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Abstract

Privacy protection of medical image data is challenging. Even if metadata is re-
moved, brain scans are vulnerable to attacks that match renderings of the face to facial
image databases. Solutions have been developed to de-identify diagnostic scans by ob-
fuscating or removing parts of the face. However, these solutions either fail to reliably
hide the patient’s identity or are so aggressive that they impair further analyses. We pro-
pose a new class of de-identification techniques that, instead of removing facial features,
remodels them. Our solution relies on a conditional multi-scale GAN architecture. It
takes a patient’s MRI scan as input and generates a 3D volume conditioned on the pa-
tient’s brain, which is preserved exactly, but where the face has been de-identified through
remodeling. We demonstrate that our approach preserves privacy far better than existing
techniques, without compromising downstream medical analyses. Analyses were run on
the OASIS-3 and ADNI corpora.

1 Introduction

The digitalization of heath records has increased the risk of —and impact of— large scale
data leaks. Although data compliance standards have been enacted to protect health records
(HIPAA and GDPR), privacy of medical data is a growing concern. Three-dimensional scans
such as magnetic resonance images (MRI) and computed tomography (CT), for example,
contain an intrinsic privacy risk [20]. Detailed renderings of the head can be crafted from
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Original MRl scan De-identified MRI scan Original head rendering De-identified head rendering

Face remodeled

Figure 1: De-identification through facial remodeling. Face renderings from medical scans
such as these MRIs represent a privacy vulnerability. To address this, we define a new class
of de-identification techniques that aims to realistically remodel privacy-sensitive regions,
such as the face, while preserving essential regions, such as the brain (illustrated OASIS-3).

3D scans using techniques such as volumetric raycasting, as in Figure 1. This vulnerability
can expose the patient’s identity if the renderings are matched to a face database [20, 21].

To prevent these types of attack, medical scans are currently de-identified using crude
removal-based techniques [1, 23, 25] which seek to remove privacy-sensitive parts of the
head (examples in Figure 3). However, as we demonstrate, these existing techniques fail to
reliably hide the patient’s identity — or they are so aggressive that they impair further medical
analyses. A better solution is needed.

One might ask why de-identify the face when one can just remove everything except the
brain? This approach, known as skull-stripping [27], does provide excellent privacy guar-
antees, but unfortunately renders the scan useless for many types of clinical analysis.
Automated tools for analyzing MRI scans rely on landmarks within the head, and fail when
they are removed [3]. Furthermore, skull-stripping corrupts measurements of important tis-
sues and fluids, such as extra-cranial CSF [1]. For these reasons, remodeling the head rather
than deleting privacy-sensitive regions is desirable, because it protects privacy and at the
same time ensures robustness of downstream medical analyses.

Therefore, in this work, we define a new class of de-identification techniques that re-
models the privacy-sensitive regions without altering the content of medically relevant data
(see Figure 1). Under such a remodeling approach, the face, eyes, oral and nasal cavities,
etc. should exhibit realistic appearance and structure of appropriate size, but should other-
wise be independent of the original data. To solve this task, we propose a novel model called
Convex Privacy GAN, or CP-GAN, that conditions on a convex hull of the skull extracted
from the scan to be de-identified. The generator learns to synthesize volumes that pre-
serve medically-sensitive regions such as the brain, while non-invertibly remodeling privacy-
sensitive characteristics from the original scan.

The main contributions of this work are as follows: (1) We define a novel methodology
to ensure privacy in medical imagery in which medically relevant regions are preserved and
privacy-sensitive regions are de-identified. (2) We propose CP-GAN, a conditional multi-scale
volumetric GAN that realizes a solution to the aforementioned methodology. (3) Through
human- and model-based experiments, we show that CP-GAN preserves privacy in MRI scans
more reliably than removal-based techniques without adversely affecting downstream anal-
yses. In addition, we make technical contributions towards the generation of the convex hull
and surface representations necessary for the privacy conditioning of the GAN. Source code
as well as a video demonstration can be found in the supplementary material.
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2 Related Work

A handful of de-identification techniques exist for MRI scans, which are conventionally
used for sharing and distribution of MRI data. These existing methods rely on a removal
approach to privacy. DEFACE [1] estimates the probabilities of voxels belonging to the face
based on an atlas of healthy control subjects. The scan is de-identified by setting intensities
of voxels whose probabilities are small enough to zero. QUICKSHEAR [25] is a fast but simple
approach that computes a hyperplane to divide the MRI into two regions: one containing
facial structures, and the other containing the brain of the scan. Voxels in the first part are
set to zero. FACE MASK [23] uses a filtering method to blur the facial features. These existing
de-identification approaches are based on traditional computer vision techniques; we believe
that the proposed algorithm is the first to adopt a learning-based approach.

