
TINCHEV ET AL.: XRCNET 1

XResolution Correspondence Networks

Georgi Tinchev1

gtinchev@robots.ox.ac.uk

Shuda Li2

shuda.li@xyzreality.com

Kai Han3

khan@robots.ox.ac.uk

David Mitchell2

david.mitchell@xyzreality.com

Rigas Kouskouridas2

rigas.kousk@xyzreality.com

1 Oxford Robotics Institute
University of Oxford
Oxford, UK

2 XYZ Reality
London, UK

3 Visual Geometry Group
University of Oxford
Oxford, UK

Abstract

In this paper, we aim at establishing accurate dense correspondences between a
pair of images with overlapping field of view under challenging illumination variation,
viewpoint changes, and style differences. Through an extensive ablation study of the
state-of-the-art correspondence networks, we surprisingly discovered that the widely
adopted 4D correlation tensor and its related learning and processing modules could
be de-parameterised and removed from training with merely a minor impact over the fi-
nal matching accuracy. Disabling these computational expensive modules dramatically
speeds up the training procedure and allows one to use 4 times bigger batch size, which
in turn compensates for the accuracy drop. Together with a multi-GPU inference stage,
our method facilitates the systematic investigation of the relationship between match-
ing accuracy and up-sampling resolution of the native testing images from 1280 to 4K.
This leads to discovery of the existence of an optimal resolution X that produces accurate
matching performance surpassing the state-of-the-art methods particularly over the lower
error band on public benchmarks for the proposed network.

Figure 1: XRCNet highlights: Left tuple: The heatmaps represent the confidence of the
location of the query key point (’a’ on row 2 column 3) in the source image accurately
pinpointed in the target image (blue - low confidence, red - high confidence) even with chal-
lenging repetitive patterns of the letter ’a’ at low resolution (left) compared to high resolution
(right). Right: XRCNet without using any geometric constraints can produce state-of-the-art
matching accuracy and can reliably match under extreme illumination and style differences.
© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Establishing dense image correspondences is a fundamental problem for many computer
vision applications, from Structure-from-Motion (SfM) [1, 48, 49], visual Simultaneous Lo-
calisation and Mapping (SLAM) [37] to image retrieval [22], image style transfer [15, 30],
and scene understanding [5, 10]. Traditionally, image correspondences are found through a
sparse detection-description and matching pipeline. Particularly, a key point detector [16, 44]
is first used to collect a set of sparse interest points from input images while a feature descrip-
tor [3, 25, 33] extracts a unique description of a local image patch centred at the detected
key point location. In the end, the point correspondences between the query image and the
reference one are calculated by searching the candidate matching pairs for small descriptor
distances or using the ratio test between the best and the second best matches [33].

In the last few years we have witnessed a dramatic improvement over all stages of the
sparse correspondence pipeline mostly using machine learning [11, 12, 41, 41, 53]. In ad-
dition to the feature detectors and descriptors, the matching stage has also been extensively
studied and new algorithms taking into account both inter-image and intra-image constraints
make the matching stage more reliable than before [34, 45, 53, 60]. However, sparse cor-
respondence methods are not straightforward to be adapted to produce per pixel matches
which are often required for image warping, style transfer, or dense 3D reconstruction. A
naive extension from sparse methods, for example, is to densely extract feature descriptors
and use brute force matching. However, this is prohibitively expensive for high resolution
images. Furthermore, to achieve the best performance, the detection-description and match-
ing pipeline typically requires each stage to be trained separately, which introduces extra
difficulties when being deployed to new sensory data. For example, the top performer on
the visual localisation benchmark [61] combines the SuperPoint (SP) [11] and SuperGlue
(SG) [45] and the SP detector-descriptor has to be trained separately with SG.

