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Abstract

We present a method for verifying the robustness of neural network-based image
classifiers against a large class of intensity perturbations that frequently occur in com-
puter vision. These perturbations, or intensity inhomogeneities, can be modelled by a
spatially varying, multiplicative transformation of the intensities by a bias field. We
illustrate an encoding of bias field transformations into neural network operations to ex-
ploit neural network formal verification toolkits. We extend the toolkit VeriNet with the
above encoding, GPU support, input-domain splitting and a symbolic interval propaga-
tion pre-processing step. Finally, we show that the resulting implementation, VeriNetBF,
can analyse models with up to 11M tuneable parameters and 6.5M ReLU nodes trained
on the CIFAR-10 ImageNet and NYU fastMRI datasets.

1 Introduction
While image classifiers implemented via large and deep ReLU-based networks have achieved
remarkable results in terms of accuracy [10], the resulting implementations remain fragile
and susceptible to adversarial attacks [14]. This is highly problematic in safety-critical areas
such as medical imaging or autonomous navigation where incorrect classifications may lead
to misdiagnoses or accidents. While work on adversarial attacks focuses on the generation
of counterexamples, it cannot provide formal robustness guarantees. In contrast, the area
of verification of neural networks [23] is concerned with methods and tools for proving the
robustness of neural networks, i.e., giving formal guarantees that an input model is not sus-
ceptible to any possible attack within a given input range. As a byproduct of this analysis,
counterexamples can also be generated and used for further training.

Robustness is typically studied in the context of verification with respect to particular
specifications. In the area of image classification, particular attention has been given to local
robustness with respect to adversarial noise attacks. These are very small modifications of
the image, often not detectable by the human eye. In a nutshell, a model is locally robust
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Figure 1: Verification procedure for bias field transformations and sample perturbations.

with respect to an input image if it produces the same classification class for all variations of
the image within an ε ball, i.e., all images in which each pixel value may vary within ε of the
original value. The notion above is related to a particular input, e.g., an image. A different,
albeit related notion, is that of global robustness, i.e., the robustness of the model with respect
to all the points within the whole set of possible inputs. In a verification context, research into
global robustness methods for neural networks is limited at present. While global robustness
is a long-term objective, local robustness remains of great importance since local various
robustness guarantees can provide valuable validation of the model and any counterexample
found can be used in retraining to further robustify the model.

Considerable work has been devoted to the development of scalable methods for the ver-
ification of neural networks, summarized later in this section. However, two important chal-
lenges remain open in the literature. Firstly, the methods developed so far mostly concern
verifying the robustness of models against "noise-based" perturbations, i.e., regions defined
by ε balls in the value of the input pixels. These capture realistic sensor errors; however,
models should also be assessed against "semantical" variations, e.g., linear transformations
expressing variations in contrast, luminosity, scaling, rotation, etc. Secondly, scalability re-
mains an issue in current research. Present methods generally do not scale to models of few
hundred thousands ReLU nodes, even for white-noise perturbations. Solutions to semantical
transformations often suffer from even more severe scalability problems.

In this paper we make a contribution towards developing methods that are both scalable
and support complex semantical variations in the input space as depicted in Fig. 1. Specifi-
cally, we present the following results:

• We present a novel notion of semantical robustness for image classifiers against bias
field transformations [39], to encode spatially-varying contrast and luminosity changes.

• We develop a highly scalable, parallel algorithm for the verification of robustness with
respect to semantic changes expressed as bias field variations of the input image.

• We evaluate experimentally VerinetBF, the resulting toolkit, which incorporates vari-
ous optimisations to aid scalability, on large CIFAR-10, ImageNet and medical imag-
ing models, with up to 11m tuneable parameters (6.5M ReLU nodes).