While not a de-identification method, Shin et al. [28] recently proposed a pix2pix-inspired
model [11] to generate synthetic abnormal MRI images with brain tumors. In this work, the
authors argue that, in principle, their approach can be used to generate a completely artificial
corpus where none of the scans can be attributed to actual patients. However, as the brain
data is hallucinated, this method is not useful for our task.

The literature covering removal of privacy-sensitive information from image data largely
focuses on de-identification of photographs of faces [ 14, 24]. Among these, Deep Privacy [9]
is the closest to our approach as it was the first to suggest GANs to de-identify faces. It con-
ditions on an a priori binary segmentation, guiding the generator to inpaint privacy-sensitive
regions while preserving insensitive regions. Similar to our approach, Deep Privacy seeks to
anonymize faces — but in 2D images. To identify face regions for conditional inpainting, it
relies on an SSD detector [19]. We develop an alternative approach because a 3D analogue
does not exist, and this allows us to comprehensively remodel interior regions of the head
such as the neck and oral/nasal cavities. In particular, we define a convex hull enclosing the
head and mask of the brain for conditioning. Finally, whereas Deep Privacy de-identifies
conventional images of size 128 x 128, our goal is to generate much higher dimensional 3D
volumes at 1283 voxels — the equivalent of a 1448 x 1448 image.

3 Conditional De-Identification of 3D Images

Given a set of 3D images (X()),_;_y Py with values in 7955 over some intensity
space Z C R, we are interested in finding a function of the form ¥ =f(y(X))~Py that maps
a 3D image X to its de-identified counterpart Y. The task of the function ¥(X) is to filter out
any sensitive information in order to make it impossible to infer the subject’s identity given
only Y; ie. to create a privacy preserving representation. In this work we consider MRI
data®, and choose (X) to be a function of the convex hull of the head ¢(X)€{0,1}5*5*S and
the brain mask »(X)€{0,1}55%5,

Within this remodeling-based privacy framework, we impose three requirements: (i)
Anonymity, i.e. Y(X) is non-invertible; (ii) Distribution preservation, i.e. Px and Py are
stochastically indistinguishable and finally (iii) Brain preservation, i.e. V(i, j,k) : b(X); jx =
1 = X; jx = fo(y(X))i j In other words, we are interested in deriving a function fo that
maps some original scan X to some de-identified scan Y, while retaining medically relevant

*MRI scans can be acquired under different conditions, data availability limits us to common T1-weighted
MRIL
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Figure 2: Overview of our approach: We apply standard preprocessing to register and correct
the scans (illustrated 0AsIS-3). Then, using a novel technique, we construct a head surface
representation from which we extract a convex hull ¢(x), a brain mask b(x), and the brain
intensities b(x) ox. Combined, these form the privacy transform y(x) which serves as a
conditioning variable of our model. CP-GAN learns to convert the distribution Py of original
MR scans to a de-identified counterpart Py. Note that ¥(x) does not contain any privacy-
sensitive information.

information (e.g. the brain) but preventing other information specific to X to leak into Y (e.g.
the face). This makes it impossible to infer a person’s identity from facial renderings. Fig-
ure 2 depicts the de-identification process, described below, including the privacy transform
Y(X) and the mapping function fe implemented with a conditional multi-scale volumetric
GAN.

3.1 The Privacy Transform y(X)

The goal of the privacy transform is to non-invertibly change an individual MRI represen-
tation x into a form y(x) that removes detailed privacy-sensitive information and replaces it
with a convex hull filled with 1’s, smoothing away detailed face information (e.g. eyes, nose,
and mouth). The transform guides the GAN, showing which regions should be hallucinated
via a convex hull ¢(x) and which regions should be retained through a brain mask b(x). It
also includes the brain data b(x) ox. The convex hull can afterwards be used to suppress
noise patterns surrounding the head. Following the preprocessing (see Appendix), we define
a function c¢(x) that maps a scan x € Z5*5*5 to a binary convex hull volume of the same
shape. As no efficient off-the-shelf algorithm exists, we developed a probabilistic solution
that first constructs a surface representation from the MRI scan, and from this we compute
the convex hull of the head. These steps are described below.

