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Abstract

We propose a novel deep neural network that estimates the six degrees of freedom
pose and complete shape of unseen objects from point cloud data. Our concept is to train
the network that can perform well on real images captured by a consumer RGBD camera
using only 3D models of the target category. To do so, we have employed two ideas. The
first is modeling intra-category shape variations with active shape models that can deform
the shape with a few dimensional parameters. The second is applying effective filtering
processes to the training data to convert the 3D object model into a point cloud that simu-
lates the sensor measurements. We evaluated our method on NOCS REAL275, a widely
used benchmark dataset for category-level pose estimation, and confirmed its superiority
over conventional methods in terms of both shape recovery and pose estimation. Our
code is available at https://github.com/sakizuki/asm-net.

1 Introduction

Estimating the six degrees of freedom (6DoF) pose of objects in a scene is a fundamental
technique in robotic manipulation [21, 30], scene understanding [24], and augmented reality
[25]. If a 3D model of the object represented as a mesh or point cloud data is available, it
can be solved in an approach called instance-level pose estimation [10, 11, 14, 19, 32].

However, even if the name of the target object is known, there are cases in which the
3D model cannot be accessed. Examples are objects whose 3D models are not publicly
available, objects manufactured without 3D modeling design, and objects with individual
differences in shape, such as food. Instance-level pose estimation methods cannot deal with
intra-category shape variations because they assume that rigid body transformations are the
only variations that occur in the object.

Pose estimation that also considers intra-category shape variations is called category-
level pose estimation. To our knowledge, the first paper on this subject was that of [18]. In
this method, the shape of the object is composed of a deformable shape model of semantic
keypoints, and the alignment error with the keypoints detected in the image is minimized by
iteratively optimizing the pose and shape deformation.

Recently, from the viewpoint of inference speed, the mainstream approach to estimation
has been the forward processing of neural networks. Wang et al. [31] presented a shape
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Figure 1: Overview of our method. We first detect the object mask for each instance. This
figure shows an example of a mug as an instance. Next, from the point cloud of the object
mask, we estimate the parameters for recovering the full 3D shape and the pose. Finally, the
final output is obtained by refining the pose.

representation (normalized object coordinate space [NOCS]) that shows the object shape
on a canonical coordinate system prepared for each category, and then proposed a pose
estimation method using NOCS. By estimating the NOCS map, a 2D projection of NOCS,
from the input scene, the method obtains a dense correspondence between the NOCS space
and the input scene. Then, the pose and size are computed using the Umeyama algorithm
[29], which is a closed-form solution for pose and scale estimation. Tian et al. [26] proposed
a method for recovering not only the pose and size of an object but also its full 3D shape by
representing the shape of the object as the sum of a shape prior and a deformation field that
represents the amount of deformation at each point.

However, to train the previously proposed category-level pose estimation methods, a
large number of annotations of NOCS maps and poses on real images are required. In this
study, we propose a method to reduce the learning cost of category-level pose estimation
using a point cloud-based networks that can be learned from synthetically generated data.
Our network estimates the complete 3D shape and 6DoF pose of target objects. It only
requires 3D object models from the target category composed of point clouds; real images
are not required for training. The idea of the proposed method is expressed in the following
two points:

1. We model intra-category shape variation with the modified Active Shape Model (ASM),
which is a deformable shape representation with a small number of coefficients. This
allows us to learn shape recovery easily.

2. During the training phase, we generate annotated 3D object models online by control-
ling both pose and deformation parameters. We also propose a filtering process that
transforms the 3D object model into a point cloud that simulates observations using
3D sensors.

The performance of the proposed method was evaluated on NOCS REAL275, a widely
used benchmark dataset for category-level pose estimation. In comparison with other meth-
ods, our method has advantage in terms of both shape recovery and pose estimation.
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2 Related Works

2.1 Instance-level pose estimation

This approach uses a known 3D object model for pose estimation. There are two ap-
proaches—to calculate the pose based on the correspondence of local features, and the other
is to learn the relationship between appearance and pose.