In contrast, the dense correspondence methods [32] and particularly Deep Correspon-
dence Networks (DCN) [9, 38, 42, 43, 56, 59] that emerged in recent years, represent a
highly competitive alternative for their capability of producing good quality per pixel cor-
respondences. DCNs also unify the detection-description and matching pipeline into one
single architecture using standard feature backbones such that it can be trained end-to-end.
Moreover, DCNs are shown to be able to quickly adapt to images of high resolution or larger
feature maps while being deployed into consumer products [17, 28, 42, 43, 56].

In this paper, we present a novel dense correspondence methodology that is capable
of processing high resolution images and produce reliable and highly accurate matching
results as shown in Fig. 1. More importantly, light-weight correspondence networks allows
us to investigate intriguing questions for all DCNs: Does up-sampling of the testing image
always lead to higher accuracy? If not, does an optimal resolution X exist? In this work,
we introduce XResolution Correspondence Network (XRCNet), a light-weight architecture
designed to answer these questions while achieving state-of-the-art performance.

Our work is directly inspired by the recently introduced strategy of using extensive ab-
lation studies to either achieve more accurate visual representations [6] or highly impact-
ful training procedures or architecture refinements that improve model accuracy [20]. Ap-
proaching the dense correspondence problem with the same strategy, we start by carrying out
extensive ablation studies with various training configurations over the state-of-the-art dense
correspondence networks and made several key observations. First, the widely adopted 4D
correlation tensor and its related filtering modules [17, 42, 43, 56] can be de-parameterised
and even removed from the training stage at the cost of a small drop in accuracy. Sec-
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ond, switching to a much shallower feature backbone also has limited impact to the overall
matching results. Third, the combination of the first two discoveries results in the light-
weight XRCNet. During the training stage, XRCNet enjoys a significantly smaller memory
footprint and much higher speed than the state-of-the-art methods (see Tab. 1). This allows
us to use 4 times larger batch size and increase the number of epochs within roughly the
same amount of training time using the same hardware. The latter compensates for the slight
deterioration of the accuracy levels. When combined with a multi-GPU inference method, it
allows us to evaluate the matching accuracy of XRCNet using image size up to 4K, by which
we discover the existence of an optimal up-sampling resolution for XRCNet to achieve the
best accuracy. Interestingly, increasing the resolution is not always beneficial possibly be-
cause the relative size of the receptive field to the image might decrease, which then renders
the network prediction less accurate. The contributions can be summarised as follow:

• We carried out an extensive study over state-of-the-art DCNs and made several key
observations that lead to the introduction of a simple and light-weight multi-resolution
neural network architecture named as the XResolution Network (XRCNet).

• XRCNet is capable of training with much larger batch size and faster per image learn-
ing speed. During inference, XRCNet can take in images with higher resolution than
most of the previous work and allows us to search for the optimal resolution X to
up-sample the testing image for a correspondence task.

• XRCNet achieves state-of-the-art accuracy on two challenging datasets — HPatches [2]
and InLoc [51], while performing competitively on Aachen Day-Night [46, 47].

2 Related work
The correspondence algorithm is a basic building block in computer vision which is widely
explored. Existing methods range from sparse to dense correspondence estimation. Sparse
correspondence algorithms typically adopt the three-stage pipeline of detection-description
and matching. Each stage has received extensive research focus over the last two decades.
For key point detection and description, handcrafted methods SIFT, SURF, BRIEF [3, 4, 33]
and their variants [25, 50] were introduced for first detecting, then describing and finally
matching a sparse set of key points. Taking into account the local region around each key
point, a feature vector of floating points or binary numbers can be extracted to uniquely rep-
resent the key points for feature matching or scene description [13]. Most of the modern
descriptors [12, 34, 41, 52, 53, 58] focus on data-driven learning approaches, while evaluat-
ing the matching performance of descriptors is performed either by measuring the distances
between a pair of descriptors or through the ratio test [33]. Modern matching approaches
take into account the constraints between feature descriptors to enhance the matching success
rate [45, 60]. Particularly, SuperGlue [45] explores the inter/intra-image information.

