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Abstract

Holistic object representation-based trackers suffer from performance drop under
large appearance change such as deformation and occlusion. In this work, we propose a
dynamic part-based tracker and constantly update the target part representation to adapt
to object appearance change. Moreover, we design an attention-guided part localization
network to directly predict the target part locations, and determine the final bounding box
with the distribution of target parts. Our proposed tracker achieves promising results on
various benchmarks: VOT2018 [17], OTB100 [31] and GOT-10k [15].

1 Introduction
Object tracking remains a challenging task due to the unconstrained real-world scenarios,
such as large deformation, occlusion, illumination change and cluttered background. Con-
sidering aforementioned challenges, existing tracking algorithms using holistic model for
object representation suffer from accuracy loss. For example, [1, 7, 18] applied holistic
model for object representation. Bertinetto et al. [1] introduced Siamese network to ef-
ficiently match the target template and candidates in the search region by using template
feature map as convolution kernel. However, since the target representation is fixed during
tracking, the tracker is susceptible to large appearance change such as deformation and oc-
clusion. Attempts have been made to handle the issue by either exploiting local structure
[22, 39] or updating the target templates online [20, 38]. Zhang et al. [39] introduced a local
pattern detector to identify discriminative local patterns and learns the context information
among local patterns through conditional random field. In these recent methods [22, 39],
the local patterns are represented as peaks in feature maps, which are learned without strong
semantic guidance. As a result, the detected local patterns are not associated with a clear
physical meaning.

In contrast, local patterns with clear physical meaning offer a clear explanation for tracker
performance. Applying explicitly designed local structure in an end-to-end deep learning
framework for visual tracking is still under exploration. Thus, we propose to directly localize
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target parts and calculate the bounding box from their distribution. An attention-guided
learning strategy is introduced to provide supervision to predict more meaningful target part
locations.

Moreover, to deal with large appearance change and background distractor, we intro-
duce a dynamic target part representation based on the pseudo template from the most recent
tracking result. A simple yet effective multi-head attention module is used to aggregate simi-
lar parts from pseudo template and template. Different from trackers [34, 38] that use a large
set of historical frames, our updater only takes the ground-truth template and tracking result
from the most recent frame as input and force the updater to learn to attend to the correct
corresponding locations even when the prediction of the previous frame is not accurate.

The contribution of this paper can be summarized as follows: 1) We propose to formulate
visual tracking as directly predicting target part locations from the target part representations.
2) The target part representations are dynamically updated based on the pseudo template gen-
erated from the most recent tracking result with our simple yet effective part representation
updater. 3) We introduce an attention loss to impose attention-guided supervision on target
part localization for more reasonable part predictions. 4) Our tracker achieves comparable
results to State-of-the-art works on various benchmarks: VOT2018 [17], OTB100 [31] and
GOT-10k [15].

2 Related Work

2.1 Part-based Object Model

Part-based representation is widely used for visual tracking in traditional methods [5, 21, 24]
since it can handle large appearance change such as deformation and occlusion well. Re-
cently, many attempts are made to exploit the local patterns in deep learning-based trackers
for more robust tracking [22, 25, 26, 35, 39]. Zhang et al. [39] introduce a local pattern de-
tector to identify discriminative local patterns and learn the context information among local
patterns through conditional random field. Similarly, Liang et al. [22] propose to extract local
features associated with each object semantic class by integrating an auxiliary classification
branch. Lukezic et al. [25] model the target and the background with pixel-level local feature
vectors extracted from the target and background regions respectively. Each local feature in
the search region is matched with the target and background features to generate a poste-
rior map for segmenting foreground from background. Yan et al. [35] adopt the pixel-wise
correlation that treats each local feature in the template as a kernel to encode information
of local regions in different correlation maps. The segmentation mask is predicted from the
correlation maps. In the above-mentioned methods, local parts are identified as high values
in the response maps and all response maps are combined to predict the object bounding box
or segmentation mask. In contrast, our method directly predicts the location of each local
part from the local representation learned with a novel guided-attention based supervision.
In the later ablation study, we also show that weak supervision is the key to perform video
tracking in our framework. [25] and [35] are excluded from our performance comparison
since they focus on learning the target segmentation and requires additional segmentation
dataset such as Youtube-VOS [32] for training. [37] is also excluded from comparison for
the same reason.
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2.2 Online Template Update

