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Abstract

Anomaly detection is a challenging task and usually formulated as an one-class learn-
ing problem for the unexpectedness of anomalies. This paper proposes a simple yet
powerful approach to this issue, which is implemented in the student-teacher framework
for its advantages but substantially extends it in terms of both accuracy and efficiency.
Given a strong model pre-trained on image classification as the teacher, we distill the
knowledge into a single student network with the identical architecture to learn the dis-
tribution of anomaly-free images and this one-step transfer preserves the crucial clues
as much as possible. Moreover, we integrate the multi-scale feature matching strategy
into the framework, and this hierarchical feature matching enables the student network
to receive a mixture of multi-level knowledge from the feature pyramid under better su-
pervision, thus allowing to detect anomalies of various sizes. The difference between
feature pyramids generated by the two networks serves as a scoring function indicating
the probability of anomaly occurring. Due to such operations, our approach achieves
accurate and fast pixel-level anomaly detection. Very competitive results are delivered
on the MVTec anomaly detection dataset, superior to the state of the art ones.

1 Introduction
Anomaly detection is generally referred to as identifying samples that are atypical with re-
spect to regular patterns in the data set and has shown great potential in various real-world
applications such as video surveillance [1, 31], product quality control [7, 8, 27] and medical
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Figure 1: Visual results of our method on three defective images from the MVTec AD
dataset. ResNet-18 is used as backbone and the three bottom blocks (i.e., conv2_x, conv3_x,
conv4_x) are selected as feature extractors. Columns from left to right correspond to input
images with defects (ground truth regions in red), anomaly maps of the three blocks, and the
resulting anomaly maps respectively.

diagnosis [34, 35, 40]. Its key challenge lies in the unexpectedness of anomalies which is
very difficult to deal with in a supervised way, as labeling all types of anomalous instances
seems unrealistic.

Previous studies address this challenge in the form of one-class learning paradigm [25].
They approximate the decision boundary for a binary classification problem by searching a
feature space where the distribution of normal data is accurately modeled. Deep learning, in
particular convolutional neural networks (CNNs) [20] and residual networks (ResNets) [16],
provides a powerful alternative to automatically build comprehensive representations at mul-
tiple levels. Such deep features prove very effective in capturing the intrinsic characteristics
of the normal data manifold [3, 10, 24, 32, 47]. Despite the promising results in their re-
spective fields, all these methods simply predict anomalies at the image-level without spatial
localization.

The pixel-level methods advance anomaly detection by means of pixel-wise comparison
of image patches and their reconstructions [6, 34, 35] or per-pixel estimation of probabil-
ity density on entire images [1, 37], among which Auto-encoders, Generative Adversarial
Networks (GANs), and their variants are dominating models. However, their performance is
prone to serious degradation when images are poorly reconstructed [30] or likelihoods are
inaccurately calibrated [26].

Some recent attempts transfer the knowledge from other well-studied computer vision
tasks. They directly apply the networks pre-trained on image classification and show that
they are sufficiently generic to image-level detection [4, 9, 14]. Cohen and Hoshen [11] in-
vestigate this idea in pixel-level detection and delivers performance gain; unfortunately, it has
the time bottleneck due to per-pixel comparison. Bergmann et al. [8] utilize the pre-trained
model in a more efficient way by implicitly learning the distribution of normal features with
a student-teacher framework and reach decent results. The difference between the outputs
of the students and teacher along with the uncertainty among students’ predictions serves as
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the anomaly scoring function. Nevertheless, two major drawbacks still remain: i.e., the in-
completeness of transferred knowledge and complexity of handling scaling. For the former,
since knowledge is distilled from a ResNet-18 [16] into a lightweight teacher network, the
big gap between their model capacities [42] tends to incur loss of important information. For
the latter, multiple student-teacher ensemble pairs are required to be separately trained, each
for a specific respective field, to achieve scale invariance, which leads to the inconvenience
in computation. Both the facts leave much room for improvement.