Related Work. A substantial body of work on formal verification of neural networks has
emerged over the last few years [1, 2, 3, 4, 5, 8, 9, 13, 15, 16, 19, 22, 26, 27, 28, 29, 30, 31, 35,
36, 37, 40, 41]. Most of these approaches differ significantly from ours in that they only (i)
consider robustness wrt white noise perturbations and (ii) consider relatively small networks
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applied to low dimensional datasets such as MNIST and CIFAR-10. In contrast, we here (i)
introduce a novel method for verifying bias field perturbations, a class of perturbations that
is natural in applications and has not been analysed before, and (ii) evaluate the method on
an ImageNet classifier with 11M tunable parameters and 6.5M nodes.

We note that statistical verifiers (see e.g. [7, 42]) often scale better than formal verifiers.
However, this work differs significantly from formal verification in that it is not sound; the
results only have statistical guarantees on correctness. Moreover, to the best of our knowl-
edge, no work in statistical verification considers bias fields as we do here.

Research into methods supporting robustness against perturbations other than white noise
is still quite limited. In [41] the authors consider affine transformations, [6, 21] support affine
and geometric transformations, and [24, 25] consider colour-space and geometric transfor-
mations. Some of these are particularly relevant in our context as they encode the transfor-
mation into the neural network by inserting extra layers, encoding the transformations, in
the early layers of the model. We follow a similar approach but differ from those by devel-
oping and inserting bias field transformations into the network instead, introducing spatially
varying contrast and brightness changes as depicted in Fig. 1.

Most of the work mentioned above only considers networks with a few hundred thousand
ReLU nodes at most, with some exceptions. The work in [27] analysed larger networks
with 1M ReLU nodes via GPU accelerated computations; however, this network was trained
on the low-dimensional CIFAR-10 dataset with techniques to ease verification and had a
reported accuracy of 34.8% only. The method from [36] considers large ImageNet classifiers
(VGG16 and VGG19); however, the perturbation radii under consideration was limited to 2×
10−7, significantly smaller than the precision of 8-bit images (1/255). In contrast, we here
consider ImageNet classifier with 70% accuracy and perturbation radii larger than 1/255.

Bias field transformations are not only relevant to model spatially-varying lightning con-
ditions in natural images, but also occur naturally in medical imaging. In Magnetic Reso-
nance Imaging (MRI), the true image intensities are modulated by a multiplicative, smoothly
varying bias field due to patient-induced electrodynamic interactions and imperfections in
the MRI system. While a number of approaches have been proposed to remove intensity in-
homogeneities from MR images [32, 38], these approaches can fail and often leave residual
intensity inhomogeneities in the images. This further motivates the development of verifica-
tion algorithms for image classifiers that are robust against bias field perturbations.

2 Preliminaries
We now introduce important notations for formal verification of neural networks. This in-
cludes definitions on robustness, symbolic interval propagation, and bias field perturbations.

In what follows we deal with ReLU-based Feed-forward Neural Networks (FFNN) [14].
We assume hidden layers to be governed by ReLU activation functions ReLU(z) = max(0,z)
and the output of a layer Ω : Rhi → Rhi+1 to be Ω(ReLU(zzz)), where the ReLU is applied
element-wise and the layer’s input is a linear combination of outputs from preceding layers.
Overall the FFNN computes a function N : Rn→ Rm where N is obtained by successively
applying the layer transformations for all layers. In what follows we only consider fully-
connected, convolutional and average-pooling layers [14].

Most verification approaches are tailored towards checking models for robustness wrt
noise changes in the input, i.e. that the model’s classification for a given image does not
change if small changes are made to the pixel values, installing local robustness specification.
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Definition 1 (Local Robustness). A FFNN N : Rn → Rm is locally robust to some input
constraints ψxxx and output constraints ψyyy iff N (xxx) satisfies ψyyy for all inputs xxx satisfying ψxxx.