Sparse correspondence algorithms achieve efficiency by attending to a small set of salient
points in the images, however, for applications such as SfM [48, 49], style transfer [56] or
view synthesis [40] where per-pixel correspondence maps are often required, simply scaling
up the sparse approach becomes prohibitively expensive. In contrast, dense correspondence
approaches focus on bridging this gap. One of the earliest dense methods [32] uses dense
feature descriptors and regularising within the local region to achieve a consistent dense
flow field. In recent years, deep semantic correspondence networks [18, 21, 24, 27, 35,
42] have demonstrated the potential of densely associating key points between a pair of
input images. However, as these approaches focus on matching high level regions, they
either require a large number of feature channels, typically larger than 1024 [24, 35, 36], or
build on top of the 4D correlation tensor and expensive 4D filtering [21, 27, 42]. This fact
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Figure 2: The architecture of XRCNet. The deep correspondence neural network follows a
Siamese-like structure. Each branch is composed of a feature encoder (yellow) and FPN-like
decoder (gray blocks). From the coarse layer of FPN, a 4D correlation tensor is calculated
(green) and filtered by two mutual matching (MM) layers to get the filtered 4D tensor (or-
ange). Given a query key point from the source image (bottom left), the corresponding
features are selected from the FPN coarse layers and query into the 4D tensor.

makes it very difficult to scale up to higher image resolutions, which is critical for accurate
data association [28, 42, 43]. SparseNC overcomes the scalability problem by projecting
the memory consuming 4D correlation tensor into a sub-manifold and uses the Minkowski
convolution [8] to approximate the 4D filtering, however, the approximation reduces the
performance of the network. DualRC [28] keeps the original 4D correlation tensor in its
original space, but relies on a coarse to fine re-weighting mechanism to guide the search
in a fine resolution correlation map for the best match. In this work, we further reduce the
network redundancy by limiting the operation of the 4D correlation tensor. Combined with
a much shallower feature backbone, our proposed approach can process images with higher
resolution than all previous dense networks on the same hardware setup.

Establishing dense correspondences is also relevant to stereo networks [55], deep visual
odometry [57] and dense optical flow [55] since these algorithms also involve calculating a
dense flow field associating two images. However, the stereo matching often assumes the
input views are rectified so that the images are captured under the same lighting condition,
while the viewpoints are relatively close to each other, which can be viewed as a simplified
version of the correspondence problem. Similarly, both the tasks of optical flow estimation
and visual odometry are considered to be much more constrained than the general corre-
spondence problem, since both assume that the viewpoints of the input images are close
both temporally and spatially in terms of the 6D manifold of the camera poses.

3 Methodology
In this work we present a new dense correspondence methodology working with input im-
ages of higher resolution than any other state-of-the-art dense method and attaining higher
accuracy particularly for small error bands. In this section, we first describe the DCN frame-
work illustrated in Fig. 2, then the redundant module is ablated to form the XRCNet.

Given a pair of images I and I′, we want to estimate a per-pixel correspondence map
that associates a 2D key point from the source image (x,y) ∈ I to a point in the target image
(x′,y′) ∈ I′. To reliably associate the point, we first adopt a standard multi-level feature
backbone F = f (I;θ0), where θ0 are learnable variables. Particularly, F = {F f ,Fc} where
F f ⊂ RC×Ω f is one layer of the feature map within a 2D domain Ω f and Fc ⊂ RC×Ωc is
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another layer of the feature map within Ωc. Subscripts f and c represent the fine and coarse
resolutions, while C stands for the number of feature channels. Previous works [28, 42, 43,
56] make use of a 4D correlation tensor C ⊂ RΩ×Ω′ , where C(x,y,x′,y′) = F(x,y)>F′(x′,y′).
Note that all values in the feature maps are positive due to the ReLU activation layer in
the feature backbone f (·) immediately before calculating the correlation. The features are
typically normalised along the channels — ‖F(x,y)‖2 , 1 and thus the dot product of two
feature vectors is within the range [0,1]. The 4D correlation tensor represents all possible
candidate matching pairs from the source to the target image.
3.1 Neighbourhood consensus
Initially introduced in NCNet [42], a set of 4D convolutions with learnable variables is
trained to filter the noise from the raw correlation tensor. The local 4D volume contains
all possible matching pairs within the neighbourhood of the source and target image from
which a filtering process is employed in order to collect consensus from them. Neighbour-
hood Consensus (NC) filtering can be formulated as Ĉ = N(C;θ1)+N(C>;θ1)

