SDNET: UNCONSTRAINED OBJECT STRUCTURE DETECTOR 1

SDNet: Unconstrained Object Structure
Detector Network for In-Field Real-Time
Crop Part Location And Phenotyping

Louis Lac!2 ! University of Bordeaux
louis.lac@ims-bordeaux.fr IMS UMR 5218, F-33405
Jean-Pierre Da Costa!2 Talence, France
jean-pierre.dacosta@ims-bordeaux.fr 2CNRS

Marc Donias!-? IMS UMR 5218, F-33405
marc.donias@ims-bordeaux.fr Talence, France

Barna Keresztes!2 SCTIFL
barna.keresztes@ims-bordeaux.fr 28 Route des Nebouts

Marine Louargant® Prigonrieux, France

marine.louargant@ctifl.fr

Abstract

Most modern multi-instance pose estimation neural networks —either bottom-up or
top-down variants— are built around a highly specialized and constrained architecture.
They rely on the detection of a fixed set of keypoints specific to the object in order to
regress the pose in images. While efficient in various contexts including human pose
estimation, those architectures are not very flexible and cannot be applied to objects with
a less stable structure such as plants. In this paper, we propose a neural network called
SDNet which is suitable for the real-time detection of object poses with an unconstrained
number of keypoints. To demonstrate its capability as well as its potential application for
precision agriculture we evaluate it on a custom crop structure dataset, and we compare
its performance to the state-of-the-art neural network for real-time object detection Tiny
YOLOV4 on two tasks where both of them can compete: (i) multi-instance crop detec-
tion and leaf counting —which can be applied to in-field phenotyping— and (ii) stem and
leaf keypoints detection and location —which can be used for real-time precision hoeing.
We show that SDNet achieves a good performance on both tasks while still providing
additional information via its unique structure detection ability.

1 Introduction

In recent years deep learning has been successfully applied to the detection of pose and key-
points of various objects in images, including human [1], hand [10] and vehicle [16] pose or
facial landmark detection. One class of deep neural network usually employed for this task
is the top-down architecture where whole objects are first detected then the pose is regressed
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Figure 1: Scheme of the architecture of the structure detection network. The encoder is a
Resnet34 [7] and the decoder a Feature Pyramid Network (FPN) [14] of three upsampling
blocks of depth 128. The post-processing step is detailed in figure 3 in section 2.2

for each of them. Two-stage neural networks such as Mask R-CNN [8] are part of this cate-
gory. However, to yield a higher inference speed single-stage networks are usually preferred
[9, 11] because they generally achieve a better speed-accuracy trade-off. Such networks use
the bottom-up approach: individual objects components (keypoints and joints) and grouping
cues (embeddings) are first regressed and then a reconstruction algorithm groups the indi-
vidual poses. Various designs were proposed such as Stacked Hourglass [19] (single-human
pose), Part Affinity Fields [3] or CenterNet [23].

However, while human-related tasks such as human pose are well investigated by deep
learning techniques, other fields such as precision agriculture are less covered [21] and lack
long-term support [15]. Nonetheless, precision agriculture tasks are challenging: (i) plants
and crops can have a complex and weakly defined structure, (ii) phenotype, breeds, health
and soil conditions are broad and (iii) algorithms should work in real-time for an in-field
application. Semantic segmentation is often chosen for such tasks [17, 18], but it is usually
not real-time on embedded systems and requires a low and costly annotation process. Other
works such as [5, 6, 20] propose deep learning models for plant phenotyping, but they are
neither real-time nor applicable outdoor because they operate in laboratory conditions.

In this paper, we propose a bottom-up pose estimation network able to regress objects
having an arbitrary number of keypoints per instance, thus applicable to weakly-defined
structures such as crops. This network runs at 80 fps which meets real-time constraints of in-
field precision agriculture tasks. We show that this architecture can be used to output various
indicators useful for precision agriculture tasks such as phenotyping of multiple crops and
precise location of crop structures. Finally, we evaluate our work against a state-of-the-art
object detector on a subset of tasks both of them can handle. We first present the neural
network architecture in section 2, then we introduce our database, protocols and experiments
in section 3 before drawing some conclusions and perspectives in section 4. The source
code of the developed architecture is available athttps: //github.com/laclouis5/
StructureDetector.