Surface Representation. To extract a surface representation Z from an MRI scan x, we
compute maps where rays cast from each direction intersect the head at random rotations.
We then rotate these measurements back to the reference coordinates and treat each as the
probability of it belonging to the surface. The rotations are randomized to sample the sub-
ject from all sides uniformly. We begin by converting a given scan into a sequence of K
binarized and rotated scans, i.e. m) = Rot(1[x > §];R;) € Z5°5*S for sampled rotations
Ri,...,Rk iy (SO(3)), where U(SO(3)) denotes the uniform distribution over all rota-
tions in three-dimensional space and § € Z represents a suitably chosen binarization thresh-
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old" for the binarization operator 1[-]. Let us further introduce the concept of the §, 4-

distance of some voxel at position (ko,k;,ky) for some axis a € {0,1,2} and some direction
de{-1,+1}:

(5= -k, ifd=+1

Ca,d(kOaklalQ):{]({ ) ~ka

" otherwise.

(D

For fixed a and d, we can use this to create an intersection map AZ_ 4 for each binary image

l.
mg:

Aalii[kmkub] =1 [(m,if))ykl_,kz ) <Cud(k0,k1,k2) {mlnCud( a1]5] ka+1))] )

" la—l‘ S !

where (k,—1 | s | ks+1) indicates that the a-th index is set to s and the two others to their
associated Value in ko, k1, k2. We average the intersection map over all axis-direction combi-
nations, i.e. A() =1/6Y,Y4 A, ;. This process can be thought of as casting rays from each
principle direction and recordmg the location of the intersection with the rotated, binarized
head in m(®). Voxels on the surface of the head will exhibit high values of A The final step

is to back-rotate A(), ..., A®) to the reference coordinate system and average among the K
randomly sampled rotations to create the surface representation:

1/KZR0I e fo, 1555 (3)
Note that Z is a random variable induced by the sampled rotations Rj,...,Rx. We inter-

pret individual voxel values of Z as Bernoulli parameters characterizing the probability of
some voxel belonging to the surface. This justifies binarizing Z by considering it as a three-
dimensional Bernoulli tensor and sampling from it on a voxel-wise basis in the next step.
Convex Hull. From Z, we sample a set of non-zero indices and use Chan’s Algorithm [2] to
compute the triangles 7 making up the convex hull. We initialize a uniform volume filled
with 1’s, then randomly select a sufficient number of triangles (100 suffice) from 7. For each
triangle, we find its corresponding hyperplane and the half-spaces within ¢(x) defined by it.
Voxels in the outward half-space of ¢(x) are set to O while the rest are unchanged, yielding a
binary convex hull volume.

Privacy Transform. The binary convex hull volume c(x) instructs the GAN as to which
regions should be hallucinated. A binary brain mask b(x) obtained by applying [10] indi-
cates which regions should be preserved. Together, these volumes along with the masked
continuous values of the brain b(x) o x, are concatenated to make the privacy transform y(x).
The GAN is conditioned on y(x) in the following subsection, as depicted in Figure 2.

3.2 Conditional De-identification GAN

The cpP-GAN architecture depicted in Figure 2 is capable of generating volumes at multiple
scales and passing gradients between each scale during training. We start from a 2D genera-
tion framework akin to MSG-GAN [15] and adapt it to our task by means of the following:
(1) we incorporate conditional information via the privacy transform, (2) we make archi-
tectural improvements described below, (3) we use a new resampling strategy, (4) we adopt
relativistic (non-averaging) R-LSGAN loss, and (5) we operate on 3D volumes. We use

"The threshold § is chosen to be larger than the noise values surrounding the skull.
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bottlenecks between scales as recently suggested by [17], in which the generator outputs
single-channel maps instead of multi-channel maps. To reduce the memory footprint, we
use modified MobileNetV2 convolutions as suggested in [8].

Both the generator Go(7(x)) and the discriminator Dg(y(x),v) are conditioned on y(x),
where v either denotes a multi-resolutional original or fake sample. Regarding scales — sup-
pose that S and s are powers of two that denote the maximum/minimum resolution synthe-
sized by G. Then both G and Dg are defined to have Ng = log, (S/s) + 1 blocks (indexed
by k) that either double (Gg) or halve (Dg) their input resolution. Here, we generate scales
from 4x4x4 to 128x 128 x 128.