Most trackers use a fixed template from the first frame throughout the video sequence [1, 18,
19]. To deal with the constantly changing object appearance, many trackers [14, 43] update
the template online based on historical frames. For example, Yang et al. [36] employ a Long
Short-Term Memory (LSTM) to update the current template by encoding the previous tem-
plates in hidden state during on-line tracking. Recent works [30, 34] introduce transformer
to directly fuse historical template features into the search region features. [34] uses a fixed
template from the first frame and a dynamic template from the most recent previous frame.
An additional classifier is trained separately to determine if the new template is reliable to
update the dynamic template. We share the same spirit as [34], but we extract the temporal
information by adopting simple yet effective dynamic target part representation. This rep-
resentation is learnt through a multi-head attention module with the input of the template
and a pseudo template from the most recent tracking result. Therefore, our template update
strategy is much simpler yet effective. Some recent works such as DROL-RPN [41] and
RPT [26] propose to employ a standalone classification network, whose parameters are up-
dated online to extract target-specific features. The online model can be integrated into an
offline tracker as a complementary subnet to boost its performance. Zhou et al. [41] integrate
such online model to SiamRPN++ [19]. Similarly, Ma et al. [26] apply an online model to
a point-based Siamese tracker. These methods achieve good performance. However, the
online learning strategy is orthogonal to our work, which can also be used to boost our per-
formance. Thus, the methods boosted by the online discriminative model are not considered
in our performance comparison.

2.3 Transformer Based Visual Tracking

Transformer [28] is the state-of-the-art model for language tasks because of its capability
to capture global dependencies among all inputs. It has been applied for object detection
in DETR [4] and achieved comparable performance to CNN based detectors. Inspired by
DETR, recent works [6, 30, 34] adopt transformer for visual tracking. Yan et al. [34] in-
put both template and search region features to transformer encoder to model the spatial
temporal feature dependencies, while the decoder learns a query embedding. The result-
ing feature map of the search region is used to predict the corner points of object with a
fully-convolutional head. Our tracker differs from existing transformer-based trackers as:
existing methods represent the target object as a global template feature map and predict
target bounding box from the search region feature map fused with template features. In
contrast, we treat elements in the template feature map as independent parts and predict their
location separately. The bounding box is estimated based on the distribution of the predicted
parts coordinates.

3 Methodology

Different from existing works [34, 34], we formulate visual tracking as a two-stage problem,
which we first directly predict target part locations and then estimate the bounding box from
their distribution in an end-to-end deep framework. The key components of the proposed
framework are the dynamic target part representation module and the attention-guided part
localization module, which will be elaborated in later part of this section.
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Figure 1: Overview of the proposed framework. Our tracker takes the search region, tem-
plate and a pseudo template as inputs. The target object is represented as part vectors and
dynamically updated with the most recent pseudo template in the dynamic target part rep-
resentation module. The target parts and search region parts are input to the transformer
encoder to encode global information. Encoder output of target parts are used to directly
predict the location of the corresponding part with the attention-guided supervision. The
bounding box is calculated with the part distribution and supervised by the ground truth.

As illustrated in Figure 1, our network takes an image triplet as input (i.e., a template
image z cropped from the initial frame, a search region x from the current frame and the
pseudo template y cropped from the tracking result in the previous frame) and feed them
through the same backbone convolutional network to extract generalized high-level features.
The resulting lower-resolution feature maps obtained from x, y and z are denoted as fx ∈
RC×Hx×Wx , fy ∈RC×Hy×Wy and fz ∈RC×Hz×Wz respectively. Each location in the feature maps
are used as local part representation. The target part representations are dynamically updated
with the most recent pseudo template in the dynamic target part representation module. We
use a transformer encoder to globally encode information from all parts. Encoder output
embedding of target parts are used to directly predict their locations in the search region
with the attention-guided supervision. Finally, the bounding box is calculated with the part
distribution.