2 SDNet Architecture

The developed network is a single-stage Fully Convolutional Network we call Structure De-
tection Network (SDNet). As illustrated in figure 1 it is based on an encoder-decoder archi-
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Figure 2: Tllustration of 3 star-graphs for one image. The 3 graphs have all 1 anchor (center
node) in purple and respectively 2, 0 and 3 parts (leaf nodes) in yellow.

tecture followed by a Structure Reconstruction Algorithm (SRA) which regresses the object
structure.

The key novelty of our approach is that object keypoints are regressed independently of
the object detection. Contrary to standard bottom-up pose estimators such as [23], object
keypoints are not regressed as properties of an object but as independent entities that are
then linked to their corresponding object via the concomitant regression of embeddings,
which has the effect of removing the fixed number of keypoints constraint.

For this purpose, we choose to describe an object by a unique and object-specific key-
point that we call an anchor and by an unconstrained number of associated keypoints that
we call parts. All anchors have a type, e.g. maize or bean stem for our application, and part
keypoints as well (leaf tips for our application).

Formally, the addressed problem can be seen as the regression of a set of N star graphs
G= {gi}i:1_,_ N ge Gy, from one image, where N is the number of graphs in that image
and Gy, is the family of star graphs with k; leaf nodes. A star graph g' is composed of a
center node (the anchor) s' and zero or more leaf nodes (the parts) Q' = {¢',-- ,q;'(l_}. We

call § = {s',--- sV} the set of anchors and Q = vazl Q' the set of parts in the following.
Figure 2 illustrates these notations.

2.1 Encoder-Decoder

SDNet takes as input an image I € RW*#>3 where W and H are the image width and
height and produces a keypoint heatmap ¥ € [0, 1] 7% *C where C represents the number
of heatmaps (one per keypoint type) that can be regressed and R is the downscaling ratio of
the network, which has an impact on the speed-accuracy trade-off. The C keypoint types
are composed of K anchor keypoint types and P part keypoint types. Heatmaps are illus-
trated in figure 3b and 3c where opacity is proportional to the confidence in the detection of
a keypoint. The network also predicts a local offset vector field O € R%*%*2 to retrieve the
discretization error caused by the downscaling ratio, and embeddings £ € R**%*2 which
act as a grouping cue used by the SRA to compute the object pose.

We chose a lightweight architecture matching the real-time constraints and our relatively
small dataset. The encoder is a Resnet34 [7] backbone pre-trained on ImageNet [4] and the
decoder is a Feature Pyramid Network (FPN) [14] made of three upsampling blocks of depth
128. For this specific encoder-decoder architecture R = 4. The head of the network is a
one-by-one convolution with C +4 filters. The architecture is detailed in figure 1.
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Figure 3: Simplified illustration of the structure reconstruction process. The original image
is displayed in a. b and c are respectively the maize stem anchor point heatmap and the
part keypoint heatmap. d presents the discretization recovery with the offsets (arrows). e
illustrates the part association with the embeddings (blue arrows) and f shows the final star
graph regressed. #; is represented by the red circle around the stem anchor point.

2.2 Structure Reconstruction Algorithm

The first step consists of a spatial filtering of the keypoint heatmap ¥ with a 3x3 max-pooling
operation to extract the local peak values. Then, all detections with a confidence lower than
a given threshold 7. are discarded. This results in a set S of n, predicted center nodes (the
anchors) and a set O of ng predicted leaf nodes (the parts). The filtering process is illustrated
in figures 3b and 3c.

At this point, coordinates are integers and need to be refined to recover the lost spa-
tial precision. This is performed by adding the offset regressed at the node location: §' =
{fi + OASA,-, §ie S‘} and Q' = {(jj + OASA,', ¢/ € Q} This process is illustrated in figure 3d.

The second step consists of the association of parts and anchors. Embeddings are vectors
learned at leaf node locations which act as the grouping cue for the association. An embed-
ding is a prediction of the offset from the part location to the anchor location (blue arrows
in figure 3e). The embeddings are used to compute the estimated anchor positions from the
parts: §* = {f;}jzl,_,nq = {éj +qu, gj € Q’} Then, for each anchor s' € §' the associated
part positions (i.e. the leaf nodes of the star graph with the center node s') are calculated as:

QAiZ{quQ'/argminufk—s”}‘-H zf‘} (1
skedr 2

where ||-||, is the L2 norm. In other words, predicted part keypoints are associated with
the closest anchor point according to their embedding value. Finally, part keypoints with an
estimated anchor location not close enough to the associated anchor are filtered out according
to a distance threshold 7,4, and the star graph is built from the aggregation of the anchor and
the filtered parts:

d=su{oe 0/ -5, <} ?