Generator. The generator G = GEDNB) 0...0 Gg) for Gg) : Rk x Rrk) 5 Rra(k)
and rg(k) = 1 x 2k=1g x 2k=15 x 2k=1g synthesizes a sequence of fake images g1, ...,8n,
of increasing resolutions as g, = Gg;) (gk—1,%) for k =1,...,Np where go ~ N(0,1) and

Ye =Llrg ) Y(x) is Y(x) downsampled to a resolution of rg(k).

Discriminator. The discriminator Dg = F ngV 8o ng ) for DS ) Rp() x R7D(D

R’>(1) resp. Dg> (R s Rro®) 5 RIDK) 3 RDK) (k> 1) and rp (k) = 1 x S/251 x S/2+-1 x
S/2%=1 assigns a scalar to a sequence of images* of decreasing resolutions vi,...,vy, as
d, = D@)(Vh’)/]) resp. di, = D@)(dk,1 ,vk,)/k) for k =2,...,Ng where Yk :um(k) ]/(x) is ’)/(x)
downsampled to a resolution of rp(k) and F is a fully-connected layer that computes a scalar

summary of the output of ng B,

Resampling blocks. [16, 17] recently proposed to use bilinear interpolation for downsam-
pling, but adapting this approach is problematic as it will create undesirable interpolation
effects in the binary volumes. Therefore, we suggest a probabilistic interpretation of average
pooling which guarantees that the proportion of non-zero voxels is preserved (in expectation)
while maintaining voxel-wise correspondence to conventional average pooling performed on
non-binary images. Specifics can be found in the Appendix.

Loss Function. We use the relativistic (non-averaging) R-LSGAN loss [12]: We opt for
relativistic losses as they induce a lower memory footprint than, for instance, the widely-
established WGAN-GP [6] requiring an additional forward/backward pass.

Brain Preservation. One of the requirements defined above in the Problem Definition is
to perfectly preserve medically relevant information. Therefore, in a similar process to im-
age inpainting in which original image content is masked and retained, we use the brain
mask b(x) to embed the original brain data into the volume synthesized by the generator, i.e.
Jo(y(x)) = b(x) ox+ (1 —b(x)) o Go(y(x)) where o denotes the Hadamard product.

4 Experiments

Above, we proposed a new and modern approach to de-identify medical image data. To
judge its utility, we must address the following questions: (1) Does remodeling preserve pri-
vacy better than existing removal-based de-identification methods? (2) Does our approach
adversely affect the performance of common medical applications? Below, we compare our
approach to other de-identification methods to answer these questions experimentally.

xy,... ,Xnj in case of an original image and g1, ...,gn, in case of a fake image
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Figure 3: De-identification examples: De-identified face renderings (left) and the corre-
sponding MRI scans (right) for several examples from 0OAsIs-3. All methods perfectly pre-
serve the brain, but only CP-GAN successfully de-identifies the patient while maintaining re-
alistic appearance and structure.

4.1 Setup

Datasets. In this work, we use two standard, publicly available large-scale Alzheimer’s dis-
ease imaging studies which feature T1-weighted volumetric MR scans of the head for each
subject: A selection of 2,172 MRIs from ADNI [32, 33] and 2,168 MRIs from oAsis-3 [18].
Both datasets are split (80%-20% train-test) on a patient level to avoid data leakage by mem-
orizing the patient. The ADNI data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative database (adni.loni.usc.edu). ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date informa-
tion, see www.adni-info.org. Scanner types and acquisition protocols differ between
and within the datasets, details can be found in the Appendix.

Benchmark De-Identification Methods. We compare our result with three publicly avail-
able and widely-established methods for de-identification of MRI head scans, depicted in
Figure 3. All methods have in common that they (/) are not deep-learning-driven, (2) re-
quire no additional training and (3), are used on a day-to-day basis in neuroscience and
clinical research. All procedures were applied with default settings on images of resolution
128 x128 x 128. The methods include QUICKSHEAR [25], FACE MASK [23], and DEFACE [1]. De-
scriptions of the methods are provided in the Appendix. We also include MRI WATERSHED [27],
a skull-stripping method that removes everything except the brain.

Training. We use the AdamP [7] optimizer with a learning rate of 2- 10~ and 8 = (0,0.99)
and a batch size of 2. See the Appendix for a complete list of hyperparameters.