> where N(·)
represents the NC filtering consisting of a sequence of 4D convolution layers. C> is the
permutation operation such that C(x,y,x′,y′) = C>(x′,y′,x,y) and θ1 are the learnable parameters
in the NC filtering. The first term corresponds to the matching direction from source to the
target and the second term from target to the source. Since the matching direction is inde-
pendent of the filter weights, θ1 is shared by the two filtering stages. The result Ĉ has the
same dimensionality as C that contains the filtered correlation scores.

To improve accuracy soft Mutual Matching (MM) filtering layers can also be applied
before and after the NC filtering to dynamically adjust the scale of the correlation tensor:

M(x,y,x′,y′) =
C(x,y,x′,y′)

max∀(x′,y′)∈Ω′C(x,y,x′,y′)+ ε
(1)

M′(x,y,x′,y′) =
C(x,y,x′,y′)

max∀(x,y)∈Ω C(x,y,x′,y′)+ ε
(2)

Ĉ(x,y,x′,y′) = M(x,y,x′,y′)C(x,y,x′,y′)M′(x,y,x′,y′) (3)

where ε is an infinitely small value to improve the numerical stability and prevent errors
during the degenerating scenario when the maximum correlation in a domain is 0. In prac-
tice we use ε = 1×10−5. The MM layer contains no learnable parameters. As shown in
equations (1) and (2) the MM layer first converts the correlation scores into probabilities by
normalising using the maximum correlations with respect to the target domain Ω′ and source
domain Ω, respectively. The multiplication of M(x,y,x′,y′) and M′(x,y,x′,y′) can be viewed as the
joint probability of matching from source to target and from target to source providing the
matching along both directions are independent. Ablating MM layer reduces matching ac-
curacy possibly because the MM layer adjusts the scores in the correlation tensor (Sec. 3.3).

In the end, given a query point (x,y) ∈ I, the best matches can be found at (x̂′, ŷ′) =
argmax∀(x′,y′)∈Ω′ Ĉ(x,y,x′,y′). The dense correspondence map can be established by calcu-
lating (x̂′, ŷ′) for every pixel in the source image. In addition, the maximum correlation
scores S ⊂ RΩ represent a good indication of the matching reliability, where S(x,y) =
max∀(x′,y′)∈Ω′ Ĉ(x,y,x′,y′). A sub-set of top k reliable matches S = {S}k can be collected ac-
cordingly, or alternatively set a threshold to remove unreliable matches [27, 42, 43].
3.2 Correlation re-weighting
The main bottleneck for the aforementioned NC filtering and MM layer lies in the fact that
the 4D correlation is very expensive to calculate and difficult to scale up. To deal with the
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Table 1: Ablation study on a Tesla V100-SXM2 GPU with batch size of 16, Adam opti-
miser [23], ResNet18, 15 epochs, strong supervision, and test image up-sample resolution of
1.6K. The Sum of Area represents the overall MMA over multiple error bands.

