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Abstract

Human behavioral analysis applications in the fields of ambient assisted living (AAL) and
human security monitoring require continuous video analysis of individuals. Although intelligent
systems deployed in these areas are intended to have a positive impact on the persons involved,
subsequent continuous monitoring naturally raises ethical concerns and questions about privacy
implications. To address these issues, we present a foundation for identity-preserving 3D human
behavior analysis. Our main contributions are a fast 3D detection system and a public multi-
modal dataset. The introduced detection system uses an innovative target assignment scheme
to significantly improve performance, especially in challenging scenes with a large number of
person-person and person-object occlusions. On our dataset, the system shows performance on par
with the state-of-the-art in 3D object detection while being lightweight enough for configuration
and deployment to edge devices. The dataset is large, at a total of 85k annotated frames. To
reduce privacy intrusion, it consists entirely of spatio-temporally aligned depth and thermal
sequences. Annotation is provided as 3D bounding boxes, along with pose labels and consistent
person IDs for use in tracking. The dataset is designed to be flexible. Data representation in either
image view or point clouds and the option for projected 2D bounding boxes, allows use in a variety
of 2D or 3D tasks. Target applications of our work are privacy-sensitive domains that currently
require continuous monitoring using RGB-based systems, including ambient assisted living tasks
(e.g., motion rehabilitation, fall detection, vital sign detection) and human security monitoring
applications, such as construction safety, critical care and correctional facility monitoring.

1 Introduction
Developments in machine vision have led to the emergence of intelligent systems in areas key to human
health and well-being. Notable examples include applications in ambient assisted living (AAL), such
as motion rehabilitation [11, 62], fall detection [1, 14, 56], contact-less heart rate and respiratory rate
detection [4, 63]. Such systems, especially if designed for medical emergency detection, require contin-
uous video surveillance. Similar circumstances are found in domains monitoring human safety, includ-
ing construction safety [58, 64], intensive care [26, 32] and supervision in correctional facilities [8].

The overarching commonality among the addressed domains is the strict requirement for continuous
video supervision to ensure participant safety. While intelligent systems in such areas are designed
to have a positive impact on involved persons, continuous surveillance, especially in the age of IoT
devices, naturally leads to ethical concerns and questions about loss of privacy [2, 15, 41]. This is
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Figure 1: Sample image with annotations viewed as a point cloud. False color based on depth (left)
and based on temperature (right).

of particular concern if participants have limited control over their environment, either due to mental
and/or physical impairments or because they are deprived of their liberty. We argue that the identity of
individuals is in many cases irrelevant. The central questions is not who, but rather what – it is the action
that matters, not the person. The main aim of our paper is thus to address a dichotomy between the
utility of machine vision-based human behavior analysis, and impact on privacy. It is our goal to lay the
foundations for a robust human behavior detection (HBA) system that can serve as a replacement for
current RGB-based surveillance, and at the same time, protect the privacy of individuals - thus enabling
future research on assistance systems that support vulnerable persons in a more dignified manner.
It is an explicit non-objective of our work to enable the expansion of surveillance into previously
unmonitored areas, such as toilets or bathrooms, for which specialized solutions exist [42, 45].

The ability to reliably detect and track individuals is the underlying requirement for human behavior
analysis [10, 39]. It is key to all the addressed applications and a necessity for the development
of semantically more abstract action and behavior recognition tasks. Motivated by this, we intro-
duce a dataset captured solely with depth and thermal sensors (Figure 1). As opposed to other
postprocessing-based anonymization techniques [6], these imaging modalities preserve sensitive
information by design - the individuals identity is already protected during data acquisition. Our
presented detection system is highly configurable, and even allows for deployment to resource
constrained edge devices. This can serve as an additional safety measure for the protection of personal
data since a sensor-near inference setup keeps potentially sensitive imagery local to the sensing
unit.

The main contributions of our paper are:

• A fast and highly configurable 3D detection model that performs on par with state-of-the-art
models while being suitable for inference on edge devices.

• An innovative broadcasted target assignment scheme to replace traditional methods at negligible
additional processing cost, and an optional birds eye view module for boosted performance.

• The MIPT dataset1: A large multimodal dataset for privacy-preserved 3D human detection
and tracking consisting of spatio-temporally aligned depth and thermal sequences.

In Section 2 we give a summary over related work on multimodal datasets and detection in the
context of human behavior analysis. Section 3 presents our multimodal dataset and its key features.
Our proposed detection system and innovations are introduced in Section 4, while Section 5 presents
conducted experiments and their results. Finally, Section 6 concludes the paper.

1URL: https://cvl.tuwien.ac.at/research/cvl-databases/mipt-dataset/, DOI: 10.5281/zenodo.5592323
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2 Related Work

We address related work both in terms of publicly available multimodal data, as well as object
detection in human behavior analysis. Additionally, we categorize our system among general 3D
object detection methods.