In the former approach, features are extracted from the local regions of the 3D object
model or RGBD images. Some local features are described as the surface normal and shape
distribution [22, 28]. The correspondence points obtained with feature matching are used for
hough voting [27] a process to estimate pose while eliminating the failure correspondences.
Recently, this process has been replaced by deep learning [10, 11, 19]. The 3D-2D corre-
spondence is calculated by regressing the keypoint positions in the image, and the pose is
estimated using a PnP algorithm.

The latter approach is based on learning the relationship between deep features extracted
from the appearance of objects in RGB(D) images and their poses [14, 32].

However, they assume that the shape of the objects in the scene and that of the 3D
models are the same, so they cannot deal with intra-category shape variations. Our method
can handle unseen objects because it estimates not only the pose of the object but also the
parameters for shape recovery.

2.2 Category-level pose estimation

The challenge of category-level pose estimation is that it must deal with differences in the
shape and texture of objects in the same category. Chen et al. [6] proposed a method to learn
texture variations using neural image synthesis. Other methods focus on learning shape vari-
ations. Pavlakos et al. [18] proposed a method to estimate the object shape by representing
it as a parameter and optimizing it alternately with the pose. Wang et al. [31] proposed a
method to represent object shape variations as a unit cube coordinate system (NOCS). 2D
projection of the NOCS is estimated from RGB images. CASS [4] and Shape Prior [26]
are methods used to learn deformations from the canonical shape. An algorithm was also
proposed to learn feature representations unaffected by texture by using only the shape as
input to the network [5].

However, all these methods require the annotation of input images, such as the 6DoF pose
and NOCS maps, during training. The cost of preparing training data is also considerable.
Although self-supervised method for learning pose estimation from unlabeled RGBD images
has recently been proposed [16], training on real images is still required to achieve better
performance. The advantage of our method is that it can train category-level pose estimation
only by preparing 3D models of the target category. Our method can achieve equivalent or
better performance than other methods without using real images for the training phase.

2.3 Shape deformation

We discuss deformable shape models in terms of the number of parameters required for shape
deformation. A method for representing the shape of a target category by a weighted sum
of N 3D object models was proposed [23]. The number of deformation parameters must be
proportional to the number of objects N. The model proposed by Tian et al. [26] composed
of the sum of the shape prior, which is the mean shape of the category, and the deformation


Citation
Citation
{Rusu, Blodow, and Beetz} 2009

Citation
Citation
{Tombari, Salti, and Diprotect unhbox voidb@x protect penalty @M  {}Stefano} 2010

Citation
Citation
{Tombari and Diprotect unhbox voidb@x protect penalty @M  {}Stefano} 2010

Citation
Citation
{He, Sun, Huang, Liu, Fan, and Sun} 2020

Citation
Citation
{Hu, Hugonot, Fua, and Salzmann} 2019

Citation
Citation
{Peng, Liu, Huang, Zhou, and Bao} 2019

Citation
Citation
{Kehl, Manhardt, Tombari, Ilic, and Navab} 2017

Citation
Citation
{Xiang, Schmidt, Narayanan, and Fox} 2018

Citation
Citation
{Chen, Dong, Song, Geiger, and Hilliges} 2020{}

Citation
Citation
{Pavlakos, Zhou, Chan, Derpanis, and Daniilidis} 2017

Citation
Citation
{Wang, Sridhar, Huang, Valentin, Song, and Guibas} 2019

Citation
Citation
{Chen, Li, and Xu} 2020{}

Citation
Citation
{Tian, Ang, and Lee} 2020

Citation
Citation
{Chen, Jia, Chang, Duan, Linlin, and Leonardis} 2021

Citation
Citation
{Manhardt, Wang, Busam, Nickel, Meier, Minciullo, Ji, and Navab} 2020

Citation
Citation
{Shi, Yang, and Carlone} 2021

Citation
Citation
{Tian, Ang, and Lee} 2020


4 S. AKIZUKI AND M. HASHIMOTO: ASM-NET

field, which represents the amount of deformation at each point. If the number of vertices of
an object is M, there are 3M parameters.

An approach to approximate the shape using multiple 3D Gaussian mixture models has
been proposed [33] to represent the shape with fewer parameters than the original number of
vertices. In FS-Net [5], a recently proposed categorical-level pose estimation, a method of
deforming the object shape (box-cage deformation) is proposed as data augmentation during
model training. This method deforms shapes along the three coordinate axes. However, it
only controls the stretching and shrinking of each axis, so it cannot change the design of the
object. In addition, an conditional Generative Adversarial Nets approach [13] was proposed
to generate images from two conditions: pose and shape.