In this paper, we propose a simple yet powerful approach to anomaly detection, which
follows the student-teacher framework for the advantages but substantially extends it in terms
of both accuracy and efficiency. Specifically, given a powerful network pre-trained on image
classification as the teacher, we distill the knowledge into a single student network with the
identical architecture. In this case, the student network learns the distribution of anomaly-
free images by matching their features with the counterparts of the pre-trained network, and
this one-step transfer preserves the crucial information as much as possible. Furthermore, to
enhance the scale robustness, we embed multi-scale feature matching into the network, and
this hierarchical feature matching strategy enables the student network to receive a mixture
of multi-level knowledge from the feature pyramid under a stronger supervision and thus
allows to detect anomalies of various sizes (see Figure 1 for visualization). The feature
pyramids from the teacher and student networks are compared for prediction, where a larger
difference indicates a higher probability of anomaly occurrence.

Compared to the previous work, especially the preliminary student-teacher model, the
benefits of our approach are two-fold. First, useful knowledge is well transferred from the
pre-trained network to the student network within one-step distillation, as they share the same
structure. Second, thanks to the hierarchical structure of the network, multi-scale anomaly
detection is conveniently reached by the proposed feature pyramid matching scheme. Due
to such strengths, our approach conducts accurate and fast pixel-level anomaly detection. It
reports very competitive results on the MVTec anomaly detection dataset, and more results
on ShanghaiTech Campus (STC) [23] and CIFAR-10 [18] are presented in the supplementary
material.

2 Related Work

2.1 Image-level Anomaly Detection

Image-level techniques manifest anomalies in images of unseen categories. They can be
coarsely divided into: reconstruction-based, distribution-based and classification-based.

The first group of approaches reconstruct the training images to capture the normal data
manifold. An anomalous image is very likely to possess a high reconstruction error during
inference, as it is drawn from a different distribution. The main weakness of these approaches
comes from the excellent generalization ability of the deep models, including variational
autoencoder [3], robust autoencoder [47], conditional GAN [2], and bi-directional GAN [46],
which probably allows anomalous images to be faithfully reconstructed.

Distribution-based approaches model the probabilistic distribution of the normal images.
The images that have low probability density values are designated as anomalous. Recent al-
gorithms such as anomaly detection GAN (ADGAN) [12] and deep autoencoding Gaussian
mixture model (DAGMM) [48] learn a deep projection that maps high-dimensional images
into a low-dimensional latent space. Nevertheless, these methods have high sample com-
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plexity and demand large training data.
Classification-based approaches have dominated anomaly detection in the last decade.

One useful paradigm is to feed the deep features extracted by deep generative models [9]
or transferred from pre-trained networks [4, 14] into a separate shallow classification model
like one-class support vector machine (OC-SVM) [36]. Another line of research depends
on self-supervised learning. Geom [15] creates a dataset by applying dozens of geometric
transformations to the normal images and trains a multi-class neural network over the self-
labeled dataset to discriminate such transformations. At test time, anomalies are expected to
be assigned with less confidence in discriminating the transformations.

2.2 Pixel-level Anomaly Detection
Pixel-level techniques are particularly designed for anomaly localization. They aim to pre-
cisely segment anomalous regions in images, which is more complicated than binary classi-
fication.

The expressive power of deep neural networks inspires a series of studies that explore
how to transfer the benefits of the networks pre-trained on image classification tasks to
anomaly detection. Napoletano et al. [27] exploit a pre-trained ResNet-18 to embed cropped
training image patches into a feature space, reduce the dimension of feature vectors by PCA,
and model their distribution using K-means clustering. This method requires a large number
of overlapping patches to obtain a spatial anomaly map at inference time, which results in
coarse-grained maps and may become a performance bottleneck.

To avoid cropping image patches and accelerate feature extraction, Sabokrou et al. [33]
build descriptors from early feature maps of a pre-trained fully convolutional network (FCN)
and adopt a unimodal Gaussian distribution to fit feature vectors of the anomaly-free images.
However, the unimodel Gaussian distribution fails to characterize the training feature distri-
bution as the problem complexity increases. More recently, a convolutional adversarial vari-
ational autoencoder with guided attention (CAVGA) [41] incorporates Grad-CAM [38] into
a variational autoencoder with an attention expansion loss to encourage the deep model itself
to focus on all normal regions in the image. Simliar to typical autoencoders (AE) [7, 30] and
variational autoencoders (VAE) [22], CAVGA also suffers from the strong generalization
ability which allows good reconstruction for anomalous images.