Local robustness against White-Noise (WN) perturbations can be formalised from Def-
inition 1 by taking ψxxx to encode an ε ball of the input and ψyyy to express equality to N (xxx).
More specifically, input constraints may be expressed via box constraints of the form ψxxx =
{xxxlow

i ≤ xxxi ≤ xxxup
i }i=0...n, where xxxlow

i ,xxxup
i ∈ R, and the output bounds are limited to linear

constraints on the network’s output variables as formalised below.

Definition 2 (WN Robustness Decision Problem). Given a tuple P = (N ,ψxxx,ψyyy), whereN
is a FFNN, ψxxx are constraints onN ’s input variables ψxxx = {xxxlow

k ≤ xxxk ≤ xxxup
k |xxx

low
k ,xxxup

k ∈R}∀k
and ψyyy are linear constraints on N ’s output variables, the White-Noise (WN) Robustness
Problem concerns establishing whether or not N (xxx) satisfies ψyyy for all xxx satisfying ψxxx.

If the answer to the problem above is positive, we say that the network is robust for the
image in question (wrt ψxxx,ψyyy); otherwise we say it is not robust.

The problem above is challenging due to the non-linearity introduced by the network’s
ReLUs, which potentially leads a branch-and-bound algorithm to consider an exponential
number of branches. A common approach used to alleviate this problem consists in relaxing
the network by calculating linear bounds with Symbolic Interval Propagation (SIP).

Standard-SIP (SSIP). In [41] lower and upper equations for the bounds of each input
node i (zzzlow

i (xxx) = zzzup
i (xxx) = xxxi) are introduced and propagated layer-by-layer through the net-

work. Since the bounding equations are linear in the network’s input variables, and the input
variables are constrained by box-constraints ψxxx, concrete bounds for the network output can
be obtained by solving the corresponding linear program. If the bounds show that the out-
put remains within the specifications ψyyy for all inputs in ψxxx, then we can conclude that the
verification problem is satisfied. If this is not the case, the problem cannot immediately be
solved and more advanced procedures may be attempted [15].

Reversed-SIP (RSIP). In [31] the bounding equations are introduced on the final layers
and the resulting variables are substituted from the expressions of the previous layers. For-
mally, for each node i at the layer of interest k, the equations are initialised as zzzlow

i (hhhk) = hhhk
i

and zzzup
i (hhhk) = hhhk

i where hhhk
i is the input variable at node i in layer k. The output bounds can

then be determined by considering the input bounds in the final equations obtained.
Although RSIP is computationally more expensive than SSIP, RSIP may lead to tighter

bounds. Both approaches can be used independently or in a branch-and-bound approach [15].
Sound and Complete Verification. Verification algorithms are said to be sound if any

property determined to hold by the algorithm does hold. If the algorithm is also theoretically
guaranteed to provide an answer to any verification query, it is complete. Verifying local
robustness properties for NNs is an NP-complete problem [18]; thus, complete algorithms
do have a worst-case exponential complexity in the number of ReLU nodes. Consequentially,
incomplete approaches may outperform complete approaches in practice.

Bias Fields. Different from all verification approaches in the area, we here consider
specifications given via bias field transformations. Such transformations occur frequently in
medical imaging. For example, in Magnetic Resonance Imaging (MRI) the images are often
corrupted by a smoothly varying intensity inhomogeneity or bias field. Here we model bias
fields as both a multiplicative and additive modification of the image intensities.

Definition 3 (Bias Field). A bias field with k terms, bbbaaa : Rn, is defined as bbbaaa = ∑
k
t=0 aaatbbbt , for

some real-valued coefficients aaa ∈ Rk and corresponding vectors bbb ∈ Rn.
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Definition 4 (Bias Field transformation). A bias field transformation is defined as Tbbb(xxx;aaa) =
xxxbbbmul

aaamul + bbbadd
aaaadd where xxx ∈ Rn, bbbmul and bbbadd are bias fields and aaa = {aaamul ,aaaadd} are the

coefficients of bbbmul
aaamul and bbbadd

aaaadd .