4.2 Results

In this section, we present results on (1) studies comparing the identification rate of our
model with existing de-identification methods, and (2) the effects of de-identification on
common medical image analysis tasks. In the Appendix, we provide a comparison of execu-
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Figure 4: (left) A user-based study on AMT and a model-based study with Siamese net-
works to determine how well de-identified faces can be identified. Correct identification
rates (4s.d.) are reported for two datasets (lower is better); (right) A Siamese network takes
a face rendering as an input, and aims to identify the correct de-identified rendering in a
retrieval scenario. We measure the probability of the correct face appearing in its top -
percentile ranked predictions. BLACK = optimal, ORIGINAL = pessimal.

tion times. Video results are provided in supplementary material.

De-identification quality user study. The privacy attack described in [21] relied on prospec-
tively collected data, meaning the authors had access to CT scans as well as photographs of
patient faces. Replicating that study for MRI scans is impossible, because photographs of
ADNI and OASIS-3 patients do not exist. Therefore, we conduct a similarly-spirited study using
Amazon Mechanical Turk in which workers are asked to defeat the various de-identification
methods given renderings of MRI scans. Workers were presented with an unaltered render-
ing of a query patient along with five renderings de-identified using a single method® — one of
which is a de-identified rendering of the query patient. The task was then to pick out the de-
identified rendering which corresponds to the unaltered query rendering. We considered the
following de-identification methods: QUICKSHEAR [25], FACE MASK [23], and DEFACE [1], and
CP-GAN (ours). In addition to the four de-identification methods, we added four control tasks,
ORIGINAL, which signifies the absence of any de-identification scheme, BLURRED, in which the
2D renderings are blurred to mildly obscure the patient identity, BLACK, which features the
same all-black image for each option, and MRI WATERSHED [27] which completely removes
all tissue except the brain. We asked 800 distinct questions per dataset. Each question was
given to five workers, for a total of 4,000 assignments. The mean and the standard deviation
are estimated by bootstrapping over 1,000 resamples.

In Figure 4 (left), we report the identification rate, or how often the workers were able
to defeat each method, see Appendix for details. The upper performance bound from ran-
dom guessing corresponds to 20%. The results substantiate the claim that cr-GAN performs
extraordinarily well at de-identification. Our model outperforms the other de-identification
methods by gaps of 17%—-25% on both datasets. We note that for both datasets, CP-GAN
performs close to the theoretical optimum of 20%.

De-identification quality model-based study. In a similar fashion to the last experiment,
we assess the de-identification performance of the various models by attempting to defeat
them. This time, however, we leverage a neural network to assess similarity.

To this end, we use a metric learning approach to train a Siamese network S(-,-) to
quantify whether its two input renderings belong to the same patient or not.

Given two inputs x and y, the network S is constructed by applying a sub-network S

% An exemplary question can be found in the Appendix
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Sorensen-Dice coefficient T Intersection-over-Union (IoU) 1

OASIS-3 ADNI OASIS-3 ADNI

BRAIN VCSF WHITE GREY BRAIN VCSF WHITE GREY BRAIN VCSF WHITE GREY BRAIN VCSF WHITE GREY

ORIGINAL 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FACE MASK 0991 0984 0989 099 0986 0977 0.976 0.987 0982 0968 0978 0.992 0973 0955 0953 0.975
DEFACE 0.993 0986 0.986 0995 0.982 0966 0.965 0.981 0985 0972 0973 0.990 0965 0934 0932 0.963
QUICKSHEAR 0.994 0989 0990 0997 0986 0975 0972 0985 0987 0978 0980 0994 0972 0952 0946 0971
CP-GAN 0.995 0.991 0.992 0998 0.989 0.979 0.978 0.989 0.989 0981 0.983 0.996 0977 0.960 0957 0.978
MRIWATERSHED ~ 0.675  0.415 0.564 0.718 0.717 0.570 0589 0.732  0.509 0262 0.393 0560 0.559 0399 0417 0578

Table 1: Brain segmentation: We measure the Sgrensen-Dice coefficient and the IoU com-
puted between segmentations on the original scan and de-identified scans using standard
software, SIENAX. We test on the whole brain, VCSF, white matter, and grey matter. Ide-
ally, segmentation should not be affected by de-identification, indicated by a Dice score and
IoU of 1. cr-GaN outperforms all other de-identification methods. Note that MRI WATERSHED,
which removes everything but the brain, has a catastrophic effect.