3 Method

3.1 Framework
We make use of the student-teacher learning framework to implicitly model the feature dis-
tribution of the normal training images. The teacher is a powerful network pre-trained on the
image classification task (e.g., a ResNet-18 pre-trained on ImageNet). To reduce information
loss, the student shares the same architecture with the teacher. This is in essence one case of
feature-based knowledge distillation [42].

Here, we need to consider a key factor, i.e., position of distillation. Deep neural networks
generate a pyramid of features for each input image. Bottom layers result in higher-resolution
features encoding low-level information such as textures, edges and colors. By contrast, top
layers yield low-resolution features that contain context information. The features created by
bottom layers are often generic enough and they can be shared by various vision tasks [29,
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Figure 2: Schematic overview of our method. The feature pyramid of a student network
is trained to match with the counterpart of a pre-trained teacher network. A test image (or
pixel) has a high anomaly score if its features from the two models differ significantly. The
feature pyramid matching enables our method to detect anomalies of various sizes with a
single forward pass.

45]. This motivates us to integrate low-level and high-level features in a complementary way.
As different layers in deep neural networks correspond to distinct receptive fields, we select
the features extracted by a few successive bottom layer groups (e.g., blocks in ResNet-18)
of the teacher to guide the student’s learning. This hierarchical feature matching allows our
method to detect anomalies of various sizes.

Figure 2 gives a sketch of our method with the images from the MVTec AD dataset [8]
as examples. The training and test processes are formally provided as follows.

3.2 Training Process

The training phase aims to obtain a good student which can perfectly imitate the outputs of
a fixed teacher on normal images. Formally, given a training dataset of anomaly-free images
D = {I1, I2, . . . , In}, our goal is to capture the normal data manifold by matching the features
extracted by the L bottom layer groups of the teacher with the counterparts of the student.
For an input image Ik ∈w×h×c, where h is the height, w is the width and c is the number of
the color channels, the lth bottom layer group of the teacher and student outputs a feature
map F l

t (Ik) ∈wl×hl×dl and F l
s (Ik) ∈wl×hl×dl , where wl , hl and dl denote the width, height

and channel number of the feature map, respectively. Since there is no prior knowledge
regarding the appearances and locations of objects, we simply assume that all image regions
are anomaly-free in the training set. Note that F l

t (Ik)i j ∈dl and F l
s (Ik)i j ∈dl are feature vectors

at position (i, j) in the feature maps from the teacher and student, respectively. We define
the loss at position (i, j) as `2-distance between the `2-normalized feature vectors, namely,

`l(Ik)i j =
1
2

∥∥∥F̂ l
t (Ik)i j− F̂ l

s (Ik)i j

∥∥∥2

`2
, (1)

F̂ l
t (Ik)i j =

F l
t (Ik)i j

‖F l
t (Ik)i j‖`2

, F̂ l
s (Ik)i j =

F l
s (Ik)i j

‖F l
s (Ik)i j‖`2

.
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It is worth noting that the `2 distance used in (Eq. 1) is proportional to the cosine distance
as F l

t (Ik) and F l
s (Ik) are `2-normalized vectors. Thus the loss `l(Ik)i j ∈ (0,1). The loss for

the entire image Ik is given as an average of the loss at each position,

`l(Ik) =
1

wlhl

wl

∑
i=1

hl

∑
j=1

`l(Ik)i j, (2)

and the total loss is the weighted average of the loss at different pyramid scales,

`(Ik) =
L

∑
l=1

αl`
l(Ik), s.t. αl ≥ 0, (3)

where αl depicts the impact of the lth feature scale on anomaly detection. We simply set
αl = 1, l = 1, . . . ,L in all our experiments. Given a minibatch B sampled from the training
dataset D, we update the student by minimizing the loss `B = 1

|B| ∑k∈B `(Ik). Note that we
only update the student while keeping the teacher fixed throughout the training phase.

3.3 Test Process
In the test phase, we aim to obtain an anomaly map Ω of size w× h regarding a test image
J ∈w×h×c. The score Ωi j ∈ [0,1] indicates how much the pixel at position (i, j) deviates from
the training data manifold. We forward the test image J into the teacher and the student.
Let F l

t (J) and F l
s (J) denote the feature maps generated by the lth bottom layer group of

the teacher and the student, respectively. We can compute an anomaly map Ωl(J) of size
wl×hl , whose element Ωl

i j(J) is the loss (Eq. 1) at position (i, j). The anomaly map Ωl(J)
is upsampled to size w× h by bilinear interpolation. The resulting anomaly map is defined
as the element-wise product of L equal-sized upsampled anomaly maps,

Ω(J) =
L

∏
l=1

Ω
l(J). (4)

A test image is designated as anomaly if any pixel in the image is anomalous. As a result,
we simply choose the maximum value in the anomaly map, i.e., max(Ω(J)) as the anomaly
score for the test image J.