Multimodal data in the context of HBA Currently available public datasets most similar to ours
are IPHD [13] and IPT [22]. Like our dataset, IPHD is large at 100k frames and consists of depth
and thermal data. Key differences are annotations that are only provided in 2D image space and
its structure as an image dataset instead of sequences - making it unsuitable for tracking. The IPT
dataset features 10 sequences of depth-only data and 3D location annotations (not 3D bounding
boxes). Especially missing labeling of person orientations make this dataset unsuitable for behavior
and interaction detection. Other datasets only providing 2D annotation are the AAU VAP Trimodal
People Segmentation Dataset [44] and RGB-D People Dataset [37, 61] which – in addition – are
small in size with 3 and 1 sequences respectively. Synthetic datasets use 3D models to generate
imagery and perfectly accurate annotations at the cost of an introduced synthetic data bias, which
may harm the generalization ability of models on real world data. In this category Shotton et al. [59]
present a dataset for human pose recognition in depth data. The multimodal SDT dataset [48]
features artificial depth and thermal frames intended for 2D object detection. For interaction detection,
the RGB-D SBU Kinect Interaction Dataset [67] provides sequences of depth data and mapped
motion sequences which include both neutral ("Exchanging", "Shaking Hands") and violent actions
("Punching", "Kicking"). Similarly, the Cornell Activity Dataset [52] presents a collections of human
actions in RGB-D. Both are recorded in idealized environments (no other objects in the background,
no occlusions) that do not reflect activity found in real world applications. Privacy concerns in the
collection of large datasets for human fall detection are addressed in the work of Asif et al. [3] which
presents a large-scale synthetic database using human motion captures of fall and related events.

General 3D Object Detection Our detection framework is structured as a single stage detector
similar to YOLO [53], but extended to the three-dimensional case. As such, it does not rely on a
region proposal network (RPN) [20]. The previous YOLO extension Complex-YOLO [60] uses
predefined heights based on each class as additional information source for the transition from 2D
to 3D. Our method processes data entirely in image view and is thus distinct to all methods operating
directly on pointclouds, such as PointNet-based methods [49, 50, 51]. If used in configuration with
the presented birds-eye-view module, our system is a fusion method with components similar in
purpose to MV3D [12] and AVOD [29].

Detection and Privacy in HBA A publication by Ijjina and Chalavadi [25] presents a deep
learning approach for the detection of motion sequences in RGB-D data, but does not address
localization. Using the same modalities, Liu et al. [35] present a method that focuses solely on
recognition of person orientations and is robust to occlusions and complex environments. In a work
on multimodal behavioral analysis, Clapés et al. [40] explore the feasibility of person re-identification
with a combination of RGB, depth and thermal imaging. Work of Callemein et al. [9] addresses
privacy concern by downscaling RGB input images to low resolution. This is however associated
with lower detection accuracy. Pittaluga et al. [47] propose an adversarial training approach to
prevent extraction of sensitive information at the encoder stage. Other work focuses on anonymization
methods at the sensor level. Using a line sensor to measure a one-dimensional brightness distribution,
Nakashima et al. [42] demonstrate person localization in simple environments. Existing sensors can
be modified with privacy-preserving optics [45] that preserve privacy through a defocusing blur.
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Figure 2: Spatio-temporally aligned depth (left) and thermal (right) frames in our dataset.

Resorting to a low-dimensional input stream or blurring/blocking image content has the disad-
vantage of limiting the performance and accuracy of derived assistance systems. The aforementioned
methods target applications for which a high-resolution image sensor (RGB, thermal, depth or other)
is not acceptable, such as assistance systems for bathrooms or restrooms. As such, they are therefore
orthogonal to our work, since our main goal is to replace existing RGB-based monitoring systems.

The degree of anonymity provided by depth and thermal sensors is an actively discussed topic in
existing literature [23, 28, 30], as face recognition on close-up portrait images has been demonstrated
for both modalities. Furthermore, gait analysis [43] allows for some degree of identification
independent of the imaging modality. Regardless, the goal of this paper is not to make identification
impossible from an algorithmic perspective, but rather to provide a basis for a less intrusive experience
for subjects compared to existing RGB-based systems. The modalities provided by our dataset can
be used in a variety of configurations. The feasibility of systems based solely on depth modality is
demonstrated, for example, by privacy-preserving fall detection solutions [27, 55]. Specifically for
thermal sensors, it has been proposed to obfuscate human imagery by blocking sensor measurements
in human temperature ranges before the digitization process [46]. If desired, such a step can be
implemented as a preprocessing step for optional reduced use of thermal data. In this way, the dataset
can be tailored to the needs of the application, to balance participant comfort with system performance.

3 Dataset
Overview We present a public , multimodal dataset for identity preserved detection and tracking
(MIPT). The dataset features human activity in indoor sequences (Figure 2) and is suitable for
privacy-sensitive 2D and 3D tasks. Its main distinguishing features are:

• Size: A total of 85k frames showing indoor scenes spread over 20 densely labeled sequences
– 9 of which are multimodal, with spatio-temporally aligned depth and thermal frames. The
remaining sequences are depth only.

• 3D Labeling: For all frames we provide labeling of person instances as 3D bounding boxes
(also projected 2D bounding boxes), basic pose labels for the classes "Standing", "Sitting"
and "Lying", and a consistent person ID for use in tracking. Additionally we provide tracking
ground truth files in the MOT20 Challenge [16] format.