Component/Method DualRC SparseNC NCNet XRC1 XRC2 XRC3 XRC4

4D correlation tensor 3 3 3 3 3 3 7
NC filtering 3 3 3 7 7 7 7
Mutual matching 3 7 3 3 3 7 7
DualRC re-weighting 3 7 7 3 7 3 3
Memory (GB) 6.78 3.73 5.40 4.57 4.25 4.36 4.21
Training time (s) 2.73 0.49 0.73 0.48 0.26 0.35 0.27
Sum of Area 3.90 3.20 3.61 3.65 2.49 3.36 3.26

problem, SparseNC [43] projects the correlation tensor onto a sub-manifold that contains
the top k highest correlation scores for each source or target pixels. The 4D filtering is then
approximated using the Minkowski operation [8]. In this way, the memory footprint can be
dramatically reduced. Higher resolution images can fit into the memory leading to improved
performance. However, such an approximation affects the accuracy as shown in [28]. Li
et al. [28] propose to use a hierarchical architecture where the coarse resolution feature
map Fc is used to calculate the 4D tensor for NC filtering and MM filtering. Then, the 2D
correlation map Cc(x,y)⊂RΩ′c at location (x,y) ∈RΩc is used to guide the searching for the
best matches in the fine feature map by re-weighting the correlation map at the fine resolution
C f (x,y). Specifically, Ĉ f (x,y) = U(Cc(x,y)) ·C f (x,y), where U() is a de-parameterised
up-sampling function, · represents the element-wise multiplication, and Ĉ f (x,y) is the re-
weighted correlation map with the fine resolution. More accurate matches can be localised at
(x̂′, ŷ′) f = argmax∀(x′,y′)∈Ω′f

Ĉ f
(x,y,x′,y′). The correlation re-weighting contains no learnables.

3.3 Ablation study and XRCNet
To better understand the pros and cons of the mainstream DCN architectures, we conducted
an ablation study over several state-of-the-art methods, namely, NCNet [42], SparseNC [43],
and DualRC [28]. The left column in Tab. 1 lists the key modules shared by the DCNs. We
tested the performance of all possible combinations of key modules using the same training
protocol on the MegaDepth dataset [29] following the work of [12] - all baselines are trained
with strong supervision with ResNet18 with 256 channels and hard relocalization [43] for
a fair comparison. Evaluation of feature backbones is presented in Fig. 3, bottom. For
each configuration, we record the average memory consumption, training speed, and overall
matching accuracy. The accuracy measurements are the sum of the area below the Mean
Matching Accuracy (MMA) curve on the HPatches dataset, comprised of challenging scenes
with illumination and viewpoint variation. Fig. 4 c) shows the accuracy of MMA.

From the experiments, we observe that although all the modules of DCN contribute to
the accuracy, they come with a variety of costs. Particularly, 1) the 4D NC filter consumes
nearly 50% more memory and is more than 5 times slower comparing DualRC and XRC1.
SparseNC reduces the expense of NC filter using the sparse 4D correlation with Minkowski
convolution [8] but at the cost of degrading accuracy. 2) The DualRC re-weighting often
plays an important role to the accuracy comparing DualRC with NCNet and XRC1 with
XRC2. 3) Mutual matching layer contributes relative less to accuracy but is also cheap to
calculate comparing XRC1 with XRC3 and therefore we do not remove it. 4) Removing both
NC filtering and DualRC re-weight dramatically increases the speed but also decreases the
accuracy for XRC2 significantly. 5) Removing the 4D correlation tensor, similar to UCN [9],
hurts the performance for XRC4 compared to XRC3. To summarise, we select XRC1 as the
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default architecture of XRCNet, which is about 5 times faster than DualRC but nearly 50%
smaller in terms of memory costs. Also, it allows us to adopt 4 times larger batch size during
training and can run up to 40 epochs in about same amount of time of training DualRC for
15 epochs. Fig. 1 (left) shows qualitative examples of removing the NC module.