4 Experiments

4.1 Dataset
We conduct experiments on the MVTec Anomaly Detection (MVTec AD) [7] dataset, with
both the image-level and pixel-level anomaly detection tasks considered. The dataset is
specifically created to benchmark algorithms for anomaly localization. It collects more
than 5,000 high-resolution images of industrial products covering 15 different categories.
For each category, the training set only includes defect-free images and the test set com-
prises both defect-free images and defective images of different types. The performance is
measured by two popular metrics: AUC-ROC and Per-Region-Overlap (PRO) [8]. Supple-
mentary material provides more results on ShanghaiTech Campus (STC) [23] and CIFAR-
10 [18].
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4.2 Implementation Details

For all the experiments, we choose the first three blocks (i.e., conv2_x, conv3_x, conv4_x) of
ResNet-18 as the pyramid feature extractors for both the teacher and student networks. The
parameters of the teacher network are copied from the ResNet-18 pre-trained on ImageNet,
while those of the student network are initialized randomly. We train the network using
stochastic gradient descent (SGD) with a learning rate of 0.4 for 100 epochs. The batch
size is 32. All the images in the training and test sets are resized to 256×256. For each
category, we use 80% of training images to build the student, keeping the remaining 20%
for validation. We select the checkpoint with the lowest validation error (Eq. 1) to perform
anomaly detection.

4.3 Results

We begin with the task of finding anomalous images. As defective regions usually occupy
a small proportion of the whole image, the test anomalies differ in a subtle way from the
training images. This makes the MVTec AD dataset more challenging than those previ-
ously used in the literature (e.g., MNIST and CIFAR-10) where the images from the other
categories are regarded as anomalous to the selected one. Table 2 compares our method to
state-of-the-art approaches: Geom [15], GANomaly [2], ł2-AE [5], ITAE [17], Cut-Paste
[21] Patch-SVDD [43], PaDiM [13] and SPADE [11]. We clearly see that our approach
outperforms all the other methods. In particular, the performance is improved up to 11.7%
compared with SPADE [11], which also leverages multi-scale features from a pre-trained
model. It validates the superiority of the student-teacher learning framework.

We then consider the task of pixel-level anomaly detection and compare our method with
the counterparts including Patch-SVDD [43], PaMiD [13], etc. Table 1 reports the perfor-
mance in terms of the AUC-ROC and PRO metrics. We notice two trends to achieve per-
formance gains: (1) by pre-trained models, with a Wide-ResNet50×2 network [44], SPADE
reports very competitive scores; (2) by self-training techniques, Cut-Paste [21] and Patch-
SVDD [43] show this potential through designing proper pretext tasks for feature learning.
As our approach assumes that anomaly detection is fulfilled via the heterogeneity of the stu-
dent and teacher networks, i.e. different network parameters learned from individual data,
we employ a pre-trained model built on generic images rather than self-supervised learn-
ing on the small scale anomaly detection dataset. As Table 1 displays, our approach delivers
better performance than the others. It should be noted although STAD [8] adopts the student-
teacher learning framework, its performance is always inferior to that of our method. This
gap can be attributed to the information loss in its two-step and single-scale knowledge trans-
fer process. This validates our improvement in feature learning. When equipped with the
same backbone as SPADE [11], our method further boosts the results, i.e. 0.973 and 0.923
in AUC-ROC and PRO, respectively.