The definitions above are given for one-dimensional inputs; however, extending them to
multi-dimensional inputs such as images is straight-forward. Intuitively, bias field transfor-
mations can be used to define the input range xxx, as we show in the next section.

3 Verifying Bias Field Robustness
In this section we present the novel specification of bias field robustness for classification
networks, show how bias field robustness problems can be encoded in such a way that most
verification toolkits can handle them, and propose a sound algorithm for verifying large
models against this specification.

Definition 5 (BF Robustness Decision Problem). Given a tuple Pb = (N ,xxx,Tbbb,ψaaa,ψyyy),
where N is a FFNN, ψaaa = {aaalow

k ≤ aaak ≤ aaaup
k |aaa

low
k ,aaaup

k ∈ R}∀k are constraints on the co-
efficients of the bias field transformation Tbbb and ψyyy are linear constraints on N ’s output
variables, the Bias Field (BF) Robustness Decision Problem concerns establishing whether
or not N (Tbbb(xxx;aaa)) satisfies ψyyy for all aaa satisfying ψaaa.

So, the BF robustness problem differs from the WN robustness problem in Definition 2 in
that we consider perturbations of the coefficient aaa parameterising the bias field transforma-
tion Tbbb, rather than white noise on the network’s input xxx. Note that the bias fields in the bias
field transformation are arbitrary; thus, Tbbb can be highly non-linear in the spatial dimension.
The only requirement of linearity is with respect to the coefficients aaa. Most importantly,
BF local robustness encapsulates a wide range of verification problems, including the WN
robustness problem, affine transformations, and higher-order polynomial transformations.

Even though the BF robustness problem is highly expressive, we now show that it can be
reduced to a problem conforming to Definition 2. We use an approach similar to the work
in [21, 24]. The work encodes some transformations by augmenting the network with extra
layers; however, different from here, it does not consider bias field transformations.

Definition 6 (BF Network). Given an FFNN N : Rn → Rm, an input xxx ∈ Rn and a bias
field transformation Tbbb, the Bias Field (BF) Network N ′ : Rk → Rm is defined as N ′ =
N (FCbbb(aaa)) where aaa ∈ Rk and FCbbb is a fully connected layer with weight matrix W : Rn×
Rk defined as W = [xxxbbbmul

0 , ...,xxxbbbmul
k ,bbbadd

0 , ...,bbbadd
l ] and bbbmul

i and bbbadd
j are the additive and

multiplicative terms of Tbbb.

The BF network encodes the parameterised transformation Tbbb(xxx;aaa) for a given input xxx
in the sense thatN ′(aaa) =N (Tbbb(xxx;aaa)). As we show below verifying the original networkN
against bias field transformations can be solved via verifying WN robustness on N ′.

Theorem 1. Any BF Robustness problem Pb = (N ,xxx,Tbbb,ψaaa,ψyyy) can be solved by answering
the WN robustness problem for P = (N ′,ψaaa,ψyyy), where N ′ is the BF network of N ,xxx and
Tbbb as defined in Definition 6.

Proof sketch. This follows directly from the fact that the BF transformation Tbbb(xxx;aaa) from
the BF local robustness problem is encoded as the first layer of N ′.
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6 HENRIKSEN ET AL.: VERIFICATION OF LARGE NEURAL IMAGE CLASSIFIERS

From the above it follows that algorithms that can solve WN robustness can also solve
BF robustness by applying BF networks. We show in the sequel that modifications can be
made to this algorithm to make this computationally efficient.

BF Robustness Verification Algorithm. We now describe a SIP-based verification
algorithm for solving the BF robustness problem as reported in Algorithm 1. We only
consider classification networks; thus we assume that the output constraint is on the form∧

h6=c(N (Tbbb(xxx;aaa))c >N (Tbbb(xxx;aaa))h) where c is the decired classification class.