The ASM [7] is a well-known method for representing variations in the shape of an
object. This method compresses the semantically equivalent points of the same category
objects using Principal Component Analysis (PCA), and it represents the shape variations
as a weighted sum of the average shape and K eigenvectors. Methods for the modeling of
textures and 3D shapes [2, 8] and for application to robotic manipulation have been proposed
[21].

As the upper eigenvectors represent the deformations that characterize the category, intra-
category variations can be represented with K coefficients, which is sufficiently small com-
pared with N or M. In this study, we model shape variations with K + 1 parameters by adding
a parameter that represents scaling to the ASM.

3 Proposed method

Our method estimates the full 3D shape and 6DoF pose of the target category from a monoc-
ular RGBD image. The proposed method consists of object detection, shape and pose esti-
mation, and pose refinement. Fig.1 shows the proposed pipeline.

For object detection, the module detects the mask of the object from the input RGB
image. We use an off-the-shelf network (e.g., Mask R-CNN [9]) for mask detection. For this
task, a large RGB image dataset [15], which allows us to learn a reliable detector, is available.
We assume that RGB information has less relevance to object shape, so depth information
is more important for estimating shape and pose. Therefore, we recover the point cloud
data from the object mask and the depth image. Because of errors in the camera’s intrinsic
parameters, the points on the background surface may be recovered at the same time. These
point clouds are far away from the object, to remove them the outlier removal by statistical
analysis is applied to the depth image.

For shape and pose estimation, we input the point cloud of the object and estimate the
deformation parameters and pose required to recover the full 3D shape of the object. First,
the point cloud is inputted to the feature extractor of PointNet [20], and 1,024-dimensional
global feature vectors are extracted. Deformation and pose (unit-quaternion) parameters are
estimated by inputting these features into the deformation branch and pose branch, which
are composed of fully connected layers. The deformation parameters, the mean shape, and
the eigenvectors of the target category are used to recover the shape, which is then rotated
according to the estimated pose. The recovered point cloud is translated to the position where
the object is cropped.

For pose refinement, the final 6DoF pose is obtained by applying the ICP algorithm [1]
as post-processing. The lower-right area of Fig.1 shows an example of the recognition result
of the mug category. The shape of the recovered point cloud is similar to that of the mug in
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Figure 2: Shape deformation using the our ASM. From left to right are the mean shape, the
change in the direction of the first and second eigenvectors, and scaling. The bowl’s height
and roundness were changed, and in the mug, the height of the cylindrical part and the shape
of the handle were deformed.

the image.

3.1 Modeling of intra-category shape variation

To model the intra-category shape variation, we leverage ASMs, which are a method of
representing an object’s shape, described by the sum of the mean shape and weighted eigen-
vectors. The shape can be deformed by adjusting the weighting coefficients. Unlike the
facial recognition task, for which ASM has been used in the past, the object recognition task
involves a large variation in the size of the object. Therefore, we propose an extended ver-
sion of ASM that can directly represent the scaling using an additional coefficient. We first
represent the point cloud as a 3M-dimensional vector. Then, we perform PCA to obtain the
eigenvectors U. Our ASM is denoted as a function of b = (by,...,bk) and s, as follows:

K
S(b,s) = s(X+) bU)) (1)
i=1
By adjusting b and s, we can deform the shape while keeping the characteristics of the
category. Fig.2 shows the deformation of the category bowl and mug by our ASM.
To construct our ASM, we need (1) 3D point clouds with the same number of points,
(2) a normalized pose, and (3) semantically identical point correspondences. For (1), M
points are sampled from all object models. For (2), since the object models registered in
ShapeNetCore [3] are pose normalized, so they can be used without modification. For (3),
we use the non-rigid registration method [17] to obtain a semantically sorted point cloud.
We specify one object as the source and apply non-rigid registration to all remaining objects
(targets). The order is sorted by considering the nearest neighbor points of the deformed
source and target as corresponding points.