Activities in the MIPT dataset are mostly scripted to guarantee a high degree of movement, poses
and behavioral patterns in a short time frame. The sensor is static, mimicking a surveying setup as
would be found in AAL or security applications. Nine sequences are recorded with a depth/thermal
sensor setup similar to the one presented in [48], using a modified Orbbec Astra2 and a FLIR Lepton
3.53 thermal camera module. These sequences are recorded at a resolution of 640×480 (thermal

2https://orbbec3d.com/product-astra-pro/ (last accessed on June 16th 2021)
3https://www.flir.com/products/lepton/ (last accessed on June 16th 2021)
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Figure 3: Basic structure of the detection system: 1. Input frames, 2. Backbone and FPN for feature
extraction, 3. Reshape at each scale to a 3D grid of cells, 4. (Optional) augmentation of each cell
with information captured in the birds-eye-view module (BEV), 5. Transformation into 3D bounding
boxes, 6. Filtering and fusion of bounding boxes.

Figure 4: Transformation of raw neural network output in a cell to a bounding box.

frames upscaled from 160×120) at a frame rate of 8.7 (the upper limit for the thermal module). The
remaining eleven sequences are depth-only – ten of which reuse raw data from the IPT dataset [22]
but are entirely relabeled. Annotations in the original IPT dataset only feature positions of people
in a birds-eye-view coordinate frame. Labeling of box dimensions, direction and a refinement of
locations are our contribution.

Bounding Box Format The coordinate system is chosen such that the positive x-axis is rightward,
positive y-axis is forward and positive z-axis is upward. Our dataset consists of indoor scenes, as such
the ground plane is flat and all bounding boxes are assumed to be at ground level. Bounding boxes are
expressed by: Their 3D location at head level loc = (locx, locy, locz) (i.e. locz is the bounding boxes
height), their width and length dimensions dim=(dimx,dimy) and their rotation around the z-axis (ro-
tation is 0 pointing towards the positive x-axis and approaches π/2 turning towards the positive y-axis).
In practice we express rotation as a directional vector dir =(dirx,diry) with the constraint‖dir‖2 = 1.
In case classification is required on top of detection, a bounding box specification further includes a
confidence score con f and an ncls-dimensional probability vector cls. Thus a 3D bounding box is fully
expressed by the tuple box = (loc,dim,dir,con f ,cls) and can be written as a vector in R8+ncls . For
ground truth bounding boxes we define con f := 1 and cls to be the one-hot encoded ground truth class.

4 Proposed Method
Network Structure and Detection Head The input of our detection system is a two-channel
stack of spatio-temporally aligned depth and thermal frames (optionally a single channel if only
the depth modality is used). It uses a flexible backbone (ResNet [21] or Mobilenet v2 [57]) and is
configured as a feature pyramid network (FPN) [34], for feature extraction at multiple scale levels
(see step 2 in Figure 3). Although we intend to solve a 3D detection task, processing is entirely
performed in image space (with an added depth dimension) using 2D convolutions.
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For each scale level of the FPN the feature tensor of size (nx,ny,nch) is reshaped to shape
(nx,ny,nz,8+ncls) before it is passed to the detection head (step 3 in Figure 3), which requires the
number of FPN output channels nch to be set to nz(8+ncls). Here nz is a hyperparameter that sets
the number of depth layers we predict at.

A bounded cuboid shaped subregion of the 3D image space is rescaled to size (nx,ny,nz) and
subdivided into 1×1×1 sized subregions, referred to as cells. This allows each cell to be assigned
to a feature vector of length 8+ncls, representing a possible bounding box prediction. The main
objective of the detection head is the transformation of a raw prediction box0 ∈R8+ncls to a bounding
box in 3D world space (see Figure 4):

locimg
i = sigmoid(loc0

i )+baic, i∈ {x,y,z}, con f = sigmoid(con f 0),

dimi = mi exp(dim0
i ), i∈ {x,y}, cls = softmax(cls0),

diri = dir0
i

sigmoid(‖dir0‖2)
‖dir0‖2

, i∈ {x,y}.
(1)

Here, a∈R3 is an anchor and serves as an offset to the center of the cell that box0 is assigned to (bac
rounds down to nearest integer coordinates). Furthermore, m = (mx,my) is an anchor box, obtained
as the mean bounding box dimension over the training set.

Assume there is an invertible function T that transforms locations in image space to corresponding
(3D) locations in world space. A final bounding box prediction is obtained as locwld = T [locimg]
and boxwld = (locwld,dim,dir,con f ,cls). Each box component is optimized during model training
to match the values of a ground truth (= target) box. Thus, the output loc0 corresponds to a scaled
residual between an anchor location and target location and the dimensions dim0 are scaling factors
with respect to mean box dimensions.