This process results in the predicted set of graphs G. This final step is illustrated in figures
3e and 3f.

2.3 Loss Function

The encoder-decoder architecture is trained with the loss function described in equation 3,
where A, and A, are two loss scaling weights.

L=Lyy+ALorr+ AeLemp 3)
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Ly, and L,y are respectively the heatmap and offset loss functions. Their computation,
identical to [23], requires the ground truth heatmap Y and offsets O. Y is deduced from the
annotated images by applying a Gaussian filter with standard deviation ¢ and kernel size 3G.
O is calculated by discretization of the annotations.

Ly, is a L2 loss while L,y is a L1 loss similar to the embedding loss. The embedding
loss function L, is a L1 loss computed at the ground truth part locations only and is detailed
in equation 4 where S is the set of ground truth anchors, P the set of parts associated with
anchor s, Eﬁ the predicted embedding at the discretized part location p = L%J and M;, the
total number of ground truth parts.

1 .
Lembzﬁz Z |(P—S)—Eﬁ| 4)

P seSpeps

3 Experimental Setup and Results

While evaluating the performance of standard pose estimation algorithms is straightforward,
this is not the case for unconstrained pose estimation as there is no one-to-one correspon-
dence between detected and ground-truth keypoints. Moreover, to our knowledge there is no
established database, challenge or competing solution to benchmark our algorithms against.
As a consequence we choose to evaluate our work on a subset of tasks both our network and
other work can compete. We selected a recent detector named Tiny YOLOv4 [2] because
it is both state-of-the-art on object detection performance and real-time (we consider 30 fps
to be the real-time limit). Moreover, it is suitable for embedded systems [22], which is a
requirement for precision agriculture applications.

We evaluated the two networks on two tasks modelling real use-cases of precision agri-
culture: the classification task and the keypoint detection task. In the first one, we evaluate
the ability to detect multiple crops in an image and to regress the correct crop bread (maize
or bean) and number of leaves. This ability can be used as an indicator for crop assessment
in fields and phenotyping. In the second one, we evaluate the ability to detect the precise
spatial location of crop organs (maize stem, bean stem and leaf tip). This ability can be used
for precision hoeing tools operating in the intra-row, for instance tools that hoe every ground
location excepted the stem locations, as this would destroy the crops.

In the following we first describe the dataset, the training settings and the evaluation
metrics used, then we detail grid-searches on main SDNet hyperparameters, and finally we
comment the results on both tasks.

3.1 Dataset and Annotations

We gathered a dataset' of images taken in vegetable fields in the same conditions as if the
acquisition system was used for real-time automatic hoeing, i.e. (i) crops may not be spaced
predictably and many can appear on the same image, (ii) self-occlusions and weed occlusions
can occur, (iii) neither soil conditions nor weed infestation are controlled and (iv) crops are
at early but variable stages where weeding is crucial but can be at different growth stages.
We chose two crops at an early stage of development (two to five weeks) for the study: maize
and bean.

IThe publication of this dataset will be the subject of a future article.
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It contains a total of 874 images on which we annotated every crop using a custom an-
notation tool. Each crop annotation is composed of a rectangular bounding box and several
keypoints: the stem entry point in the ground and the leaf tips. The stem annotation corre-
sponds to the anchor point and the leaf tip to the part keypoint, thus for our network K =2
(bean stem and maize stem) and P = 1 (leaf tip which we choose to be class-agnostic). We
annotated 1302 bean crops and stems and 2834 associated leaf tips as well as 1067 maize
crops and stems and 2747 leaf tips. All images are taken vertically at the same distance from
the ground, thus the image height is constant and corresponds to 38 cm on the ground.

3.2 Training and Inference

The dataset presented in section 3.1 is used for training and validation of both networks.
80 % is used for training and the remaining 20 % is used for validation. The images are
normalized in the same way as ImageNet [4] and resized to a 512 by 512 resolution. Training
is performed on a computer running Ubuntu 18 LTS equipped with a GTX 2080 SUPER
8 GB and an Intel Core i7-7700 4 cores at 3.6 GHz 32 GB.

