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Abstract

Incorporating data-specific domain knowledge in deep networks explicitly can pro-
vide important cues beneficial for lesion detection and can mitigate the need for diverse
heterogeneous datasets for learning robust detectors. In this paper, we exploit the do-
main information present in computed tomography (CT) scans and propose a robust uni-
versal lesion detection (ULD) network that can detect lesions across all organs of the
body by training on a single dataset, DeepLesion. We analyze CT-slices of varying in-
tensities, generated using heuristically determined Hounsfield Unit (HU) windows that
individually highlight different organs and are given as inputs to the deep network. The
features obtained from the multiple intensity images are fused using a novel convolu-
tion augmented multi-head self-attention module and subsequently, passed to a Region
Proposal Network (RPN) for lesion detection. In addition, we observed that traditional
anchor boxes used in RPN for natural images are not suitable for lesion sizes often found
in medical images. Therefore, we propose to use lesion-specific anchor sizes and ra-
tios in the RPN for improving the detection performance. We use self-supervision to
initialize weights of our network on the DeepLesion dataset to further imbibe domain
knowledge. Our proposed Domain Knowledge augmented Multi-head Attention based
Universal Lesion Detection Network DMKA-ULD produces refined and precise bound-
ing boxes around lesions across different organs. We evaluate the efficacy of our network
on the publicly available DeepLesion dataset which comprises of approximately 32K CT
scans with annotated lesions across all organs of the body. Results demonstrate that we
outperform existing state-of-the-art methods achieving an overall sensitivity of 87.16%.

1 Introduction
Advances in deep learning techniques have led to significant breakthroughs in medical image
analysis [15, 16, 19, 21]. In the past, efforts have been made to build automated lesion
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detection solutions that focus on specific organs such as liver, kidney, and lungs [12, 28, 36].
However, to address the clinical necessity where radiologists are required to locate different
types of lesions present in various organs of the body to diagnose patients and determine
treatment, developing a universal lesion detection (ULD) [13, 23, 32, 34, 38] model has
become an active area of research. Tang et. al [23] proposed ULDor based on Mask-RCNN
for lesion detection and a hard negative mining (HNEM) strategy to reduce false positives.
However, the proposed HNEM technique may not enhance detection performance due to
missing annotations as the mined negatives may actually contain positives. There are a few
more impressive RCNN based ULD networks that use weights pre-trained on Imagenet for
detection [18, 32, 34]. We also found from earlier methods [29, 32] that utilizing neighboring
slice information is essential for providing 3D context to the network which gives a lift in
lesion detection accuracy. This is due to the fact that clinicians look at multiple slices of a
patient’s CT scan to confirm the final diagnosis.

There also exist attention-based ULD networks where attention has been shown to im-
prove the lesion detection [13, 24, 29, 37] by enabling the network to focus on important
regions of CT-scans. MVP-Net [13] proposed to use a position-aware attention module to
aggregate features from a multi-view feature pyramid network. Another work on ULD by
Wang et al. [29], proposed volumetric attention which exploits 3D-context from multi-slice
image inputs and a 2.5D network for improving the detection performance. The multi-task
universal lesion analysis network (MULAN) [34] utilizes 27 slices as input and proposes a
3D feature fusion strategy with Mask-RCNN backbone for lesion detection. In addition, they
jointly train the network to perform lesion segmentation and tagging.

Typically, deep networks are reliant on high-volume datasets for automatically discov-
ering relevant features for a learning task. However, due to the very similar appearance
of lesions and other internal structures in CT scans, lesion detection is quite a challenging
problem. Yan et al. [31] proposed a Lesion ENSemble (LENS) network for lesion detection
that can efficiently learn from heterogeneous lesion datasets and address the issue of miss-
ing annotations by exploiting clinical prior knowledge and cross-dataset knowledge transfer.
In another paper [30], authors have proposed a MELD network for lesion detection which
learns from multiple heterogeneous diverse datasets and uses missing annotation matching
(MAM) and negative region mining (NRM) for achieving state-of-the-art lesion detection
performance on DeepLesion [33] dataset. In summary, previous works on ULD have made
use of 3D-context in the form of multi-slice inputs, incorporation of attention mechanisms,
multi-task learning, hard negative mining techniques, and multiple heterogeneous datasets
to enhance the lesion detection sensitivity performance.