3.2 Learning of deformation and pose from synthetic data

In this section, we describe a procedure to train shape deformation and pose estimation using
synthetically generated point clouds. We only need 3D object models of the target category
to train the proposed method.

While generating the training data online, we optimize the network parameters of the
PointNet feature extractor, the deformation branch, and the pose branch, as described in
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Figure 3: Procedure of training data generation.

Fig.1. To do so, we randomly generate the deformation parameters b and §, as well as the unit
quaternion of the pose {, and the point cloud is also generated from deformation parameters
and eigenvectors. Fig. 3 illustrates this procedure. Considering the illumination variation is
necessary when dealing with RGB images, simulating it accurately is not easy because of
the influence of the position of the light source and the reflections from surrounding objects.
However, shape data have the advantage of being less sensitive to illumination variation. As
our method only uses shape data for inference, simulating real-world data variations in a
low-cost manner is possible.

Specifically, three filtering processes are applied to the generated point cloud. First, we
use Hidden Point Removal (HPR) [12] for back surface removal to simulate observation by
a 3D sensor. Second, we add translation jitter and Gaussian noise as data augmentation.
Third, we perform re-quantization in the depth direction. Thus, we ensure that our point
clouds are consistent with those recovered from RGBD images, which have a low resolution
in the depth direction compared with their resolution in the x and y directions.

3.3 Loss function
The network parameters are optimized by minimizing loss, defined in Eq. (2). Lgeform and

L pose are the loss to shape deformation and pose, respectively.

L= ‘Cdeform + Epose +r )

Laeform =Dcp(S(5,5),5(b,5)),  Lpose = Den(R(M,§),R(M, q)) )

where R(M,q) is a function that rotates the object model M according to the pose q.
By evaluating the consistency between the rotated shapes rather than the difference in the
estimated rotation parameters themselves, we can calculate the loss without the ambiguity
of the symmetric object pose. The regularization term r brings the estimated scale closer to
a value near 1.0. The function D¢p is the Chamfer distance (CD) defined by

Dcp(X,Y)= ) minl||x— 2+Y min||y—x[J3. 4
eo(¥.1) = T miglle—yi3-+ F miglly—s13 @

4 Experiments

4.1 Datasets

To benchmark the pose estimation performance, we used NOCS-REAL275, a dataset for
category-level pose estimation proposed in [31]. This dataset consists of 2,750 RGBD im-
ages with multiple objects in six categories to be recognized: bottle, bowl, can, camera,
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Figure 4: Examples of shape recovery. The input point cloud, recovered result, and ground
truth are shown in blue, green, and red, respectively.

laptop, and mug. The 6DoF pose and the 3D bounding box size of each object are provided
as the ground truth.

Only the object model is required to train the proposed method. We trained the six
categories provided in ShapeNetCore [3]. As some object models in ShapeNetCore are not
suitable to be considered as the same category, we removed them. For example, we excluded
models in the mug class, whereas saucers and spoons were modeled together. We used 80%
of the object models for training and 10% for testing and validation, respectively.

4.2 Evaluation metrics

The proposed method performs shape recovery and pose estimation. Each was evaluated
using the following metrics.
Shape reconstruction: We use the CD described in Eq. 4 as a measure to evaluate the
accuracy of shape recovery. The smaller the value, the more accurate the reconstruction.
Pose estimation: We use the average precision considering following terms:

¢ JoU;, is the intersection-over-Union (IoU) accuracy of the 3D bounding box surround-
ing the object. x is the overlap threshold, and the larger the threshold, the higher the
accuracy.

¢ n°, m cm represent the error of pose estimation. Rotation and translation error are less
than n° and m cm are acceptable.

4.3 Shape reconstruction

The shape recovery performance of the proposed method is evaluated from both qualitative
and quantitative perspectives. The experiment was conducted on a test set selected from
ShapeNetCore and NOCS-REAL275.

Qualitative evaluation: Fig. 4 shows the results of shape reconstruction for bowl and
mug of the ShapeNetCore dataset. On the left is the input point cloud, and on the right is the
ground truth (red) and the estimation result (green).