Algorithm 1 BF Robustness Verification
1: procedure VERIFICATION(N ,xxx,ψaaa,Tbbb,ψyyy)
2: N ′, queue← BFNet(N ,xxx,Tbbb), [None]
3: while queue is not empty do
4: ψbranch ← queue.get(0)
5: bounds← SIP(N ′,ψaaa,ψbranch)
6: shouldBranch = False
7: for ψh

yyy ∈ ψyyy do
8: aaa← LP(bounds, ψaaa,ψbranch,¬ψh

yyy )
9: if aaa is not None then

10: shouldBranch = True
11: aaa′← localSearch(aaa,N ′,ψaaa,¬ψh

yyy )
12: if N ′(aaa′) satisfies ¬ψh

yyy then
13: return Not-Robust, aaa′

14: if shouldBranch then
15: ψb1,ψb2← Branch(N ,ψaaa,ψyyy,ψbranch)
16: queue.append(ψb1,ψb2)
17: return Robust

For clarity the algorithm is pre-
sented at high-level only. Some imple-
mentation details are crucial for com-
putational efficiency reasons and are
presented later in Section 4.

On line 2 the BF network as de-
fined in Definition 6 is created and
the branch queue is initialised with
the first branch, here represented by
"None" since the initial branch does
not add additional constraints to the
problem. In the main loop, linear
bounds (lk(aaa),uk(aaa)) are calculated via
SIP for the network’s output nodes,
such that lk(aaa) ≤ N ′(aaa)k ≤ uk(aaa).
Note that several versions of SIP can
be used for this step (see Section 4).

The bounds from SIP are used in
a satisfiability call to a linear program
(LP) solver together with each negated
output constraint in Line 8. The call is
performed to determine a violation of the output constraints; if the output h is larger than c
(ψh

yyy =N ′(aaa)c ≤N ′(aaa)h), then this call generates a counterexample to be returned (aaa).
Lines 10-13 encode a gradient-descent search to identify valid counterexamples in the

proximity of a spurious counterexample [15]. For each clause ψh
yyy =N ′(aaa)c ≥ N ′(aaa)h, the

local search is initialised at aaa with the loss L(aaa) = N ′(aaa)c−N ′(aaa)h. After each step of
gradient descent, the output aaas is clipped to the input constraints ψaaa and checked to determine
whether it is a valid counterexample by evaluating whether N ′(aaas) violates ψyyy. The local
search terminates if a counterexample is found or after a pre-determined number of iterations.

If a valid counterexample is located, the value "Not-Robust" is returned and the proce-
dure terminates. If the LP-calls are unsatisfiable for all clauses, no counterexample exists in
the current branch and it is robust. Otherwise, the problem cannot be solved with the current
constraints and a branch and bound phase is initiated. The resulting branch and bound (BaB)
phase can be performed in many ways. We propose a BaB strategy in the next section.

We end this Section by remarking some properties of the procedure.

Theorem 2 (Algorithm 1 is sound). If Algorithm 1 returns "Robust" for Pb =(N ,xxx,Tbbb,ψaaa,ψyyy),
then the network is robust for Pb, according to Definition 5; conversely, if Algorithm 1 returns
“Not-Robust, aaa′" then the network is not robust and aaa′ is a valid counter example.

Proof sketch. This follows from Algorithm 1 being sound for the tuple P = (N ,ψaaa,ψyyy) [15]
and solving the BF robustness problem Pb is equivalent solving P from Theorem 1.
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While the algorithm is sound, it may not be complete depending on the branching strat-
egy; this, along with a efficient implementation, is discussed in detail in the next section.

4 The VerinetBF Verification Toolkit

In this section we present VerinetBF, a Python-based implementation of Algorithm 1. VerinetBF
utilises parts of the open-source SIP-based toolkit VERINET [15] for the inner verification
loop, extended with the bias field modification as described in the previous section and the
novel contributions regarding efficient implementation introduced below. VerinetBF is the
first tool we are aware of that can verify models against bias field transformations.