(conv. block/flatten/fully-connected layer) on x and y independently, followed by summariz-
ing both embeddings with the Euclidean distance, i.e. S(x,y) = ||S(x) — S(y)||2. We use the
Triplet Margin loss function as described in [31], choosing the margin to be equal to 5. We
split the previously defined (hold-out) data set, and randomly select 80% of its patients as a
training set D; and the remaining 20% as its complement D;, where i = 1,..., 100 denotes the
i-th (resampled) fold. Specifics on the nature of the training can be found in the Appendix.

In Figure 4 (left) we report the ability of the network to defeat the de-identification meth-
ods in similar fashion to the user-based study. We first sample a patient p from D; from
whom, in turn, we sample a scan s € S(p). Afterwards, we sample a method m and and con-
sider the m-rendering of s to be the correct option C. The remaining 5 — 1 = 4 options are
obtained by randomly selecting m-renderings from other patients’ scans. Denoting the five
options by x1, ..., xs, we obtain the predicted option by k = argmin;_; _5S(xo,x;) where xo
denotes the original rendering of s. As in the user-based study, CP-GAN outperforms the other
de-identification methods. For FACE MASK and DEFACE, the network was able to de-identify
between 16 to 20% more renderings than its human counterparts. The effect on QUICKSHEAR
is more moderate.

In Figure 4 (right) we evaluate the Siamese network’s ability to defeat de-identification
methods in a retrieval-inspired setting. We observe that CP-GAN’s de-identification capabili-
ties are strikingly close to the optimal case while other methods perform substantially worse.
For some given original rendering x(°¢) and some method m, we analyze how often the
correct choice C falls within the top «a (relative) ranks, e.g. Top(a=0.1) is a subset of the
10% top-ranked scans. An optimal de-identification method induces a uniformly random
rank a¢ ~U(0,1) of C (c.f. BLACK), whereas a pessimal method induces a Dirac placement
d¢ =0 (c.f. orRIGINAL). Confidence bands (CI=0.95) are calculated over the 100 previously
defined data splits D;.

Overall, we conclude that CP-GAN outperforms established methods by a substantial double-
digit margin, withstanding both human and model-based attacks. We note a gap between
CP-GAN and optimal performance, which can be explained by a property of the model: it
preserves head size. The attacker may exploit this to eliminate some candidates. We explore
this concept further in the Appendix.

Effect of De-Identification on Medical Analyses. Beyond ensuring patient privacy, de-
identification methods should not adversely affect software tools commonly used on medical
scans. However, it has been shown that facial de-identification methods do adversely impact
automated image analysis on MRI scans used in research and in the clinic [3]. In line with
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this study, we conduct two experiments. In the first, we assess how the de facto standard brain
tissue segmentation tool, SIENAX [29], performs on de-identified MRI scans in comparison
to the originals. In Table 1, we report the (Sgrensen-) Dice scores [4, 30] and IoU between
the original and de-identified scans for various brain segmentation tasks. We observe that
CP-GAN outperforms all of its contenders, proving that brain volume estimations are reliable
after the subject is de-identified using CP-GAN. Note that removing everything except the brain
using MRI WATERSHED has a catastrophic effect, replicating the effect observed in [5].

In the second experiment, we investigate whether de-identification adversely affects brain
age estimation — an important task as the difference between predicted and chronological age
has links to brain disease [13]. This is a challenging task for CP-GAN since age information
captured in the MRI is filtered out in y(x) in contrast to the other methods that preserve
head information in addition to the brain. Nonetheless, we find that our de-identification
introduces less bias than DEFACE and QUICKSHEAR on both datasets, though FACE MASK slightly
outperforms our model. Due to space limitations, these results appear in the Appendix.

5 Conclusion

In this work, we defined a new paradigm for de-identification of medical imagery and real-
ized it for MRI scans. Our approach remodels privacy-relevant information while keeping
medically-relevant information untouched. It can be applied to other modalities, produc-
ing remodeled images that appear genuine and preserve relevant medical information, but
without revealing privacy-sensitive information. Our method protects privacy substantially
better than existing methods, without compromising analyses typically found in research and
clinical settings — a crucial deficiency of strong removal methods such as skull-stripping. A
future research direction is to extend our approach to other MRI and CT modalities, adding
new downstream tasks such as lesion and brain tumor segmentation [22, 26]. Incorporating
other pulse sequences, such as T2-weighting or FLAIR, requires a re-training of the network
as well as a sufficient number of training samples. Unfortunately, alternative pulse sequences
are less readily available in comparison to the T/-weighted imagery used in this paper. Apart
from this apparent scarcity, we however do not expect any change in complexity. We hope
that the methods outlined here can help to better protect patient privacy.
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