Broadcasted Target Assignment One of the critical steps in anchor-based object detection is
target assignment, i.e. which cell is responsible for the prediction of a given ground truth bounding
box. In 2D detection models such as YOLO [53], this problem is solved by assigning the cell and
anchor box with highest overlap to the target box. As our system uses only a single anchor box m,
such an approach in most cases selects the anchor a∗ closest to the ground truth location in image
space ˆlocimg. For the set of anchors G we get:

a∗ = argmin
a∈G

∥∥∥ ˆlocimg−a
∥∥∥

∞

. (2)

The residual ˆlocimg−ba∗c is used as a regression target for the output locimg in the cell corresponding
to a∗. We argue that in applications where high occlusions between objects are expected, this process
can be improved upon. Instead of a single cell, we assign a set of cells to a single target box, a process
we call broadcasted target assignment (BTA). To do so, instead of a target location we parameterize
a target line: ˆlocimg(s), s ∈ [0,1], where ˆlocimg(0) corresponds to the location of the target box at
ground level and ˆlocimg(1) corresponds to the location at head level (see Figure 5).

The set of anchorsA assigned to the target line corresponds to all cells intersected by it:

A :=
{

a∈ G :
∥∥∥ ˆlocimg(s∗(a))−a

∥∥∥
∞

< 1/2
}
, s∗(a) := argmin

s∈[0,1]

∥∥∥ ˆlocimg(s)−a
∥∥∥

2
. (3)

The individual regression targets are defined as the closest points ˆlocimg(s∗(a)) to the target line.
Using BTA, each cell additionally predicts a parameter s(a), which is optimized to match s∗(a) and
indicates the location of the prediction along the target line. In the final transformation of the predicted
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Figure 5: Depiction of broadcasted target assignment: 1. Parametrization of a target line, 2.
Subdivision of the 3D image space into cells, 3. Assignment of regression targets.

Figure 6: Optional components for our system. The background model (left) and cell feature
augmentation using a secondary birds-eye-view branch.

location to world space, the computation of the height coordinate z is replaced with locwld
z = T [locimg]z

s(a)+ε
,

where ε > 0 is a small regularization constant. In this way the predicted relative height s(a) is used
to reconstruct the full height of the bounding box.

Background Model In order to utilize temporal information available due to the sequential format
of our dataset, we employ a background model as presented by Wren et al. [66] (left side in Figure
6). Given a sequence of input frames ( fi)N

i=0, instead of a single-channel input of the most recent
frame ft , the model is given a stack ( ft,µt,σt) of the current frame, and geometrically weighed mean
and standard deviation over previous frames:

µt = α ft +(1−α)µt−1, µ0 = f0,

σ
2
t = α( ft−µt)

2+(1−α)σ2
t−1, σ

2
0 = 0.

(4)

The scalar parameter α determines how strongly previous frames are weighed. In the multimodal
settings this operation is performed for every modality.

Birds-Eye-View Module We present an optional birds-eye-view module (BEV), which uses a
secondary view point and feature extraction branch for augmentation of cell features. Distance
information of depth frames is used to transform input frames to a birds-eye-view point density
representation (right side of Figure 6), from which features are extracted using a reduced Mobilenet
v2 [57] backbone. The resulting feature map of shape (nbev

x ,nbev
y ,nbev

c ) (width, height and number of
channels) is used to augment intermediate features at each cell. Let S be a coordinate transformation
from world space to the 2D birds-eye-view. For each anchor a we evaluate the birds-eye-view feature
map at location abev = S[T [a]] (rounded integer coordinates) to obtain a feature vector of length nbev

c .
For each cell, intermediate feature before the detection head are concatenated with the new features,
and fused using an inverted residual block [57].

Postprocessing To filter box predictions of insufficient confidence and fuse overlapping bounding
bounding boxes we use non-maximum suppression with soft voting [7]. Overlapping bounding boxes
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of the form boxwld = (locwld,dim,dir,con f ,cls) are averaged based on prediction confidence using
a simple arithmetic mean of each attribute. If broadcasted target assignment is active, it is advisable to
instead use a harmonic mean for the box height boxwld

z , as it is formed as the ratio of two predictions.

5 Experiments and Results
Evaluation For evaluation we use average precision (AP) [17] and average heading similarity
(AHS) [29]. The AHS metric is a stricter extension of AP, where differences in orientation between
predicted and ground truth bounding boxes are taken into account. If not stated otherwise, detection
threshold is 0.25 based on 3D IoU. Tests are performed using two base configurations:

• Res50: Based on a ResNet50 [21] backbone at an image resolution of 416×416, with
detection heads at three scale levels. Its intent is a demonstration of the best performance our
proposed model can reach.

• Mob2: Based on a Mobilenet v2 [57] backbone. It uses an image resolution of 320×320
and detection heads at two scale levels. It main motivation is to be fast, so it can be used on
edge devices.

More recent backbone architectures such as MobileNet v3 [24] did not show improved performance,
which may suggest that architectures found trough neural architecture search (NAS) [69] overfit on
either the RGB modality, or datasets used for its evaluation.