3.1 Dynamic Target Part Representation

The local target part representation defined as Hz ·Wz number C-dimensional vectors from the
template feature map fz ∈ RC×Hz×Wz . Each local part representation corresponds to a local
region in the input template image. However, fz contains both target parts and background
parts because all template images are cropped into a fixed square region which does not pre-
cisely bound the object in the data preparation process. To remove the effect of backgrounds,
we introduce a target maskMz ∈ R1×Hz×Wz to zero out the background parts in the feature
maps. To generate the mask, we first calculate the part centers {ci ∈ R2}Hz·Wz

i=1 mapped to
the scale of template z. The part centers located inside the ground truth bounding box are



W. HAN, H. HUANG, X. YU: TAPL 5

considered target parts. The mask values corresponding to the target parts are set to 1 while
others are set to 0. As shown in Fig. 1, the target part representation will be further updated
by a multi-head attention module.

Attention-based Part Representation Updater The appearance of the target object con-
stantly changes during tracking, thus its crucial to dynamically update the target representa-
tion with its most recent appearance. To this end, we propose a simple yet effective template
feature updater based on multi-head attention [28] to conduct part-wise updating only using
the most recent one pseudo template. The incentive of the updater is to align each part in
the pseudo template to its most attentive target part in the template and fuse their represen-
tation vectors. A learnable positional vector is also added in the dynamic part representa-
tion to encode geometric information of the target parts. The dynamic part representations
{ f̂z(i) ∈ R1×C, i = 1, ...,Hz ·Wz} are calculated as:

f̂z(i) = fz(i)+Posz(i)+Atten(Q,K)V, ∀ i = 1, ...,Hz ·Wz,

K =V = [ fy(1), ..., fy(Hy ·Wy)] ∈ R(Hy·Wy)×C,

Q = fz(i) ∈ R1×C

(1)

where Q, K and V denote the query, key, and value vectors for the multi-head attention mod-
ule Atten() as introduced in [28]. Posz(i) ∈ R1×C denotes the learnable positional encoding
vector at position i similar to that used in DETR [4].

Notably, since the reliability of the pseudo template generated from the tracking results
is not guaranteed, we use template parts as query and fuse pseudo template part features onto
their representations, in such a way a misaligned pseudo template can be recovered. During
training, to simulate the uncertainty in the tracking result, we randomly shift and scale the
ground truth region to generate pseudo template y.

3.2 Attention-guided Part Localization
We aim to predict target part locations directly from their representation vectors. To this
end, we adopt the transformer encoder to encode the part representations with positional
information of the search region and achieve global information exchange among parts,

Global Feature Encoding In addition to the target part representation, each feature vector
of the search region can also be regarded as a local part. Due to the permutation invariance of
the transformer input, we add sinusoidal positional embeddings to the search region feature
vectors following [4]:

f̂x(i) = fx(i)+Posx(i), i = 1, ...,Hx ·Wx (2)

where Posx(i) denotes the sinusoidal positional embedding for spatial position i. Addi-
tionally, we apply the target mask Mz on the updated template feature map f̂z to ensure
only the target parts are considered in the feature embedding process. Then the feature
vectors of search region parts { f̂x(i) ∈ R1×C, i = 1, ...,Hx ·Wx} and dynamic target parts
{ f̂z(i) ∈ R1×C, i = 1, ...,Hz ·Wz} are concatenated to form a sequence of Hx ·Wx +Hz ·Wz
part feature vectors of dimension C as input to the the stacked transformer encoder. The
encoder layers enable each part representation to globally encode information from all other

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020



6 W. HAN, H. HUANG, X. YU: TAPL

parts via the multi-head self-attention module. The encoded part representations then go
through a residual connection and a feed-forward network to generate the globally encoded
part representations.