For the bowl, the instances with different heights are the ground truth, and the proposed
method recovers the point cloud that overlaps with them with good accuracy. For the mug,
the instances with different heights of handles and cylinders are the ground truth, and the
proposed method recovers the point cloud that almost matches them.

Quantitative evaluation: We first evaluated the similarity between the recovered point
cloud and the ground truth on the ShapeNetCore dataset. We compared our method to the
mean shape of the training set shown in Fig. 5(a). The evaluation metric is the CD, and the
results are shown in Table 1. As we used a size-normalized 3D model, the recovery error
does not have a unit of length; the improved amount of the proposed method compared to
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Table 1: Chamfer distance of shape reconstruction on ShapeNetCore

bottle | bowl | camera | can | laptop | mug | mean

Mean shape | 4.42 | 2.44 807 |277| 131 | 138 | 3.40
Ours | 148 | 1.14 | 297 | 132 | 1.05 | 1.25 | 1.54

Table 2: Chamfer distance of shape reconstruction(x 10~3) on NOCS-REAL275 dataset.
"pts." means the number of reconstructed points.

pts. | bottle | bowl | camera | can | laptop | mug | mean

Shape Prior [26] | 1024 | 3.44 | 1.21 8.89 1.56 | 291 | 1.02 | 3.17

CASS [4] | 500 | 0.75 | 0.38 0.77 | 042 | 337 | 032 ] 1.06

Mean shape | 2893 | 0.18 | 0.23 1.19 | 059 | 295 | 0.14 | 0.88

Ours | 2893 | 0.23 | 0.06 0.61 | 0.15| 0.60 | 0.10 | 0.29

the mean shape is our contribution. In all categories, it was confirmed that the deformation
parameters estimated by the proposed method were closer to the ground truth.

We also evaluated reconstruction accuracy on the NOCS-REAL275 dataset. The results
are shown in Table 2. Compared to the mean shape, the proposed method shows improve-
ments, which indicates the effect of our deformations. The proposed method also has a
smaller CD metric than all other methods. However, it should be noted that this CD metric
tends to be smaller as more points are recovered. The table also shows the number of points
recovered by each method.

The error of category camera is larger than that of the other categories. Fig.5(b) shows
the latent space consisting of the top two axes of two categories, mug and camera, in which
one point corresponds to one instance. In the example of the mug category, the plots are
distributed around the origin, and the data spread out from there. However, in the camera
category, there is no plot near the origin, and the plots are separated. The mean shape at the
origin in latent space is a thin rectangular shape, as shown in Fig.5(a), which is different from
the shape of a real camera. Four typical instances are shown in Fig.5(c). The training data
included voluminous shapes, such as a single-lens reflex camera, and simple shapes, such as
a compact digital camera. Thus, if the dataset contains shapes with different characteristics,
the latent space will contain shapes that are different from the actual ones. This is the reason
why the accuracy of shape recovery is low in this category.

Latent space of mug Latent space of camera

y ) 2
; ' , E e, .5 ‘ o
i 2 2 . ; ) . _
g e S o s . . ® @
bottle bowl camera 3 o ? '.‘g't‘ X olee o - °
- g WETE RN e
» 2 .
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Figure 5: Relationship of shapes and latent spaces. (a) Mean shape of each category. (b)
Latent space of the mug and camera. (c) Typical instances of camera.
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Table 3: Relationship between the dimension of  Table 4: Effectiveness of three filters
the deformation vector and recognition perfor- used for training. H: Hidden point
mance. When K = 0, the recognition result is ob-  removal, Z:depth re-quantization, T:

tained by the mean shapes. translation jitter.

[ K | 0 ] 1 [ 3] 5 [ 10| [Filtes [ H |HZ|HZT |
ToUsg 57.3 | 61.1 | 65.5 | 60.2 | 66.0 ToUsq 56.1 | 68.3 65.5
IoU7s 24.0 | 333 | 39.2 | 355 | 33.8 ToU7s 33.8 | 374 39.2
5°,5cm | 159 | 23.4 | 21.3 | 23.0 | 16.0 5°,5cm | 24.0 | 256 | 213
10°,5cm | 36.2 | 43.8 | 42.1 | 439 | 30.5 10°,5cm | 38.2 | 43.7 | 42.1

4.4 Number of dimensions for shape deformation

The performance of the proposed method depends on the number of dimensions K used for
shape deformation in Eq.1. To investigate the appropriate number of dimensions, we pre-
pared a network trained with a different number of dimensions and examined its recognition
performance on NOCS-REAL275. The results are shown in Table 3.