The prediction of XRCNet is 2D correlation maps (Fig. 2). The loss can be then cal-
culated using the F-norm between the prediction and the ground truth distribution [17, 27,
28, 56]. Particularly, we get the ground truth distribution by converting a 2D key point co-
ordinate into a Probability Density Function (PDF). Specifically, we assign the probability
of 4 pixels that are the nearest neighbours of the ground truth key point according to their
normalised 2D distance. Then the PDF is further filtered by a 3×3 Gaussian kernel [27]. To
keep the ablation test fair, all the networks in Tab. 1 are supervised using the same loss term.

XRCNet Inference We distribute various key modules illustrated in Fig. 2 over multiple
GPUs during inference to allow images with much larger resolution to be processed effi-
ciently. Together with the low-cost but relatively accurate XRC1, we can address the critical
question of how the input image resolution affects the matching accuracy of a DCN. To this
end, we evaluate XRC1 using various image resolutions ranging from 1280 to 4K (Sec. 4.2).
The source code for training and evaluation is attached in the supplementary material.

4 Experiments
Next, we describe the conducted experiments that evaluate the performance of XRCNet, the
training strategy, and the relationship between the input resolution and matching accuracy.

Implementation details: The XRCNet training and evaluation code is implemented us-
ing PyTorch [39]. For the feature backbone, we mainly evaluated the ResNet101/50/18 [19],
HRNet64/32/18 [7, 54] and the FPN256/128 [31]. The ResNet and HRNet are pre-trained
on ImageNet [26] and kept fixed during all training procedures. The parameters of the FPN
layers are trained from scratch. The configuration of ResNet101 is adopted from [42], the
ResNet18 is truncated after the 3rd layer, the coarse feature map is extracted from the 3rd
layer in the ResNet18 and the coarse layer is taken from the output of layer 1. The FPN
architecture is identical to the original work of FPN [31] except that a ReLU layer is inserted
before the feature normalisation. For HRNet we tested 18, 32, and 64 channels configu-
rations. We truncated HRNet after the third stage in order to keep the input image ratio
identical to ResNet. Here we considered both including and excluding the fusing (transition)
stages. In addition, we use the output of the first branch as the fine feature map and the
output of the third branch as the coarse feature map in order to be consistent to the fine to
coarse ratio we used for ResNet. We train our model using the Adam optimiser with an initial
learning rate of 0.01 and momentum 0.9. The batch size is 64. The learning rate is halved
for every 5 epoch until 15 and remain constant till the 40th epoch. The model with lowest
validation error is adopted for the final evaluation. It is worth pointing out that comparing
with the training in Tab. 1 which only runs 15 epochs and uses batch size of 16 as previous
work, the training with more epochs and a larger batch size result in a much higher accuracy
which can be seen by comparing Fig. 4 b) and the bottom row of Tab. 1.

Training data We adopt the same training protocol as D2Net [12] on the MegaDepth
dataset [29]. MegaDepth includes 196 scenes and the corresponding 3D point clouds created
using SfM [48, 49]. The camera internal and external parameters are also jointly estimated
and provided by the dataset. We follow the same methodology of [12] to extract a sparse set
of ground truth correspondent points. Only image pairs with more than 50% of overlapping
field of view are selected as training pairs (15,070). The validation image pairs (14,638) are
selected from scenes containing more than 500 good pairs. All training pairs are randomly
shuffled to avoid over-fitting to specific scenes.
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Figure 3: Top: Comparison of XRCNet with state-of-the-art correspondence networks on
the HPatches dateset. Bottom: Comparison to different backbone architectures.
4.1 Correspondence Evaluation
HPatches is widely used for evaluating sparse feature matching and dense correspondence
algorithms [2]. It contains two main challenges — the viewpoint and illumination variations
consisting of 56 and 52 sequences of testing images respectively. Each sequence contains
6 images and the first image is matched against the remaining ones. The native image size
is reported in Tab 2. Testing images contain both indoor and outdoor scenes. The ground
truth homography is provided so that the correspondences can be densely evaluated. The
evaluation procedure is adopted from [12, 28, 41, 43] to allow direct comparison with these
baseline methods. The evaluation metric used is the Mean Matching Accuracy (MMA) that
estimates the average number of correct matches over the total number of matches using
top 2000 proposed matches by the testing neural networks, where the correct matches are
defined as the distance between the predicted 2D key points to ground truth. XRCNet sets a
new accuracy standard from the comparative evaluation graph shown in Fig. 3, top.