Ablation Study To demonstrate the effectiveness of our detection system and its extensions we
perform an ablation study. Both the Res50 and the Mob2 configuration are tested with various
combinations of the proposed extension modules (see Table 1). Our evaluations shows a clear positive
impact of each introduced module. The baseline Res50 evaluation is provided both with anchor
assignment based on the closest cell (equation 2), as well as based on largest IoU overlap (marked
Res50IoU ) – a strategy found in existing architectures such as Faster-RCNN [54]. Differences between
the two methods are within the margin of error. To validate the choice of our background model
it is compared against a 10 channel input stack of the current, and previous frames sampled at a
0.5s interval (denoted BGStack), yielding a roughly 8% performance drop. Our Mob2 configuration,
with utilization of a background model, shows detection quality on par with the Pointpillars [31]
architecture – at less than a tenth of the inference time (on an Nvidia GeForce GTX TITAN X) and
more than 11 fps on the Nvidia Jetson Nano edge device.

Comparison with state-of-the-art methods We compare our method against the state-of-the-art
in 3D object detection [31, 36, 51, 68] (see Table 2). As these methods do not utilize any temporal
information they are only compared against our best configuration without a background model
(Res50 + BTA + BEV). We outperform all methods in inference time and achieve second best results
on the AHS metric.

Imaging Modalities We evaluate detection performance under variations of the imaging modality
(see Table 3). These tests are only trained, validated and tested on the multimodal subset of MIPT
using a Mob2 + BTA + BG configuration. Use of thermal and RGB information (RGB not included
in the public dataset) in addition to depth leads to a distinct performance increase compared to the
depth-only baseline. Overall we achieve best results using a depth + thermal combination, suggesting
that these modalities are complementary and form a better combination than the more traditionally
used depth + RGB. Tests using only RGB or thermal modalities did not converge during training.
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Table 1: Ablation study comparing combinations of backbones, background model (BG), broadcasted
target assignment (BTA) and the birds-eye-view module (BEV). With (top section) and without
(bottom section) temporal information.

Configuration AHS AP fps (TITAN X) fps (Jetson)

Res50 0.284 0.386 25.8 1.6
Res50IoU 0.280 0.390 25.6 1.6
Res50 + BTA 0.406 0.475 25.6 1.6
Res50 + BEV 0.410 0.470 10.3 0.2
Res50 + BTA + BEV 0.544 0.639 10.3 0.2
Mob2 0.271 0.330 71.6 11.3
Mob2 + BTA 0.372 0.437 71.5 11.3

Res50 + BG 0.459 0.575 24.8 1.6
Res50 + BGStack 0.419 0.532 24.6 1.6
Res50 + BG + BTA 0.578 0.650 24.8 1.6
Res50 + BG + BEV 0.503 0.579 10.0 0.2
Res50 + BG + BTA + BEV 0.592 0.664 10.0 0.2
Mob2 + BG + BTA 0.452 0.530 68.5 11.1

Table 2: Comparison with state-of-the-art methods. Best
method is marked in bold, second best in italic.
Configuration AHS AP fps (TITAN X)

VoteNet [51] 0.508 0.634 6.3
PointPillars [31] 0.452 0.558 6.0
H3DNet [68] 0.532 0.657 4.2
Group-Free 3D [36] 0.558 0.673 3.9
Ours (Res50 + BTA + BEV) 0.544 0.639 10.3

Table 3: Evaluation of detection
models using different imaging
modalities.

Modalities AHS AP

Depth 0.336 0.408
Depth + Thermal 0.403 0.486
Depth + RGB 0.377 0.461

Figure 7: Impact of occlusions on performance
in detection

Figure 8: Unusual human poses
causing inconsistent labeling.

Occlusion performance We examine the impact of broadcasted target assignment on detection
performance with respect to occlusions (see Figure 7). The visibility of a person in the scene
is estimated using a heuristic based on the 3D bounding box and its surrounding depth readings.
For a visibility of less than 90% and especially in the 60−80% region we can see a tremendous
improvement in AHS when using BTA compared to regular target assignment. The BTA approach is
especially effective on datasets featuring tall and narrow objects, and smaller environments, where the
subject intersects with a large number of cells. This makes our system less suitable for evaluation on
publicly available datasets that either do not predominantly feature people, or have scenes of different
scales, such as pedestrian detection in the KITTI benchmark [19] (scene scales are up to 10x in each
dimension compared to our dataset).

Baseline Tracking We provide baseline tracking results for our best Res50 and Mob2 configura-
tions (see Table 4). The detection system is supplement with the DeepSort [65] tracker, modified for
tracking in 3D space instead of image space. In line with the MOT20 challenge [16] and the KITTI
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Table 4: Baseline tracking evaluation using HOTA, CLEARMOT and Mostly-Tracked/
Partly-Tracked/Mostly-Lost metrics.

Method HOTA DetA AssA MOTA MOTP MT PT ML

Res50 (BTA + BEV + BG) 41.4% 50.4% 34.3% 51.1% 69.0% 7 13 1
Mob2 (BTA + BG) 34.2% 46.5% 25.5% 43.8% 69.4% 6 13 2

Figure 9: Statistical evaluation of labeling deviations by human annotators (left) and evaluation
of human annotation (right).

Metric Human 1 Human 2

AHS @ 0.25 0.931 0.979
AHS @ 0.5 0.669 0.583

AP @ 0.25 1.000 1.000
AP @ 0.5 0.861 0.810

benchmark [18] we report HOTA [38], CLEAR MOT [5] and mostly-tracked (MT)/partly-tracked
(PT)/mostly lost (ML) [33] metrics. Required ground truth tracking files in the MOT Challenge
format are included with the MIPT dataset.