5 Ablation Studies and Discussions
We first perform feature visualization to investigate what the student learns from its teacher
and also conduct ablation studies on the MVTec AD dataset to answer the following three
questions. Is feature pyramid matching superior to single feature matching? Is the teacher
pre-trained on other datasets still useful? Is our method applicable to small training dataset?
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Category SSIM-AE AnoGAN CNN-Dict∗ STAD∗ Cut-Paste Patch-SVDD PaDiM-R18∗ SPADE∗ Ours∗
Te

xt
ur

es

Carpet 0.65 0.20 0.47 0.695 - - 0.960 0.947 0.958
0.87 0.54 0.72 - 0.983 0.926 0.989 0.975 0.988

Grid 0.85 0.23 0.18 0.819 - - 0.909 0.867 0.966
0.94 0.58 0.59 - 0.975 0.962 0.949 0.937 0.990

Leather 0.56 0.38 0.64 0.819 - - 0.979 0.972 0.980
0.78 0.64 0.87 - 0.995 0.974 0.991 0.976 0.993

Tile 0.18 0.18 0.80 0.912 - - 0.816 0.759 0.921
0.59 0.50 0.93 - 0.905 0.914 0.912 0.874 0.974

Wood 0.61 0.39 0.62 0.725 - - 0.903 0.874 0.936
0.73 0.62 0.91 - 0.955 0.908 0.936 0.885 0.972

O
bj

ec
ts

Bottle 0.83 0.62 0.74 0.918 - - 0.939 0.955 0.951
0.93 0.86 0.78 - 0.976 0.981 0.981 0.984 0.988

Cable 0.48 0.38 0.56 0.865 - - 0.862 0.909 0.877
0.82 0.78 0.79 - 0.900 0.968 0.958 0.972 0.955

Capsule 0.86 0.31 0.31 0.916 - - 0.919 0.937 0.922
0.94 0.84 0.84 - 0.974 0.958 0.983 0.990 0.983

Hazelnut 0.92 0.70 0.84 0.937 - - 0.914 0.954 0.943
0.97 0.87 0.72 - 0.973 0.975 0.977 0.991 0.985

Metal nut 0.60 0.32 0.36 0.895 - - 0.819 0.944 0.945
0.89 0.76 0.82 - 0.931 0.980 0.967 0.981 0.976

Pill 0.83 0.78 0.46 0.935 - - 0.906 0.946 0.965
0.91 0.87 0.68 - 0.957 0.951 0.947 0.965 0.978

Screw 0.89 0.47 0.28 0.928 - - 0.913 0.960 0.930
0.96 0.80 0.87 - 0.967 0.957 0.974 0.989 0.983

Toothbrush 0.78 0.75 0.15 0.863 - - 0.923 0.935 0.922
0.92 0.93 0.90 - 0.981 0.981 0.987 0.979 0.989

Transistor 0.73 0.55 0.63 0.701 - - 0.802 0.874 0.695
0.90 0.86 0.66 - 0.930 0.970 0.972 0.941 0.825

Zipper 0.67 0.47 0.70 0.933 - - 0.947 0.926 0.952
0.88 0.78 0.76 - 0.993 0.951 0.982 0.965 0.985

Mean 0.69 0.44 0.52 0.857 - - 0.901 0.917 0.921
0.87 0.74 0.78 - 0.960 0.957 0.967 0.965 0.970

∗ denotes extra dataset pre-trained model used.

Table 1: Pixel-level anomaly detection. For each dataset category, PRO (top row) and AUC-
ROC (bottom row) scores are given.

Geom GANomaly ł2-AE ITAE Cut-Paste Patch-SVDD PaDiM-WR50∗ SPADE∗ Ours
0.672 0.762 0.754 0.839 0.952 0.921 0.953 0.855 0.955
∗ denotes extra dataset pre-trained model used.

Table 2: Image-level anomaly detection. The performance is measured by average AUC-
ROC across 15 categories.

5.1 Feature Visualization

Figure 3 shows t-SNE visualization [39] of learned features from the student and teacher.
Obviously, the features from the student and teacher on normal regions distribute closer
(even overlapped) than the ones on anomalous regions. It suggests that the student learns to
match the teacher’s output on normal images. It also shows that the student well captures the
distribution of normal patterns under the supervision of a good teacher.

5.2 Feature Matching

We first minutely investigate the effectiveness of feature extraction by each individual block
of ResNet-18. Considering that the first block is a simple convolutional layer, we exclude
it from comparison. We train the student by matching features extracted by its second,
third, fourth and fifth blocks with the counterparts of the teacher respectively. As shown in
Table 3, feature matching conducted at the end of the third and fourth blocks can achieve
better performance. This is in good agreement with the previous discovery that the middle-
level features play a more important role in knowledge transfer [29].
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(a) Bottle (broken_large) (b) Points at various positions (c) t-SNE

Figure 3: t-SNE visualization [39] of learned features from the student and teacher. (a) an
example test image with defects contoured by a red line. (b) point map in which different
positions are encoded by different sizes and colors. (c) t-SNE visualizations for features from
the student (circle) and the teacher (star) with (a) as input. Zoomed in for better display.