Rather than using a variety of heterogeneous datasets to learn robust representations for
ULD, we claim that significant improvements to learning can be obtained by incorporat-
ing task-specific domain knowledge in the network. This motivates us to extract as many
domain-specific features as possible from a minimal number of CT-slices for a particular
patient, to come up with a computationally efficient ULD with enhanced prediction perfor-
mance. Therefore, in our proposed lesion detector, we utilize only 3 slices from a patient’s
CT scan to incorporate 3D context in the network. Next, taking cues from MVP-Net [13],
we utilize the information of tissue density from CT-scans represented as HU-values in terms
of window width and window length. During manual analysis, radiologists adjust these win-
dows to focus on organs/tissues of interest [2]. Despite having critical importance in lesion
detection, the use of multiple HU windows of CT-slices, representing different organs of the
body, has been overlooked in the literature. To this end, we introduce 5 novel heuristically
determined HU windows for CT-slices and feed them as multi-intensity input to the detec-
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Figure 1: Overview of our DKMA-ULD architecture. (a) An input image I, consisting of 3 CT-slices
of a patient, is pre-processed and used for generating 5 multi-intensity images using 5 different HU
windows (U1 to U5). Using a shared convolutional feature extractor (having domain-specific weight
initialization) with 5 FPN levels (P2 to P6), we obtain 5 feature map blocks FUi, (b) Using our proposed
attention based feature fusion module inspired from transformer’s multi-head self-attention [27], fea-
ture map sub-levels (Pj −FUi) with same resolution of (H,W ) are fused into a single sub-level for
obtaining the final fused feature map block (F′). Here V, K, Q and Nh represent value, key, query ma-
trix and number of attention heads and finally, (c) RPN with custom lesion-specific anchors is applied
over F′ for improved lesion detection.

tion network to make it organ-agnostic. Further, the computed features are combined using
our novel convolution augmented multi-head attention-based fusion architecture. We use
transformers [5, 7, 27] based self-attention mechanism for feature-fusion of multi-intensity
images that effectively combines multi-organ information efficiently. This is analogous to
the radiologists’ way of paying attention to different organs at different HU windows of CT-
slices simultaneously while detecting lesions. Additionally, we have observed that default
anchor sizes and ratios used in general object detection networks do not perform satisfacto-
rily for lesions of different sizes, particularly for very small (< 10mm) and medium-sized
(10− 30mm) lesions. Therefore, we propose new anchor sizes and ratios for RPN that en-
able the network to detect lesions of varied sizes mostly found in medical imaging datasets.
We named our network DKMA-ULD (Domain-knowledge augmented multi-attention based
universal lesion detection).

Furthermore, observing that self-supervised learning (SSL) techniques have recently be-
come the cornerstone for learning improved representations in data-scarce scenarios which
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can, subsequently, be used for efficient learning on downstream tasks [6, 9, 26]. We utilize
Bootstrap Your Own Latent (BYOL)[9], a SSL technique to learn weights of the backbone
network of DKMA-ULD on the DeepLesion [33] dataset. The DeepLesion dataset consists
of approximately 32K CT scans with annotated lesions across different organs of the body.
Subsequently, the weights learned via SSL are used for initializing our DKMA-ULD so that
it is able to learn robust domain-specific representations resulting in improved sensitivity. To
summarize, we make the following contributions in the paper:

• We propose a domain-knowledge augmented deep network with multi-head self-attention
based feature-fusion named DKMA-ULD which performs robust detection of lesions
across all organs of the body and is trained on DeepLesion [33] dataset.