In the case of K = 0, no deformation is applied, and the mean shape is used for pose es-
timation. The performance was lower than that in the other conditions. For K values around
1 —5, the performance was relatively high because only the top eigenvectors that represent
the intra-category shape variations are used for deformation. For K = 10, this is the case in
which the lower eigenvectors are also used for deformation, as the lower eigenvectors are de-
formed with low commonality in the category. In this case, the improvement in recognition
performance was less, and the performance was closer to that of the K = 0 case.

The mean cumulative contribution ratio over the categories are 0.31, 0.53, 0.61, and
0.72, for K = 0,1,3,5,10. The lower eigenvectors do not represent a common deformation
for multiple instances, so there is no significant advantage to learning it. In the following
experiments, we used K = 3.

4.5 Ablation study

We conducted an ablation study to confirm the effectiveness of the three filtering processes
described in 3.2 to simulate the observations by 3D sensors. The relationship between the
three processes and the recognition performance is shown in the Table 4. Each column
indicates the filter process used: H for HPR, Z for depth re-quantization, and T for translation
jitter and Gaussian noise. We confirmed that the recognition performance was improved by
applying the HPR and depth re-quantization. As the proposed method inputs a point cloud
that is offset to its center, the translation jitter may have caused the performance decrease.

4.6 Category-level pose estimation

We evaluated the performance of category-level pose estimation. The comparison meth-
ods are NOCS [31], CASS [4], Shape-Prior [26], FS-Net [5], and CPS++ [16]. The first
four methods require annotations on real images during training, whereas CPS++ is a self-
supervised learning method. The results are shown in Table 5, where the results of CPS++
and the proposed method are shown before and after the pose refinement by ICP. For the IoU
metric, the comparison method was superior, but for the IoU75 metric, the proposed method
was superior to the NOCS. The n°, m cm metric is more important because it can directly
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Table 5: Pose estimation result of the NOCS-REAL275 dataset with different metrics.
x indicates the result of the 10°, 10cm metrics.

| Method | Real Data | ToUsg [ ToUys [ 5°, 5cm | 10°, 5cm
NOCS [31] v 80.5 30.1 9.5 26.7
CASS [4] v 77.7 - 23.5 58.0
Shape Prior [26] v 71.3 53.2 21.4 54.1
FS-Net [5] v 92.2 63.5 28.2 60.8
CPS++ w/o ICP [16] v 17.7 — - 22.3*
CPS++ w/ ICP [16] v 72.8 - - 58.6"
Ours w/o ICP — 64.4 31.7 12.4 37.7
Ours w/ ICP - 68.3 37.4 25.6 43.7
or— — 10 10
08 N 08 — 08
06 06 0.6 — bottle
ES 4 Ed bow
04 \ 04 0.4 T comen
0.2 0.2 0.2 : EE;:
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3D loU thresholds Rotation/degree translation/cm

Figure 6: Result on NOCS-REAL275

measure pose accuracy. The proposed method outperformed NOCS, CASS, and Shape-Prior
in the most challenging indices, the 5° ,5cm metric.

It has been reported that the performance of CPS++ can be significantly improved by
applying ICP [16], but it has a problem that the results depend on the parameter settings of
ICP. It is more important to compare the pose accuracy before ICP refinement. The proposed
method is superior for both IoUsq and 10°, 5cm metrics. The details of the IoU, rotation, and
translation error are shown in the Fig.6.

5 Conclusion

We proposed a category-level object pose estimation that learns from synthetically gener-
ated point clouds. Our idea is twofold—representing intra-category shape variation using a
deformable shape model with a few parameters and transforming the 3D object model using
filtering processes that reproduce the characteristics of the depth sensor’s measurement. This
allows us to generate point cloud data with annotations of deformation and pose parameters
online. The advantage of the proposed method is that it does not require any manual anno-
tation; only the 3D object models of the target category are needed for training. In future
work, we will tackle the robotic manipulation of unseen objects using our method.
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