Metric
# Block

2 3 4 5 [2, 3] [2, 3, 4] [2, 3, 4, 5]

ARI 0.808 0.917 0.934 0.819 0.849 0.955 0.949
ARP 0.915 0.953 0.957 0.860 0.950 0.970 0.969
PRO 0.815 0.897 0.835 0.504 0.886 0.921 0.886

Table 3: Ablation studies for feature matching. The performance is measured by the aver-
age image-level AUC-ROC (ARI), average pixel-level AUC-ROC (ARP) and average PRO
across 15 categories.

Metric
Dataset

ImageNet MNIST CIFAR-10 CIFAR-100 SVHN

ARI 0.955 0.619 0.826 0.835 0.796
ARP 0.970 0.759 0.931 0.937 0.902
PRO 0.921 0.528 0.863 0.842 0.742

Table 4: Ablation studies for pre-trained datasets. The performance is measured by the
average image-level AUC-ROC (ARI), average pixel-level AUC-ROC (ARP) and average
PRO across 15 categories.

We then test three different combinations of the consecutive blocks of ResNet-18. Like-
wise, we match the features extracted from the corresponding compound blocks of the
teacher and the student. Table 3 shows that the mixture of the second, third and fourth
blocks outperforms other combinations as well as the single components. It implies that
feature pyramid matching is a better way for feature learning. This finding is also validated
in Figure 1. Anomaly maps generated by low-level features are more suitable for precise
anomaly localization, but they are likely to include background noise. By contrast, anomaly
maps generated by high-level features are able to segment big anomalous regions. The ag-
gregation of anomaly maps at different scales contributes to accurate detection of anomalies
of various sizes.

5.3 Pre-trained Datasets
To answer the second question, we pre-train the teacher on a couple of image classification
benchmarks, including MNIST [19], CIFAR-10 [18], CIFAR-100 [18], and SVHN [28].
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5% 10%
Metric Ours SPADE Ours SPADE
ARI 0.871 0.782 0.907 0.797
ARP 0.961 0.932 0.967 0.955
PRO 0.892 0.842 0.913 0.890

Table 5: Performance in terms of the number of training samples. The performance is mea-
sured by the average image-level AUC-ROC (ARI), average pixel-level AUC-ROC (ARP)
and average PRO across 15 categories.

These pre-trained teachers are individually exploited to guide the student training. The
MNIST and SVHN datasets simply contain digital numbers from 0 to 9. We see from Table 4
that the teacher networks pre-trained on these two datasets yield worse results. It indicates
that the features learned from these two pre-trained models generalize poorly on the MVTec
AD dataset. By contrast, the features extracted from the teacher networks pre-trained on
CIFAR-10 and CIFAR-100 exhibit better generalization, as they contain more natural im-
ages. Note that the performance of these two pre-trained teachers is still inferior to that of
the teacher pre-trained on ImageNet. This is because that the ImageNet dataset consists of a
huge number of high-resolution natural images, which is crucial to learning more discrimi-
nating features.

5.4 Number of Training Samples
We investigate the effect of the training set size in this experiment. Only 5% and 10%
anomaly-free images are used to train our model. It can be seen in Table 5 that our model
still reaches a satisfactory level even if only a few training images are available. By contrast,
SPADE suffers a serious performance degradation. This is caused by the missing of the
tailored feature learning. Our model profits from this strategy and can capture the feature
distribution of anomaly-free images in the few-shot scenario. Furthermore, our method uses
only 10% training samples to outperform the preliminary student-teacher framework [8]. It
validates the effectiveness of our feature pyramid matching technique.

6 Conclusion
We present a new feature pyramid matching technique and incorporate it into the student-
teacher anomaly detection framework. Given a powerful network pre-trained on image clas-
sification as the teacher, we use its different levels of features to guide a student network
with the same structure to learn the distribution of anomaly-free images. On account of the
hierarchical feature matching, our method is capable of detecting anomalies of various sizes
with only a single forward pass. Experimental results on the MVTec AD dataset show that
our method achieves superior performance to the state-of-the-art.
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