Future work – Error of human annotation We demonstrate an effect observed in 3D human
detection. Bounding boxes for human detection tend to be more ambiguous than for rigid objects (ex-
amples in Figure 8). Consequently, even under strict annotation guidelines we observe large deviations
between labels by two human annotators on the same data sequence compared to the ground truth pro-
vided in the MIPT dataset. We analyse variances in location, direction, region (width and length) and
height labels compared to ground truth (Figure and Table 9). This variance within dataset labels intro-
duces an upper bound to the performance achievable on a dataset such as MIPT. Thus we propose the
development of a detection metric derived from AP and AHS that place a stronger emphasis on local-
ization accuracy over bounding box widths and heights as this is the more accurately labeled parameter.

6 Conclusion
We presented a foundation for identity-preserving human detection, both in terms of a specialized
detection system and suitable data. Our system is highly configurable; evaluation showed that it
can perform the current state-of-the-art, while also being configurable for inference on edge devices.
We demonstrated the value of our innovative broadcasted target assignment (BTA) scheme, the
birds-eye-view module and background model, and demonstrated their impact (or lack of impact) on
inference speed. To further demonstrate strengths, our BTA scheme was more closely scrutinized in
terms of dependence on target occlusions. The efficacy of a multimodal depth and thermal approach
was demonstrated and it was shown that these modalities complement each other better than the
common RGB + depth combination. Baseline tracking results were provided using metrics in line
with the MOT20 challenge and the KITTI benchmark. Last we propose future work on specialized
evaluation metrics for 3D human detection.

Acknowledgment
This work has been partly funded by the Austrian security research program KIRAS of the Federal
Ministry of Agriculture, Regions and Tourism (BMLRT) under Grant 873495.

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012{}

Citation
Citation
{Luiten, Osep, Dendorfer, Torr, Geiger, Leal-Taix{é}, and Leibe} 2021

Citation
Citation
{Bernardin and Stiefelhagen} 2008

Citation
Citation
{Li, Huang, and Nevatia} 2009



HEITZINGER, KAMPEL: 3D DETECTION IN PRIVACY-SENSITIVE DOMAINS 11

References
[1] Hamid Aghajan, Juan Carlos Augusto, Chen Wu, Paul McCullagh, and Julie-Ann Walkden.

Distributed vision-based accident management for assisted living. In International Conference
on Smart Homes and Health Telematics, pages 196–205. Springer, 2007.

[2] Troy J Allard, Richard K Wortley, and Anna L Stewart. The effect of cctv on prisoner
misbehavior. The Prison Journal, 88(3):404–422, 2008.

[3] Umar Asif, Benjamin Mashford, Stefan Von Cavallar, Shivanthan Yohanandan, Subhrajit Roy,
Jianbin Tang, and Stefan Harrer. Privacy preserving human fall detection using video data.
In Machine Learning for Health Workshop, pages 39–51. PMLR, 2020.

[4] Flavia Benetazzo, Alessandro Freddi, Andrea Monteriù, and Sauro Longhi. Respiratory rate
detection algorithm based on rgb-d camera: theoretical background and experimental results.
Healthcare Technology Letters, 1(3):81–86, 2014.

[5] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance:
the clear mot metrics. EURASIP Journal on Image and Video Processing, 2008:1–10, 2008.

[6] Pascal Birnstill, Daoyuan Ren, and Jürgen Beyerer. A user study on anonymization techniques
for smart video surveillance. In 12th IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS), pages 1–6. IEEE, 2015.

[7] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-nms–improving
object detection with one line of code. In IEEE International Conference on Computer Vision
(ICCV), pages 5561–5569, 2017.

[8] Wassim Bouachir, Rafik Gouiaa, Bo Li, and Rita Noumeir. Intelligent video surveillance for
real-time detection of suicide attempts. Pattern Recognition Letters, 110:1–7, 2018.

[9] T. Callemein, Kristof Van Beeck, and T. Goedemé. How low can you go? privacy-preserving
people detection with an omni-directional camera. ArXiv, abs/2007.04678, 2019.

[10] Alexandros André Chaaraoui, Pau Climent-Pérez, and Francisco Flórez-Revuelta. A review
on vision techniques applied to human behaviour analysis for ambient-assisted living. Expert
Systems with Applications, 39(12):10873–10888, 2012.

[11] Chien-Yen Chang, Belinda Lange, Mi Zhang, Sebastian Koenig, Phil Requejo, Noom Somboon,
Alexander A Sawchuk, and Albert A Rizzo. Towards pervasive physical rehabilitation using
microsoft kinect. In 6th International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth) and Workshops, pages 159–162. IEEE, 2012.

[12] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection
network for autonomous driving. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1907–1915, 2017.

[13] Albert Clapés, Julio CS Jacques Junior, Carla Morral, and Sergio Escalera. Chalearn lap 2020
challenge on identity-preserved human detection: Dataset and results. In 15th IEEE International
Conference on Automatic Face and Gesture Recognition (FG), pages 801–808. IEEE, 2020.