SSIP pre-processing. The most computationally expensive part of Algorithm 1 concerns
the generation of the bounds for the network, suitably transformed to account for the bias
field transformation (line 5). To achieve scalability, VerinetBF performs this step with a com-
bination of SSIP and RSIP. VerinetBF first perform a pass of the computationally efficient
SSIP analysis to identify stable nodes, and only performs a more precise but computation-
ally costly RSIP on the remaining nodes. The idea of a pre-processing step to filter out stable
nodes is not new, e.g. [27] uses non-symbolic interval propagation for this purpose. How-
ever, SSIP produces more succinct bounds than non-symbolic interval propagation [40], and
is particularly efficient for problems with low input dimensionality such as bias fields.

The computational efficiency of SSIP follows from the fact the the complexity isO(nm2l),
where n,m, l are the number of input nodes, nodes in the largest layer and number of layers,
respectively. In contrast, RSIP has the complexity O(m3l2), which is reduced to O(um2l2)
with the pre-processing step where u is the number of unstable nodes in the largest layer. For
networks with n� m, the complexity of SSIP is negligible compared to RSIP.

GPU enabled SIP. It is known that the computations in both RSIP and SSIP are domi-
nated by matrix multiplications which can benefit from massive parallelisation via Graphics
Processing Units (GPUs) [27]. However, for larger networks the memory usage of RSIP
can easily exceed the memory limitations of most GPUs. To solve this issue, memory re-
quirements for RSIP are first estimated, similarly to [27]. Then, RSIP is run repeatedly with
smaller batches of nodes that do not violate the GPU memory requirements.

Input domain splitting. Most SoA verification methods rely on ReLU splitting for the
branch and bound phase. This is because for white-noise robustness the input dimensions are
usually larger than the network’s layers and the consensus in the field is that splitting nodes
in smaller layers is generally beneficial. However, for BF robustness, the input dimension,
i.e. parameters of the bias field, is typically much smaller than the number of nodes in hidden
layers. Thus, in contrast to most other tools, VerinetBF performs input splitting.

In VerinetBF splitting an input node aaai with lower and upper bounds aaalow
i ,aaaup

i is im-
plemented by adding the constraints aaai < (aaalow

i + aaaup
i )/2 and aaai > (aaalow

i + aaaup
i )/2 in the

corresponding separate resolution branches. To identify the input node to be split, we use
a novel heuristic based on the bounds calculated by RSIP for the network’s output nodes,
similar to the ReLU heuristic used in [15].

Output constraints on the form ψyyy = {N ′(aaa)i > N ′(aaa) j}∀i 6= j can be proven robust by
(i) increasing the lower bound for output i, or (ii) decreasing the upper bound for outputs
j. Since the lower and upper bounds for an output node g are linear on the form lg(aaa) =
∑k clow

g,k aaak + blow
g and ug(aaa) = ∑k cup

g,kaaak + bup
g we take the coefficients clow

g,k and cup
g,k as an

indicator of the influence input aaak has on the lower and upper output bounds of node k,
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respectively. Thus, for each input node, we calculate the score

s(aaak) = clow
k,i · (aaa

up
k −aaalow

k )+
1
|C|∑j 6=i

cup
k, j · (aaa

up
k −aaalow

k ).

The divisor |C|, representing the number of classes, is intended to capture that increasing the
lower bound of node i helps towards proving all other classes robust; improving the upper
bounds of other nodes j only towards proving that one class robust. After calculating s(aaak)
for all input nodes, we split the node with the largest score.

Rounding errors. Some research has indicated that rounding errors may be a concern in
verification of large networks [17]. To alleviate this, we used 64-bit precision in SIP; this is
in contrast to VERINET and much of the field that uses 32-bit. We note that in experiments,
64-bit precision significantly increased the runtime, in many instances by almost 100%.