• We introduce 5 novel HU windows, computed in an unsupervised manner, for high-
lighting the different organs of the body in CT -scans which make our network organ-
agnostic.

• We propose a novel convolution augmented multi-head self-attention mechanism for
the fusion of the features obtained from multiple intensity CT-slices for subsequent
detection by an RPN.

• We propose lesion-specific new anchor sizes and ratios for detection that cover various
sizes of lesions present in medical images. We also illustrate that these new anchors
can detect very small and medium-sized lesions effectively. Hence, giving a boost to
the overall detection sensitivity.

• We demonstrate that initializing DKMA-ULD with self-supervised domain-specific
weights is beneficial for learning improved representations over Imagenet weights.

• We evaluate DKMA-ULD on DeepLesion dataset and show improvement over exist-
ing state-of-the-methods of ULD such as MULAN [34], 3DCE [32], MVP-Net [13],
MELD [30] and improved RetinaNet [37].

2 Dataset Details
DeepLesion [33] is the largest publicly available repository of CT-slices with annotated le-
sions across different organs of the body released by the National Institutes of Health (NIH).
It consists of data from 4,427 unique patients based on markings performed by radiologists
during their routine work. There are approximately 32,120 axial CT slices from 10,594 CT
studies of the patients having around 1-3 lesions annotated per CT -scan. The lesions in
each image have annotations such as bounding-box coordinates and size measurements, etc.
which add up to 32,735 lesions altogether from eight different body organs including bone,
abdomen, mediastinum, liver, lung, kidney, soft-tissue, and pelvis. We use the official split
of the DeepLesion dataset for training and evaluation of our proposed DKMA-ULD.

3 Proposed Method: DKMA-ULD
DKMA-ULD method, as shown in Figure 1, consists of different modules such as pre-
processing, multi-intensity image generation using five different HU windows, convolutional
feature extraction backbone, multi-head self-attention based feature-fusion, lesion-specific
anchors, and self-supervision. These modules are discussed in detail as follows:

• Pre-processing: Typically, clinicians observe multiple adjacent slices of a patient’s
CT scan to confirm the diagnosis of a pathology. In order to provide 3D context of
a patient’s CT-scan to the network, we utilize its 3 slices (key slice with one superior
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[30,150][-600,1500] [50,350]  [50,400][400,2000][1024,4096]

(e)(d)(c) (f)(b)(a)

Figure 2: The top, middle, and bottom rows have CT-slices of chest-region, abdomen-region, and
pelvic-region, respectively. The column (a) illustrates images with commonly used HU window (U =
[1024,4096]) while columns ranging from (b) to (f) have images with our new 5 HU windows. The
figure clearly demonstrates that by using more number of windows, different organs of a particular
body-region present in a CT volume, can be highlighted more efficiently.)

and one inferior neighboring slice) to generate 3-channel image. First, we remove
black borders of the CT-slices for computational efficiency and to focus on region-of-
interest. Next, we normalize and clip the 12-bit intensity values of a CT slice using a
HU window and then, re-scale them to floating-point values in the range [0.0,255.0].
Subsequently, we re-sample all the CT-slices to a common resolution of 0.8×0.8×2
mm3. In addition, since the DeepLesion dataset does not have segmentation masks
for the lesions, we generate pseudo masks using provided RECIST diameter measure-
ments [8]. These pseudo masks boost the performance of Mask-RCNN [10] by adding
a branch for predicting segmentation masks on region proposals generated by RPN.
We also augment the data during training using random affine transformations such
as horizontal and vertical flips, resizing with a ratio of 0.8 to 1.2, and translation of
(−8,8) pixels in x and y direction.