For SDNet, the data augmentation consists of random color jitters (brightness and con-
trast 25 %, saturation +15 %, hue £5 %), horizontal and vertical flips with a probability
of 50 % as well as a random rescale of a factor in [0.75, 1.25]. The loss weights are empir-
ically set to A, = A, = 0.001 in order to scale the three losses in the same magnitude range
during training. The learning rate is set to 0.001 and a scheduler divides its value by 10
every 33 epochs for a total training time of 100 epochs. The batch size is set to 8 and the
Adam optimizer [12] is used. Two experiments reported in section 3.4 allowed to tune the
Gaussian kernel size to 30 = 5% and to find the best values for the hyperparameters #.,,, s =
40 % and t4;; = 10 % (around 4 cm). Percentages are expressed regarding the shortest im-
age side length. Training takes around 1 hour and inference runs at 80 fps, including image
pre-processing and the structure reconstruction post-processing.

TY4 training differs depending on the evaluated task and the exact settings are presented
in section 3.3. We used the default training settings of the TY4 framework, and we chose the
same image size as for SDNet training. Training takes one hour and inference runs at 300 fps
with hardware optimizations turned on (CUDNN, Tensor Cores, half precision, etc.). Note
that SDNet was not optimized to take advantage of these optimizations.

3.3 Evaluation Metrics

We chose to evaluate the performance of the classification and the keypoints detection with
the Recall, Precision and F1-score. Both networks are multi-instance detectors, so we chose
to use the COCO [13] assignment algorithm to map detections to ground-truths. The Recall,
Precision and F1-score are computed at the best confidence threshold found via a grid-search
for both networks (see section 3.4 for details on grid-searches of SDNet hyperparameters).

We also provide two metrics to quantify the errors for each evaluated task: MAE .,
which is the Mean Absolute Error (MAE) of leaf counts and MAE),. which is the MAE of
keypoint localizations.

Concerning the classification task, we trained TY4 to detect the bounding box of crops
and a label depicting the crop bread (maize or bean) and the number of leaves from 0 to § (the
maximum number of leaves in our dataset). A detection is a True Positive (TP) if the label
is correct and the bounding box Intersection over Union is greater than 50 %. For SDNet,
a detection is a TP if the star graph anchor label is correct (maize or bean), if its location is
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Figure 4: a: Predictions of TY4 for the leaf counting task, b: predictions of SDNet for
the keypoints detection task, ¢ predictions of the crop structure by SDNet, and d common
prediction errors of SDNet.

in a 2 cm” radius of the ground truth anchor and if the number of leaves is the same as the
ground truth. Some samples of predictions are presented in figure 4a.

Concerning the keypoint detection tasks, TY4 is trained to detect the bounding box of
crop keypoints (maize stem, bean stem and leaf end). The bounding box is centered on the
crop keypoint, and is of square shape with a side length found by grid search equal to 3 cm
(in the field ground referential). A prediction is a TP if the box center is in a 2 cm radius
of the ground truth and the label is identical to the ground truth. For SDNet, all anchor et
part predictions are used and are considered TP under the same rules as for the classification
task. Some samples of predictions are presented in figure 4b.

Our network has the additional ability to detect the star graph of crops, some samples are
presented in figure 4c.

3.4 Hyperparameters Search

We conducted two experiments on three hyperparameters that SDNet depends on: the con-
fidence threshold ¢., the decoder distance threshold ¢4, and the Gaussian kernel size used to
compute the ground truth keypoint heatmaps. We also performed three other grid searches
for TY4 not presented here which allowed finding the best confidence threshold 7. = 50 %
for the classification task, . = 25 % for the keypoint detection task and a bounding box side
length of 3 cm for training it on the classification task.

The first experiment presented in figure 5 is a grid-search on ¢, and #z;. Only a limited
number of values are reported here for a matter of concision and ¢ is expressed as a fraction
of the smaller image side length. The classification F1-score presented in section 3.5 is used
to compare the accuracy of each couple of values. It is shown that the influence of ¢, is
high compared to the one of 7; and that its optimal value is attained around 40 % for all #,
thresholds. Below 15 % and above 65 % the F1-score drops rapidly toward 0 % (not shown
on the graph). This finding is expected as a low threshold let pass a lot of false alarms while
a high threshold yields many missed detections.