Attention-guided Part Localization The transformer encoder output the encoded part
representation vector for each input part vector of both the search region and template, which
are denoted as {hx(i)∈RC, i = 1, ...,Hx ·Wx} and {hz(i)∈RC, i = 1, ...,Hz ·Wz}, respectively.
We employ a multi-layer perceptron (MLP) consisting of two linear layers for part localiza-
tion. Each part representation vector in the template {hz(i) ∈ RC, i = 1, ...,Hz ·Wz} is input
to the MLP to predict its relative position li ∈ R1×2 in the search region as:

li = MLP(hz(i)), i = 1, ...,Hz ·Wz (3)

We estimate the target bounding box center o and scale s based on the target parts distri-
butions as:

o =
1
Nt

Hz·Wz

∑
i=1

liMz(i), s =
σ

Nt

√√√√Hz·Wz

∑
i=1

(li−o)2Mz(i) (4)

where Nt is the number of target parts in the template feature, which is calculated by Nt =

∑i Mz(i) andMz(i) ∈ {0,1} is the mask value corresponding to part fz(i). σ is a scaling pa-
rameter fixed at 3, which is calculated with the assumption that all target parts are uniformly
distributed in the bounding box. We penalize the bounding box prediction by a combination
of a L1 loss and a generalized IoU loss [27] between the estimated bounding box and ground
truth provided. The combined loss is denoted as Lbbox

An obvious challenge for part-based tracking is the part level label, which is difficult
to get. Bounding box label can not directly provide part level information. To tackle this
challenge, we propose a novel attention loss to guide the part localization in a self-supervised
fashion. The incentive behind the attention loss is to force a predicted part location to agree
with its most attentive location in the search region according to the attention map. The
attention vector ai ∈R1×(Hx·Wx) from a target part hz(i) to the search region parts is calculated
as:

ai = Gumbel(hz(i)[hx(1), ...,hx(Hx ·Wx)]
T ) (5)

where Gumbel() is the gumbel-softmax function [16] that generates a differentiable approx-
imation of the hard attention vector, i.e., an one-hot vector where value 1 corresponds to the
most attentive location. The attention loss is computed as the summation of the L1 distance
between the attended part locations and the predicted part locations :

Latten =
Hz·Wz

∑
i=1
||aiPT − li||1 (6)

P = [p1, ..., pHx·Wx ] ∈ R2×(Hx·Wx) contains the x and y coordinates of all search region parts.
The total loss function is calculated as:

L= Lbbox +λLatten (7)

where λ is a balancing factor empirically set to 0.1. This proposed loss design makes atten-
tion maps as an explicit guidance for the part location prediction and offers clear physical
meaning for each part prediction. Moreover, the use of gumbel-softmax enables our network
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to generate a differentiable hard attention, which can be used in end-to-end learning. As a
result, during training both the attention and part location predictions are learnable. Since
the loss Lbbox constrains the overall distribution of predicted part locations, it indirectly im-
poses supervision to attention learning through the attention loss. With synergy from the
attention-guided part localization, the final network performance is further improved.

4 Experiments
We evaluate our tracker on VOT2018 [17], OTB100 [31] and GOT-10k [15] benchmarks.
The model is trained on COCO [23], ImageNet VID [11], LaSOT [12] and GOT-10k [15].
Notably, we only use GOT-10k training set for evaluation on GOT-10k following the require-
ments of the benchmark. Each training sample consists of a search region, a template and
a pseudo template. The search region and template are randomly selected from two frames
within a range of 100 frames in a video sequence. The pseudo template is set as the previous
frame of the search frame.

4.1 Implementation Details

The proposed tracker is implemented in Pytorch and trained on 4 RTX-2080Ti GPUs. A
ResNet-50 pretrained on ImageNet [11] is used as the backbone for feature extraction. Fea-
ture maps from its last three convolutional layers are concatenated and down-sampled to a
dimension of 512 channels. In the template updater and transformer encoder, the number
of heads and hidden dimension of the multi-head self attention layers are set to 8 and 512
respectively. We stack 4 encoder layers to form transformer encoder. We train the network
for 40 epochs with stochastic gradient descent (SGD). The first 5 epochs are warm-up period
with a linearly increased learning rate from 0.001 to 0.005. Afterwards, the learning rate
will exponentially decay to 0.0005 till the end. The backbone parameters from the last three
layers are trained after the first 10 epochs, while other parameters of the backbone are fixed.