• Multiple Intensity Image Generation: In general, the intensity of a CT-slice is re-
scaled using a certain HU window, U (e.g., a single and wide window of [1024,4096])
in order to include gray-scale intensities of different organs [23, 32]. However, using
a single window suppresses organ-specific information resulting into a degenerated
image-contrast, as shown in Figure 2(a), which in turn makes it hard for the network
to learn to focus on various organs present in the given CT volume. During manual
detection of lesions, radiologists adjust these intensity values to focus on organs/tissue
of interest [2]. We exploit this domain knowledge and propose to feed it to the deep
network explicitly in the form of CT-slices having multiple intensities which highlight
different organs of the body. In a previous method by Zihao Li et al. [13], a clustering
algorithm is used to determine three HU windows. In this paper, we incorporate this
multi-organ information in input CT-slices by introducing five novel HU windows
which are determined in such a way that the major body organs are covered. The
proposed HU windows, as inspired by Masoudi et al. [17], which cover almost all
organs of interest for radiologists are: U1 = [400,2000], U2,3 = [−600,1500], [50,350],
U4 = [30,150], U5 = [50,400] for bones, chest region including lungs & mediastinum,
abdomen including liver & kidney, and soft-tissues, respectively. For a U = [Ul,Uw],
where, Ul and Uw are the window level/center and window width, the intensity values
of a CT-slice are first normalized using Ul±Uw/2 as data min/max & clipped between
[0,1] and then, re-scaled to values in [0,255].
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• Convolution Feature Extraction Backbone: Now, for a given patient, 5 multiple in-
tensity images each having 3 slices/channels, are passed as input to the ResNeXt-152
shared backbone with feature pyramid network (FPN) [14] based convolutional feature
extractor. The fact that applying pooling layers of CNN repeatedly on an image can
filter out information of small objects due to downsampling, hence, resulting in miss-
ing small and medium-sized lesions in radiological scans. Therefore, we utilize FPN
where shallow and deeper feature maps are more suitable for detecting small/medium
and larger lesions, respectively. As a result, for a given input, we obtain 5 feature-map
blocks (FUi) corresponding to 5 FPN levels, each having 5 feature map sub-levels (Pj)
of dimension (256,H,W ) j, where H and W represent height and width of the feature-
map and j = 2, ...,6 are the pyramid-levels. These extracted feature maps at different
FPN levels, each having a different resolution allows RPN to effectively focus on le-
sions of different sizes.

• Convolution augmented Multi-head Attention for Feature Fusion: Earlier ULD
techniques such as MULAN [34] incorporated information from multiple slices in
their network by fusing the feature maps of all 3-channel images/slices with a convo-
lution layer to obtain a 3D-context-enhanced feature map for the central slice. In this
work, we propose a novel convolution augmented multi-head attention-based feature
fusion module. Recently, vision transformers [5, 7, 25] have achieved state-of-the-
art results on various machine vision tasks via a focus on self-attention [27]. The
use of multi-head self-attention enables the model to attend jointly to both spatial
and feature sub-spaces. As shown in Figure 1(b), we first concatenate sub-level fea-
ture maps (256,H,W ) j of 5 different intensities to obtain feature-vectors of shape
(256 ∗ 5,H,W ) j. These features are, subsequently, passed to two parallel branches
namely, the 2D convolution layer and transformer’s multi-head self-attention [7]. Fi-
nally, their outputs are fused using concatenation. Since the output depth of the atten-
tion module is dependent on the depth of its "values" matrix (dv), the output depth of
2D convolution branch is kept such that the depth of the final feature vector obtained
after concatenation of both the outputs is 256. Similar attention-based feature fusion
is used at all 5 feature-map sub-levels and finally, we obtain a fused feature map block
(F ′, with 5 feature-maps sub-levels) for later processing. To minimize computation
overhead for attention, we use 2 attention heads (Nh) and keep the depth of values
matrix as 4. In addition, we use 20 dimensions per head for key and query matrix [3].