Completeness. Theorem 2 guarantees that the implementation presented here is sound.
Note, however, that in principle completeness cannot be guaranteed because any input-
splitting heuristic cannot provide a guarantee that all ReLU nodes will become stable in
a finite number of splits. However, the approach presented here still differs significantly
from incomplete SIP algorithms without a branch-and-bound phase, such as [27, 28, 31] in
that we would expect ReLU nodes to become stable as we split more and more input nodes.
Thus, we would expect most problems to be solved given enough time.

5 Experimental Results
In view of Theorem 1, in this section we experimentally evaluate VerinetBF in solving BF
robustness problems. We begin by evaluating its performance on a CIFAR-10 network as
is common in WN verification experiments. This is followed by ablation testing to assess
the optimisations introduced in Section 4. Next we use VerinetBF to verify BF robustness
of an ImageNet model of 6.5M ReLU nodes which is, as discussed in the introduction,
significantly larger than networks considered in WN verification. Finally, we evaluate the
method on a medical imaging classification network trained on MRI images.

Bias field perturbations. To reason about bias field robustness, we consider mul-
tiplicative bias fields, parametrised by polynomials of degree d [33, 34]. Each element
x,y of the bias field matrices bbbd1,d2 are then defined as bbbd1,d2

x,y = xd1 · yd2 , the bias field is
bbbaaa = ∑

d
d1,d2=0 aaad1,d2bbbd1,d2 and the full BF transformation is Tbbb(xxx;aaa) = xxxbbbaaa. Here, aaa ∈ Rd1d2

defines the perturbation coefficients, and x,y ∈ N encode the spatial position in the image.
In our experiments, we use polynomials of order d = 3, resulting in 16 coefficients. In mul-
tiplicative bias fields, the entries of the position matrix are scaled with the image intensities.

In the following experiments we constrained the constant term of the bias field (aaa0,0)
to [1− ε,1 + ε] and the remaining terms to [−ε/15,ε/15]. Thus, the BF perturbations
are centred around the original image; the divisor accounts for the fact that we have 15
spatially dependent terms, each of which affects every pixel. For all experiments we used
ε ∈ {0.01,0.02,0.03,0.05,0.1,0.25}. We note that the maximal perturbation of a pixel under
the bias field is a multiplication by 1±2ε , e.g. with ε = 0.05 and a pixel with original value
0.5, the perturbation is limited to [0.45,0.55]. Indeed, given the same pixel value and ε , this
is also the reachable range under additive WN perturbation as defined in Definition 2.

CIFAR-10 experiments (Figure 2(a)). For the CIFAR-10 network, we used a 10-layer
CNN with 8.6M tunable parameters, 100 thousand ReLU nodes and a test set accuracy of
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VerinetBF Only RSIP CPU CPU & Only RSIP

Mean Runtime (s) 11.19 41.72 41.59 182.63

Table 1: Ablation study for CIFAR-10.
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Figure 2: Robust and non-robust cases for the CIFAR-10, ImageNet and MRI benchmarks
(a-c) and mean runtimes for the CIFAR-10 and MRI queries excluding timeouts (d).

86% (see supplementary material). All CIFAR-10 experiments were run on a workstation
with a Ryzen 3700X 3.6 GHz 8-core CPU, 64 GB RAM, GeForce RTX 2080 8 GB GPU and
Ubuntu 18.04 with Linux kernel 5.8.0. We selected the first 100 images (3×32×32 pixels)
from the test set, analysed them with the network and used correctly classified images in our
experiments (86 images in total). For verification, we used a 1800s timeout.

VerinetBF found that most cases were robust for bias fields with ε ≤ 0.05. This is in
contrast to previous experiments on similar networks with white noise perturbations. In [15]
a similar CIFAR-10 convolutional network was shown to have several non-robust cases for
ε = 2×10−4, and no robust cases were found with ε ≥ 8×10−4.