4.2 State-of-the-art Comparison

VOT2018 VOT2018 dataset contains 60 challenging video sequences. We evaluate our
performance using the expected average overlap (EAO) [17], which considers both accuracy
and robustness of the tracker. We demonstrate the accuracy score (A), robustness score (R)
and the EAO score of our tracker and recently proposed State-of-the-art methods including
SiamRPN++ [19], DiMP[2], Ocean [40], SiamBAN [7], KYS [3], TrDiMP [30], SiamRN
[8] in Table 1,

SiamRPN++ [19] DiMP[2] Ocean [40] SiamBAN [7] KYS [3] TrDiMP [30] SiamRN [8] Our
CVPR2019 ICCV2019 ECCV2020 CVPR2020 ECCV2020 CVPR2021 CVPR2021

A(↑) 0.604 0.597 0.598 0.597 0.609 0.600 0.595 0.617
R(↓) 0.234 0.152 0.169 0.178 0.143 0.141 0.131 0.140
EAO(↑) 0.417 0.441 0.467 0.452 0.462 0.462 0.470 0.489

Table 1: Comparison on VOT2018 with the state-of-the-art in terms of EAO score, ac-
ccuracy score (A) and robustness score (R). The top-3 results are shown in red, blue and
green, respectively. DiMP denotes the ResNet-50 version (DiMP-50), and Ocean denotes
the offline version.
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(a) (b)

Figure 2: (a) Success plots and (b) precision plots of our tracker and state-of-the-art methods
on OTB100 benchmark. The TrDiMP result shown is generated from the raw result file
provided by the authors, which is slightly different from the reported result

Based on Table 1, our tracker achieves the best EAO score, which shows an improvement
of 4% from 0.470 to 0.489. Notably, our accuracy score also outperforms other methods by
a large margin, which implies that it can obtain more accurate bounding box under object
deformation. This may be attributed to our more flexible part representation.

OTB100 OTB100 is a classic benchmark for visual tracking, which consists of 100 se-
quences. Following the protocols of the benchmark [31], we evaluate our method against the
recent state-of-the-arts with the success plot and precision plot as shown in Figure 2. The
compared state-of-the-art methods include ATOM [9], DaSiamRPN [42] , DiMP[2], KYS
[3], SiamRPN++ [19], SiamBAN [7], TrDiMP [30], SiamCAR [13] and TransT [6]. In Fig-
ure 2, our tracker delivers competitive performance compared to other methods. Particularly,
our method achieves the highest success score among all compared methods in Figure 2(a).
The result shows the effectiveness of our tracker in handling large appearance change, since
the success score is computed based on the overlap rate of the predicted and ground truth
bounding boxes.

GOT-10k The GOT-10k contains more than 10000 training sequences and 180 testing se-
quences of moving objects from the real-world. A unique property of GOT-10k is that the
object classes between training and testing sets are zero-overlapped, which can show the
tracker’s ability of tracking unseen objects. We conduct the experiment on GOT-10k follow-
ing the protocol that only GOT-10k training set is used for training our model. We report the
average of overlap rates (AO), success rate SR0.50 at threshold 0.5 and success rate SR0.75
at threshold 0.75 of our tracker and the state-of-the-art trackers including DiMP[2], Ocean
[40], KYS [3], SiamFC++ [33], PrDiMP [10], SiamR-CNN [29] and STARK-ST50 [34] in
Table 2. Our method achieves strong performance on GOT-10k comparing to other methods,
which indicates the generalization ability of our method to track unseen objects. Although
SiamR-CNN has a slightly higher AO than our method, our tracker is 6 times faster.

Notably, the STARK-ST50 tracker outperforms our method by a significant margin. The
performance gap might be caused by the following reasons: Firstly, STARK-ST50 trains a
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template scoring network to reject unreliable dynamic templates. while our method updates
the target representation with the previous frame end-to-end. Though our update mechanism
is simpler, it is more susceptible to occlusion and out-of-view challenges. Our dynamic
target part representation can also be improved using this strategy, which we will investigate
for our future works. Secondly, our tracker adopts a search region of 255 by 255 following
the SiamRPN [18], while that used in STARK-ST50 is 320 by 320. The larger search region
may improve the tracker’s robustness against fast motion and target our-of-view.