Table 2: Size statistics for each dataset. The
minimum, mean, and maximum size over
height and width recorded. HPatches — low-
est mean image resolution, InLoc — highest.

HPatches InLoc Aachen

h w h w h w

min 380 512 1200 1200 1063 1063
mean 780 980 2397 2531 1268 1498
max 1411 1536 4032 4032 1600 1600

Aachen Day-Night dataset [46, 47] is a
challenging outdoor relocalisation dataset.
The Day-Night challenge contains 98 night
query images to be relocalised with respect
to 20 day-time candidate images. The per-
formance of XRCNet compared to the base-
lines on the night query images is shown in
Tab. 3, while an example qualitative com-
parison and the produced 2D heatmap in the
reference image are shown in Fig. 5 (right).
We provide 3D reconstruction results of XRCNet and DualRC in the supplementary material.
XRCNet achieves comparable performance to the state-of-the-art, while having a smaller
memory footprint for the used input resolution size and faster inference speed (Tab. 1).

InLoc mainly contains indoor images captured with a different type of sensors [51]. It
is a popular benchmark for evaluating the accuracy of camera localisation with respect to
large variety of indoor scenes. Reference images are obtained with a 3D scanner and the
query images are captured using a mobile phone several months later to introduce extra non-
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Table 3: Evaluation on the Aachen dataset. The localization results are reported as the
percentage of query images which were localized with in the three error bands during night.

Error Band ASLFeat+OANet D2-Net SparseNC R2D2 DualRC-Net SP + SG XRCNet-1.6k

0.25m & 2◦ 77.6 74.5 76.5 76.5 79.6 79.6 76.5
0.5m & 5◦ 89.8 86.7 84.7 90.8 88.8 90.8 85.7
5m & 10◦ 100.0 100.0 98.0 100.0 100.0 100.0 100.0

Table 4: Evaluation on InLoc. Best result is shown in bold and second best is underlined.
The used metric is the percentage of query images which were localized successfully.

Error Band DualRC SparseNC NCNet InLoc DensePE D2-Net R2D2 XRCNet-1.6k XRCNet-3k XRCNet-4k

0.25m & 10◦ 44.1 45.6 44.1 38.9 35.3 43.2 47.3 44.7 46.2 50.2
0.5m & 10◦ 67.5 66.3 63.8 56.5 47.4 61.1 67.2 66.6 67.8 68.7
1m & 10◦ 82.4 79.9 76.0 69.9 57.1 74.2 73.3 79.6 82.4 81.2

static challenges. InLoc contains significant viewpoint changes and illumination variation.
We adopt the evaluation procedure of [51] to find the top 10 candidate database images for
each query image. XRCNet is used to calculate the matches between them, and the final 6D
camera pose is estimated using PnP [14] and dense pose verification [51]. The results are
provide in Fig. 4 a) and Tab. 4 which show XRCNet significantly outperform the others.
4.2 Optimal Resolution X
A common practice to achieve better accuracy in previous works, is to up-sample the original
images to a higher resolution that almost consistently improve the final matching accuracy
[28, 42, 43] as long as the network can fit into the GPU memory. However, up-sampling
the input image to infinity causes issues because the information contained in the original
image is fixed. Increasing the image size implies the receptive field of a deep neural network
will reduce and so will the descriptiveness of the feature maps. Therefore, there must be
an optimal resolution X for a network to achieve its best performance for a given input.
Thanks to the light-weight design of XRCNet and the multi-GPU inference, we ran a series
of experiments to confirm the existence of the optimal X given a pre-trained XRCNet by
varying the up-sampling rate of the testing images.