Ablation study (Table 1). To evaluate the effects of the implementation-specific choices
we presented in Section 4, we ran a number of ablation studies on the CIFAR-10 network
with ε = 0.01. The tests indicate that the SIP and Interval Propagation pre-processing steps
introduced in Section 4 had speed-ups of around 3.7, and both in combination around 16.3.

ImageNet Experiments (Figure 2(b)). For the ImageNet experiments, we deployed a
reduced version of NFNet-F0 [11, 12] with 6.5M ReLU nodes and a a top-1% accuracy of
70% (see supplementary material). All ImageNet experiments were conducted on an high-
performance computing cluster running CentOS Linux 8.2.2004; each verification query
used one NVIDIA RTX 6000 24 GB GPU, with 4 CPU cores and 24 GB RAM. We selected
10 images from the validation set (3×256×256 pixels) and ran verification queries on the
correctly classified ones (10 images in total) with a 48h timeout. The mean runtime for cases
that did not time out ranged from 16h (ε = 0.01) to 34h (ε = 0.25).
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As shown in Figure 2(b), the model was proven to be robust to bias field perturbations
with ε ≤ 0.02 for most of the analysed images. Again, we note that the network is robust
for the given images to relatively large perturbations, this is in contrast to WN robustness for
not robustly-trained large networks that have been proven robust to tiny perturbations only,
e.g. ε = 10−7 [36]. These features of the model may to some extent be explained by the
contrast and brightness data-augmentation used during training. However, it is known that
data augmentation is not particularly effective for other transformations, e.g. rotation. So
these findings warrant further research into whether neural networks may be more robust to
BF perturbations than we would expect from comparable experiments on WN robustness.

MRI Experiments (Figure 2(c)). Having assessed the significant scalability of the ap-
proach, we now turn to a different domain to evaluate the suitability of the approach in the
area of medical imaging. To do so, we trained a 10 layer CNN with 295 thousand tunable
parameters, 52 thousand ReLU nodes that classifies MR images, obtaining an accuracy of
92.9%. The dataset contains 18000 brain MR images from 3 sequences (classes), extracted
from the publicly available fastMRI DICOM data [20, 43]. NYU fastMRI investigators
provided data but did not participate in analysis or writing of this paper. The network was
robust for most inputs with ε ≤ 0.25; so, differently from the other experiments, we also used
ε = 0.5. The experiments were run on the same machine as the CIFAR-10 experiments.

Figure 2(c)) shows that the network is significantly more robust to bias field perturbations
than the previously considered CIFAR-10 and ImageNet networks. This indicates that the
network may have learned to remove bias field perturbations due to their potential presence
in the training set. The result could also be influenced by the fact that the classification
problem that the network is solving, is relatively simple.

The experiments demonstrate that the verification method here put forward can con-
cretely help the validation of neural networks before deployment, particularly in the context
of safety-critical application. A case in point here is the MRI experiments for which we were
able to demonstrate considerable robustness up to a value of ε = 0.25. Adversarial exam-
ples, including those obtained via verification, can be used as part of a training procedure
to further improve the robustness of the model. We also remark that, even when robustness
cannot be shown, precisely understanding the limitations of the networks under study may
prompt further training or changes to the architecture of the model.

6 Conclusions
Formally verifying the correctness of neural classifiers before deployment may contribute to
their safety and trustworthiness. While progress has been made recently, present verification
methods have limited scalability and are normally defined with respect to white noise per-
turbations. In this paper we considered the problem of verifying networks with respect to
bias field perturbations. We proposed a method to reduce bias field verification problems to
white noise verification problems for which we can utilise existing approaches verification
approaches. We implemented and evaluated the approach on a verification toolkit optimised
for bias field transformations. The results showed that the toolkit could verify robustness
for an ImageNet classifier with 6.5M ReLU nodes against bias field transformations with
large perturbation radii. The results also indicate that the tested networks are robust for
significantly larger perturbations than what we would normally expect against white noise
verification. In future work we would like to explore the encoding here presented for bias
field robustness for other specifications of interest.
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