2This value is suitable for the precision hoeing task targeted.
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Figure 5: Grid-search on the 7. and t; hyperparameters using the classification F1-score as
the comparison metric.

Kernel size 3% 5% 10 % 40 %
Fl1-score 31.68% | 64.73 % | 63.75 % | 34.89 %

Table 1: Influence of the Gaussian kernel size used for ground truth keypoint heatmaps
computation on the classification F1-score.

In contrast, #; has a lower impact in the F1-score. The figure shows that its optimal value
is attained between 10 % and 20 %. Bellow this value the F1-score slightly decreases for all
t. values, and only begins to drop significantly bellow 2.5 %. Above t; = 20 % the F1-score
also starts to decrease slightly, but even very high values such as 50 % do not have a high
negative impact on the metric which stays around 63 % for the best 7. threshold. The optimal
couple of values is attained for 7. =40 % and t; = 10 % (4 cm).

The second experiment focuses on the influence of the Gaussian kernel size used to create
the keypoint training heatmap. We defined the kernel size as its 3¢ width, expressed as a
fraction of the shortest image side length. We only tested four values spanning a large range
as it requires retraining the network each time. As for the grid-search, the comparison metric
we used is the classification F1-score, computed at the optimal 7, and ; values.

Table 1 shows that good F1-scores are obtained for kernel sizes of 5 % and 10 %. How-
ever, the performance is significantly lower when using a small value of 3 % and a high value
of 40 %. This experiment roughly indicates the range of kernel sizes which are suitable for
a correct training. We chose a value of 5 % (2 cm) because it gives the best performance and
because it matches the required precision for the precision hoeing task targeted.

3.5 C(lassification Task

Table 2 shows that a better F1-score is obtained for SDNet, reaching 64.73 %, 2.18 % better
than TY4. However, it can be noted that TY4 has a better precision than SDNet and a lower
recall, thus, TY4 outputs fewer false positives but misses more detections. The MAE ., is

’ Network \ Recall \ Precision \ F1-score \ MAE ot ‘

Tiny YOLO v4 | 56.24 % | 70.45 % | 62.55 % | 0.33 £ 0.03 leaves
SDNet (ours) 63.04 % | 66.51 % | 64.73 % | 0.37 +0.03 leaves

Table 2: Precision, Recall and F1-score of the two networks for the classification task. The
Mean Absolute Error in count (MAE ;) with its standard error is additionally shown.
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Figure 6: Confusion matrix for the leaf counting task. TY4 (left) and SDNet (right), bean
(top) and maize crops (bottom). Axes refer to the leaf number, the FN row refers to false
negatives and the FP row refers to false positives.

0.33 leaves for TY4 and 0.37 leaves for SDNet. Those errors are both small, with a slight
advantage for TY4 though not significant considering the associated standard errors. Figure
6 investigates in more details the repartition or errors among crop types and leaf counts.

The confusion matrix presented in figure 6 shows that SDNet outputs more false posi-
tives (FP) than TY4, more specifically for the bean crop (+26 FP). However, SDNet yields
fewer false negatives (FN): -34 FN for maize crops and -29 FN for bean crops. Concerning
the classification, errors are more frequent for TY4 on the maize. For instance, it classifies
25 crops has having 3 or 4 leaves instead of 2 while SDNet only misclassified 16 of them
incorrectly. On bean crops SDNet struggles on beans with 2 leaves, misclassifying 27 com-
pared to 3 for TY4, but the opposite is true for beans with 1 leaf where TY4 misclassified 15
crops compared to 6 for SDNet.

These results show that both networks achieve a comparable classification accuracy, and
that the better overall performance of SDNet highlighted in table 2 is mainly due to its lower
false negative rate.

3.6 Keypoint Detection and Location Task

Table 3 shows that SDNet achieves better F1-scores for bean stems (+3.31 %), maize stems
(+1.52 %) and leaf ends (+2.63 %), and in total for all classes SDNet achieves +2.54 %
better F1-score than TY4. The localization errors MAE,. are comparable (3.22 mm for TY4
vs. 3.26 mm for SDNet), and the standard error shows that the difference in MAE|,. is not
significant. This level of error is sufficiently good for precision agriculture tasks.