[14] Rita Cucchiara, Andrea Prati, and Roberto Vezzani. A multi-camera vision system for fall
detection and alarm generation. Expert Systems, 24(5):334–345, 2007.



12 HEITZINGER, KAMPEL: 3D DETECTION IN PRIVACY-SENSITIVE DOMAINS

[15] Anupam Das, Martin Degeling, Xiaoyou Wang, Junjue Wang, Norman Sadeh, and Mahadev
Satyanarayanan. Assisting users in a world full of cameras: A privacy-aware infrastructure for
computer vision applications. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1387–1396. IEEE, 2017.

[16] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian Reid,
Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. Mot20: A benchmark for multi object
tracking in crowded scenes. arXiv preprint arXiv:2003.09003, 2020.

[17] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zis-
serman. The pascal visual object classes (voc) challenge. Int. J. Comput. Vision, 88
(2):303–338, June 2010. ISSN 0920-5691. doi: 10.1007/s11263-009-0275-4. URL
https://doi.org/10.1007/s11263-009-0275-4.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the
kitti vision benchmark suite. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3354–3361. IEEE, 2012.

[20] Ross Girshick. Fast r-cnn. In IEEE International Conference on Computer Vision (ICCV),
pages 1440–1448, 2015.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[22] Thomas Heitzinger and Martin Kampel. Ipt: A dataset for identity preserved tracking in closed
domains. In 25th International Conference on Pattern Recognition (ICPR), pages 8228–8234.
IEEE, 2021.

[23] Gabriel Hermosilla, Javier Ruiz-del Solar, Rodrigo Verschae, and Mauricio Correa. A
comparative study of thermal face recognition methods in unconstrained environments. Pattern
Recognition, 45(7):2445–2459, 2012.

[24] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.
In IEEE/CVF International Conference on Computer Vision (ICCV), pages 1314–1324, 2019.

[25] Earnest Paul Ijjina and Krishna Mohan Chalavadi. Human action recognition in rgb-d videos
using motion sequence information and deep learning. Pattern Recognition, 72:504–516, 2017.

[26] Abdolrahim Kadkhodamohammadi, Afshin Gangi, Michel de Mathelin, and Nicolas Padoy.
Temporally consistent 3d pose estimation in the interventional room using discrete mrf
optimization over rgbd sequences. In International Conference on Information Processing
in Computer-Assisted Interventions, pages 168–177. Springer, 2014.

[27] Michal Kepski and Bogdan Kwolek. Fall detection using ceiling-mounted 3d depth camera. In
2014 International conference on computer vision theory and applications (VISAPP), volume 2,
pages 640–647. IEEE, 2014.

https://doi.org/10.1007/s11263-009-0275-4


HEITZINGER, KAMPEL: 3D DETECTION IN PRIVACY-SENSITIVE DOMAINS 13

[28] Mate Krišto and Marina Ivasic-Kos. An overview of thermal face recognition methods. In 2018
41st International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pages 1098–1103. IEEE, 2018.

[29] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L Waslander. Joint
3d proposal generation and object detection from view aggregation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1–8. IEEE, 2018.

[30] Soon-kak Kwon. Face recognition using depth and infrared pictures. Nonlinear Theory and
Its Applications, IEICE, 10(1):2–15, 2019.

[31] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 12697–12705, 2019.

[32] Colin Lea, James Facker, Gregory Hager, Russell Taylor, and Suchi Saria. 3d sensing algorithms
towards building an intelligent intensive care unit. AMIA Summits on Translational Science,
2013:136, 2013.

[33] Yuan Li, Chang Huang, and Ram Nevatia. Learning to associate: Hybridboosted multi-target
tracker for crowded scene. In 2009 IEEE conference on computer vision and pattern recognition,
pages 2953–2960. IEEE, 2009.

[34] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2117–2125, 2017.

[35] Wu Liu, Yongdong Zhang, Sheng Tang, Jinhui Tang, Richang Hong, and Jintao Li. Accurate
estimation of human body orientation from rgb-d sensors. IEEE Transactions on Cybernetics,
43(5):1442–1452, 2013.

[36] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-free 3d object detection via
transformers. arXiv preprint arXiv:2104.00678, 2021.

[37] Matthias Luber, Luciano Spinello, and Kai O Arras. People tracking in rgb-d data with on-line
boosted target models. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3844–3849. IEEE, 2011.

[38] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura
Leal-Taixé, and Bastian Leibe. Hota: A higher order metric for evaluating multi-object tracking.
International journal of computer vision, 129(2):548–578, 2021.

[39] Thomas B Moeslund and Erik Granum. A survey of computer vision-based human motion
capture. Computer Vision and Image Understanding, 81(3):231–268, 2001.

[40] Andreas Mogelmose, Chris Bahnsen, Thomas Moeslund, Albert Clapés, and Sergio Escalera.
Tri-modal person re-identification with rgb, depth and thermal features. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 301–307, 2013.

[41] Pardis Emami Naeini, Sruti Bhagavatula, Hana Habib, Martin Degeling, Lujo Bauer,
Lorrie Faith Cranor, and Norman Sadeh. Privacy expectations and preferences in an iot world.
In Thirteenth Symposium on Usable Privacy and Security (SOUPS), pages 399–412, 2017.