Particularly, we resize the image of HPatches from 1280 pixels up to 4K (3840×2160)
with fixed aspect ratio and evaluate. Fig. 4 b) shows the total area under the accuracy curve
of MMA. We discover that the best matching accuracy increases with respect to the image
resolution and gradually saturates around the resolution 3k. Using an image resolution higher
than 3k reduces the matching accuracy. The accuracy at XRCNet-3k surpassed the state-of-
the-art DCN performance in the same error band on both HPatches (Fig. 3, top). For InLoc,
XRCNet-4k further surpassed XRCNet-3k (See Tab. 4 and Fig. 4 a)) possibly because of
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Figure 4: (a) Pose accuracy of InLoc measured by the percentage of correctly localised
queries over different distances. (b) Evaluation of the optimal up-sampling resolution. (c)
Quantitative evaluation of Neighbourhood Consensus architectures on the HPatches dataset.
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Figure 5: Left quadrant: top row - ResNet101, bottom row - light-weight ResNet18. Left
column - with NC filtering, right column - without NC filtering. Removing the NC affects
the matching accuracy. Right: the query night image with the chosen keypoint location (red
star) and the corresponding heatmap from a ResNet18 model without NC filtering but using
a high resolution image. The increased resolution balances out the NC filtering issue.
the relatively larger mean native resolution shown in Tab 2. Unfortunately, the XRCNet-
1.6k gives the best performance on Achen Day-Night which is inconsistent. However, we
observe individual cases illustrated in Fig. 5, up-sampling remains effective as the heatmap of
the XRCNet-3k (right) is less ambiguous in the repetitive regions over XRCNet-1.6k (left).
The inconsistent results on Achen Day-Night is possibly due to the much smaller number
of testing pairs compared with other datasets (98 pairs in Achen Day-Night vs 108×5 pairs
in HPatches and 329×10 pairs in InLoc). Based on these analysis, we suggest a validation
set with various image upsampling to define the optimal resolution. In addition, we have
evaluated the testing time and compared to [28]. DualRC-1.6k has a sum area under the
MMA cuve of 3.95, takes 8.3 seconds and 8.7GB of memory to compute. XRCNet-1.6k has
a sum of area 3.83, requires 1.6 seconds and 2.2GB of memory. XRCNet-2.2k has a sum of
area 4.02, requires 5.69 seconds and 4.6GB of memory to compute.
4.3 Feature Backbone
In the end, we show experiments with different feature backbone architectures on HPatches.
We have evaluated the matching accuracy using variant of both the ResNet and the HRNet
backbones. In Fig. 3, bottom, it can be seen that when using ResNet18 and ResNet50,
the performance of DualRC is almost identical to the original DualRC with ResNet101.
HRNet is another candidate we consider to replace the original feature backbone for DualRC.
However, HRNet seems less competitive when integrated with the correspondence network.
We also tested different FPN channels - 128 and 256 despite the relatively small cost. Using
128 channels does not affect the accuracy much, and thus we adopt 256 channels.

5 Conclusion
In this paper, we propose the XResolution Correspondence Network, which is the result of
a systematic study of the state-of-the-art dense correspondence networks. We noticed that
a key component of these networks — the learned 4D correlation tensor — does not have
a huge impact on the performance. Therefore, removing the 4D filtering with learnable
parameters allows XRCNet to learn quicker and enables it to process input images with res-
olution up to 4K. The proposed DCN architecture outperforms state-of-the-art on HPatches
and InLoc, and enables us to investigate the intriguing question if increasing the input image
resolution is always beneficial to matching accuracy. Through extensive experimentation
and a thorough ablation study we observe a saturation of the matching performance over the
optimal resolution X. We hope this work can shed light on how to design efficient and ef-
fective correspondence networks, while acting as a first step towards the interesting problem
how the scale differences in input images affect DCNs.
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