. We performed quantitative evaluation of the proposed
method in standard hands-only and bodies-only datasets. We also tested its performance in
a number of use cases including VR, sports tracking, sign language and other challenging
scenarios. Future research could extend the ensemble with a facial encoder. Facial controls
are already present in our BVH skeleton, albeit currently not populated. This could extend
the method to a real-time body+hands+face 3D estimation stack from monocular RGB.
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