14 HEITZINGER, KAMPEL: 3D DETECTION IN PRIVACY-SENSITIVE DOMAINS

[42] Shota Nakashima, Yuhki Kitazono, Lifeng Zhang, and Seiichi Serikawa. Development of
privacy-preserving sensor for person detection. Procedia-Social and Behavioral Sciences,
2(1):213–217, 2010.

[43] Mark S. Nixon, Tieniu N. Tan, and Rama Chellappa. Human Identification Based on Gait.
Int. Series on Biometrics. Springer-Verlag, Dec. 2005.

[44] Cristina Palmero, Albert Clapés, Chris Bahnsen, Andreas Møgelmose, Thomas B Moeslund,
and Sergio Escalera. Multi-modal rgb–depth–thermal human body segmentation. International
Journal of Computer Vision, 118(2):217–239, 2016.

[45] Francesco Pittaluga and Sanjeev Jagannatha Koppal. Pre-capture privacy for small vision sensors.
IEEE transactions on pattern analysis and machine intelligence, 39(11):2215–2226, 2016.

[46] Francesco Pittaluga, Aleksandar Zivkovic, and Sanjeev J Koppal. Sensor-level privacy for
thermal cameras. In 2016 IEEE International Conference on Computational Photography
(ICCP), pages 1–12. IEEE, 2016.

[47] Francesco Pittaluga, Sanjeev Koppal, and Ayan Chakrabarti. Learning privacy preserving
encodings through adversarial training. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 791–799. IEEE, 2019.

[48] Christopher Pramerdorfer, J Strohmayer, and Martin Kampel. Sdt: A synthetic multi-modal
dataset for person detection and pose classification. In IEEE International Conference on Image
Processing (ICIP), pages 1611–1615. IEEE, 2020.

[49] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 652–660, 2017.

[50] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for
3d object detection from rgb-d data. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 918–927, 2018.

[51] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas. Deep hough voting for 3d object
detection in point clouds. In IEEE/CVF International Conference on Computer Vision (ICCV),
pages 9277–9286, 2019.

[52] Re3data.Org. Cornell activity datasets: Cad-60 & cad-120, 2016. URL
http://service.re3data.org/repository/r3d100012216.

[53] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 7263–7271, 2017.

[54] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time
object detection with region proposal networks. IEEE transactions on pattern analysis and
machine intelligence, 39(6):1137–1149, 2016.

[55] Manola Ricciuti, Susanna Spinsante, and Ennio Gambi. Accurate fall detection in a top view
privacy preserving configuration. Sensors, 18(6):1754, 2018.

http://service.re3data.org/repository/r3d100012216


HEITZINGER, KAMPEL: 3D DETECTION IN PRIVACY-SENSITIVE DOMAINS 15

[56] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau. Fall detection from human shape and mo-
tion history using video surveillance. In 21st International Conference on Advanced Information
Networking and Applications Workshops (AINAW), volume 2, pages 875–880. IEEE, 2007.

[57] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4510–4520, 2018.

[58] JoonOh Seo, SangUk Han, SangHyun Lee, and Hyoungkwan Kim. Computer vision techniques
for construction safety and health monitoring. Advanced Engineering Informatics, 29(2):
239–251, 2015.

[59] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore,
Alex Kipman, and Andrew Blake. Real-time human pose recognition in parts from single
depth images. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1297–1304. Ieee, 2011.

[60] Martin Simon, Stefan Milz, Karl Amende, and H. Groß. Complex-yolo: Real-time 3d object
detection on point clouds. arXiv preprint arXiv:1803.06199, abs/1803.06199, 2018.

[61] Luciano Spinello and Kai O Arras. People detection in rgb-d data. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3838–3843. IEEE, 2011.

[62] Luis Enrique Sucar, Felipe Orihuela-Espina, Roger Luis Velazquez, David J Reinkensmeyer,
Ronald Leder, and Jorge Hernández-Franco. Gesture therapy: An upper limb virtual
reality-based motor rehabilitation platform. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 22(3):634–643, 2013.

[63] Lionel Tarassenko, Mauricio Villarroel, Alessandro Guazzi, João Jorge, DA Clifton, and Chris
Pugh. Non-contact video-based vital sign monitoring using ambient light and auto-regressive
models. Physiological Measurement, 35(5):807, 2014.

[64] Di Wang, Fei Dai, and Xiaopeng Ning. Risk assessment of work-related musculoskeletal
disorders in construction: State-of-the-art review. Journal of Construction Engineering and
Management, 141(6):04015008, 2015.

[65] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with
a deep association metric. In 2017 IEEE international conference on image processing (ICIP),
pages 3645–3649. IEEE, 2017.

[66] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex Paul Pentland. Pfinder:
Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 19(7):780–785, 1997.

[67] Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay, Tamara L Berg, and Dimitris Samaras.
Two-person interaction detection using body-pose features and multiple instance learning. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
pages 28–35. IEEE, 2012.

[68] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang. H3dnet: 3d object detection using hy-
brid geometric primitives. In Proceedings of the European Conference on Computer Vision, 2020.

[69] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.