DiMP Ocean SiamFC++ KYS PrDiMP SiamR-CNN STARK-ST50 Our
SR0.50(%) 71.7 72.1 69.5 75.1 73.8 72.8 77.7 74.7
SR0.75(%) 49.2 47.3 47.9 51.5 54.3 59.7 62.3 54.6
AO(%) 61.1 61.1 59.5 63.6 63.4 64.9 68.0 64.2
fps - - - - - 5 (V100) 30 (V100) 33 (2080 ti)

Table 2: Comparison on GOT-10k with the state-of-the-art in terms of AO, SR0.50, SR0.75
and fps. The top-3 results are shown in red, blue and green. DiMP denotes the ResNet-50
version (DiMP-50), and Ocean denotes the online version.

5 Discussion

5.1 Component-based Analysis

Effectiveness of Attention-guided Part Localization We validate the effectiveness of the
attention-guided supervision imposed on the part location prediction by removing the atten-
tion loss during training. The evaluation results on VOT2018 and OTB100 denoted as w/o
atten. loss are shown in Table 3. The results show that the attention-guided supervision sig-
nificantly improves the tracking performance and part location prediction. Since the object
bounding box is calculated based on the mean and standard deviations of the part locations,
the bounding box penalty constrains the overall distribution of the target parts. However,
individual part prediction lacks guidance and has too much flexibility. Thus constraining
the part location prediction with their attended locations will force it to learn the semantic
information and thereby it will predict more meaningful location.

VOT2018 OTB100
A(↑) R(↓) EAO(↑) Suc. Pre.

w/o atten. loss 0.563 0.302 0.322 0.674 0.871
w/o updater 0.604 0.421 0.269 0.675 0.873
our 0.617 0.140 0.489 0.705 0.908

Table 3: Evaluation results of variants of our method on VOT2018 and OTB100.

Effectiveness of Dynamic Target Part Updating To show the effectiveness of the dy-
namic part representation updater, we train our network without the updater module and
evaluate it on VOT2018 and OTB100. The evaluation results denoted as w/o updater are
shown in Table 3. Without the dynamic target part representation, a large performance drop
is observed. This indicates the dynamic target part representation module is crucial for adapt-
ing to object appearance change. The simple yet effective multi-head attention module learns
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Figure 3: Visualization of the predicted target part centers depicted in red points and esti-
mated bounding box on example frames from three representative sequences under challeng-
ing scenarios

to align pseudo template parts to the matched target parts and aggregate their representations
to form the updated dynamic part representation.

5.2 Qualitative Analysis

Since the ground truth part locations are unknown, we qualitatively analyze the part localiza-
tion result by visualizing the predicted center points in Figure 3. We take three representative
video sequences, namely ant1, basketball and fish1 from VOT2018 as examples. It demon-
strates that most of the predicted part centers coincide well with the object silhouette even
in challenging scenarios such as large object deformation (fish1,basketball), object rotation
(ant1) and distractor (ant1, basketball). Attributed to the accurate and flexible part local-
ization, our tracker can estimate the bounding box precisely. We notice that some predicted
part center points are located in the background, which might result from the rectangular
bounding box we use to identify target parts. Since most objects are of irregular shapes,
some part representation vectors in the feature map indicated as target parts actually belong
to the background, which lead to predicted locations outside the target object contour.

6 Conclusion

In this work, we propose a dynamic part-based visual tracker to online update the target
part representation. Moreover, we design an attention-guided part localization network to
directly predict the part localization. The final bounding box is further determined by the
distribution of part localization. The whole method is an end-to-end with a simple yet effec-
tive transformer encoder. Our proposed tracker can achieve state-of-the-art or comparable
results on various benchmarks: VOT2018 [17], OTB100 [31] and GOT-10k [15].
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