However, bean stems are more difficult to detect than maize stems for both networks



10 SDNET: UNCONSTRAINED OBJECT STRUCTURE DETECTOR

Network | Keypoint | Recall | Precision | Fl-score | MAE;,, \
Bean 8354 % | 87.61 % | 8553 % | 4.71 +0.26 mm
. Maize 94.61% | 9147 % | 93.01% | 3.61 +0.19 mm
Tiny YOLO v4 |y 83.82% | 88.69% | 86.19% | 2.80 +0.07 mm
Total 8528 % | 88.94% | 87.07 % | 3.22 *0.07 mm
Bean 85.65% | 9227 % | 88.84 % | 5.07 = 0.28 mm
SDNet (ours) | MaiZe 93.14 % | 95.96 % | 94.53 % | 3.67 +0.19 mm
Leaf 86.08% | 91.75% | 88.82% | 2.75 + 0.08 mm
Total 87.00 % | 92.44 % | 89.63 % | 3.26 = 0.08 mm

Table 3: Precision, Recall, F1-score and Mean Absolute Error (MAE),.) in localization with
its standard error for SDNet and TY4 for the stem and leaf detection and location task.

(-5.45 % for SDNet and -7.48 % for TY4) and MAE,,. is greater (respectively +1.40 mm
and +1.10 mm). We believe that the higher density and overlap of bean crops compared to
maize crops is responsible for this lower accuracy location error. Leaf ends are also harder to
detect for both networks but the MAE;,,. is the lowest one of the three keypoints. This better
location accuracy is probably due to the fact that stems are almost never fully visible due to
occlusions by leaves, which is not the case of leaves ends.

Finally, some common SDNet failures are presented in figure 4d. They include missed
part keypoints and wrong part associations. The first and second images show examples of
wrong part associations on bean and maize. The high crop proximity and overlap causes
some anchors to be masked or difficult to see, which seem to be the cause of some leaves
being associated with the wrong anchor point. The last image presents an example where
leaf parts are not detected correctly. The unusual orientation of crops and the dusty leaves
may be the source of confusion in this case.

We did not make experiments on more mature crops as our database does not contain
such samples, but we hypothesize that this would produce more crop overlap, thus leading
to more wrong part associations than usual. However, hoeing is performed at an early de-
velopment stage when the weed competition is high, thus in practice performance on more
mature crops is less crucial.

4 Conclusions

In this paper, we proposed an unconstrained object structure detector which improves the
flexibility of pose estimation networks in contexts where object pose is not fixed and objects
contain an unbounded number of keypoints, such as plants. We designed a real-time detector
called SDNet and demonstrated its effectiveness in precision agriculture tasks such as in-field
crop phenotyping and mechanical precision hoeing. We compared its performance with the
state-of-the-art real-time object detector Tiny YOLOV4 on two tasks where both of them can
be compared: (i) crop detection and leaf counting and (ii) stem and leaf keypoint location.
We show that SDNet introduces some performance gains, achieving respectively +2.18 %
and +2.54 % for the F1-score compared to Tiny YOLO v4.

Future work will investigate the behavior on objects with a more complex structure such
as more mature crops. A special attention will also be given to the mutual analysis of the
network location accuracy and of the ground truth uncertainty due to annotation variability.



SDNET: UNCONSTRAINED OBJECT STRUCTURE DETECTOR 11

References

(1]

(2]

[6]

(10]

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2D Human
Pose Estimation: New Benchmark and State of the Art Analysis. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 3686—3693,
2014.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4: Op-
timal Speed and Accuracy of Object Detection. arXiv:2004.10934 [cs, eess], April
2020.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime Multi-person 2D
Pose Estimation Using Part Affinity Fields. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1302—1310, Honolulu, HI, July 2017.
IEEE. ISBN 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.143.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248-255, Miami, FL, June 2009. IEEE. ISBN
978-1-4244-3992-8. doi: 10.1109/CVPR.2009.5206848.

Andrei Dobrescu, Mario Valerio Giuffrida, and Sotirios A. Tsaftaris. Doing More With
Less: A Multitask Deep Learning Approach in Plant Phenotyping. Frontiers in Plant
Science, 11:141, February 2020. ISSN 1664-462X. doi: 10.3389/fpls.2020.00141.

Mario Valerio Giuffrida, Massimo Minervini, and Sotirios Tsaftaris. Learning to Count
Leaves in Rosette Plants. In Procedings of the Proceedings of the Computer Vi-
sion Problems in Plant Phenotyping Workshop 2015, pages 1.1-1.13, Swansea, 2015.
British Machine Vision Association. ISBN 978-1-901725-55-1. doi: 10.5244/C.29.
CVPPP.1.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770-778, Las Vegas, NV, USA, June 2016. IEEE. ISBN
978-1-4673-8851-1. doi: 10.1109/CVPR.2016.90.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. In
2017 IEEE International Conference on Computer Vision (ICCV), pages 29802988,
October 2017. doi: 10.1109/ICCV.2017.322.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza
Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Mur-
phy. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3296—
3297, July 2017. doi: 10.1109/CVPR.2017.351.

Weiting Huang, Pengfei Ren, Jingyu Wang, Qi Qi, and Haifeng Sun. AWR: Adaptive
Weighting Regression for 3D Hand Pose Estimation. arXiv:2007.09590 [cs, eess], July
2020.



12

SDNET: UNCONSTRAINED OBJECT STRUCTURE DETECTOR

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng, and Rong
Qu. A Survey of Deep Learning-Based Object Detection. IEEE Access, 7:128837—
128868, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2939201.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], January 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollar, and C. Lawrence Zitnick. Microsoft COCO: Common Objects
in Context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, edi-
tors, Computer Vision — ECCV 2014, volume 8693, pages 740-755. Springer Interna-
tional Publishing, Cham, 2014. ISBN 978-3-319-10601-4 978-3-319-10602-1. doi:
10.1007/978-3-319-10602-1_48.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature Pyramid Networks for Object Detection. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 936-944, July 2017. doi:
10.1109/CVPR.2017.106.

Guillaume Lobet. Image Analysis in Plant Sciences: Publish Then Perish. Trends
in Plant Science, 22(7):559-566, July 2017. ISSN 13601385. doi: 10.1016/j.tplants.
2017.05.002.

Javier Garcia Lopez, Antonio Agudo, and Francesc Moreno-Noguer. Vehicle pose
estimation via regression of semantic points of interest. In 2019 1ith Interna-
tional Symposium on Image and Signal Processing and Analysis (ISPA), pages 209—
214, Dubrovnik, Croatia, September 2019. IEEE. ISBN 978-1-72813-140-5. doi:
10.1109/1SPA.2019.8868508.

Philipp Lottes, Jens Behley, Andres Milioto, and Cyrill Stachniss. Fully Convolutional
Networks With Sequential Information for Robust Crop and Weed Detection in Preci-
sion Farming. IEEE Robotics and Automation Letters, 3(4):2870-2877, October 2018.
ISSN 2377-3766. doi: 10.1109/LRA.2018.2846289.

Andres Milioto, Philipp Lottes, and Cyrill Stachniss. Real-Time Semantic Segmen-
tation of Crop and Weed for Precision Agriculture Robots Leveraging Background
Knowledge in CNNs. In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 22292235, May 2018. doi: 10.1109/ICRA.2018.8460962.

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked Hourglass Networks for Human
Pose Estimation. arXiv:1603.06937 [cs], March 2016.

M. P. Pound, J. A. Atkinson, D. M. Wells, T. P. Pridmore, and A. P. French. Deep
Learning for Multi-task Plant Phenotyping. In 2017 IEEE International Conference on
Computer Vision Workshops (ICCVW), pages 2055-2063, October 2017. doi: 10.1109/
ICCVW.2017.241.

Sotirios A. Tsaftaris, Massimo Minervini, and Hanno Scharr. Machine Learning for
Plant Phenotyping Needs Image Processing. Trends in Plant Science, 21(12):989-991,
December 2016. ISSN 13601385. doi: 10.1016/j.tplants.2016.10.002.



SDNET: UNCONSTRAINED OBJECT STRUCTURE DETECTOR 13

[22] M. Verucchi, G. Brilli, D. Sapienza, M. Verasani, M. Arena, F. Gatti, A. Capotondi,
R. Cavicchioli, M. Bertogna, and M. Solieri. A Systematic Assessment of Embedded
Neural Networks for Object Detection. In 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), volume 1, pages 937-944,
September 2020. doi: 10.1109/ETFA46521.2020.9212130.

[23] Xingyi Zhou, Dequan Wang, and Philipp Kréihenbiihl. Objects as Points.
arXiv:1904.07850 [cs], April 2019.