• Lesion-specific Anchors: Next, for extracting Regions of Interest (ROI) from the
obtained feature maps from 5 FPN levels, anchor boxes play a very crucial role. We
observed that the small lesions are hard to detect using default anchor sizes and ratios
[10, 14] used in RPN for real-world object detection. To circumvent this, we propose
new custom anchors which are well suited for detecting lesions of all sizes in CT
scans. Let’s say, H and W are the image height and width, respectively. We generate
anchor boxes of different sizes centered on each image pixel such that it has maximum
IoU with lesion bounding box. If anchor sizes and ratios are in sets {s1,s2, ...,sn} and
{r1,r2, ...,rm}, respectively for each r > 0, we will have a total of WH(n+m− 1)
anchor boxes [35]. Consider wb and hb to be the width and height of anchor boxes,

[wb,hb] = [Wsn
√

rm,Hsn/
√

rm] s.t. n,m ∈ [1,5] (1)

We employ a differential evolution search algorithm [22] and find 5 best anchor sizes
[16,24,64,128,256] and ratios [3.27,1.78,1,0.56,0.30] for P2,P3,P4,P5,P6 feature
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Method Windows FP@0.5 FP@1.0 FP@2.0 FP@4.0 Average
3DCE(27 slices) [32] 1 62.48 73.37 80.70 85.65 75.55
improved RetinaNet(3 slices) [37] 1 72.18 80.07 86.40 90.77 82.36
MVP Net(9 slices) [13] 3 73.83 81.82 87.60 91.30 83.64
MULAN(27 slices, w/o tags) [34] 1 76.10 82.50 87.50 90.90 84.33
MULAN(27 slices, w/ 171 tags) [34] 1 76.12 83.69 88.76 92.30 85.22
MELD(9 slices)) [30] 1 77.80 84.80 89.00 91.80 85.90
MELD+MAM+NRM(9 slices) [30] 1 78.60 85.50 89.60 92.50 86.60
(a) DKMA-ULD* 5 78.10 85.26 90.48 93.48 86.88
(b)+Self-Supervision 5 78.75 85.95 90.48 93.48 87.16

Table 1: Comparison of DKMA-ULD with previous state-of-the-art ULD methods. Sensitivity(%) at
different false-positives (FP) per sub-volume on the volumetric test-set of DeepLesion [33] dataset.
Here, we feed CT-slices, after performing cropping of black-borders during pre-processing, to the
network. *training with Imagenet pre-trained weights.

map sub-levels, respectively. These lesion-specific anchors are used in RPN for RoI
extraction, which are combined with feature maps using RoI pooling layer and further
used, for predicting bounding-boxes around lesions along with probability values, as
shown in Figure 1. We demonstrate that the custom anchors allow us to cover varied-
sized lesions and more specifically, improve the detection of small-sized (< 10mm)
and medium-sized (10−30mm) lesions considerably, as evident in Figure 3(a).

• Self supervision: The idea behind self-supervised learning (SSL) is that the learned
intermediate representations can carry better semantic and structural meanings and
can prove to be beneficial for a variety of downstream tasks. In order to make our
DKMA-ULD more robust, we utilize a state-of-the-art SSL technique called BYOL [9].
It relies on two neural networks, referred to as online and target networks, that in-
teract and learn from each other. The target network (parameterized by ξ ) has the
same architecture as the online one (parameterized by θ ), but with polyak averaged
weights, ξ ← τξ +(1− τ)θ . The goal is to learn a representation y that can be used
in downstream tasks. Generally, the detection networks are initialized using weights
pre-trained on Imagenet consisting of natural images and may not be effective for the
medical imaging domain. Therefore, we propose domain-specific weights, obtained
by training the backbone using SSL over train-split (23K images) of the DeepLesion
dataset, for initializing DKMA-ULD to obtain enhanced performance.

4 Experimental Results and Discussions
We use the official data split of DeepLesion [33] dataset which consists of 70%, 15%, 15%
for training, validation, and test, respectively. Please note that the DeepLesion test-set in-
cludes only key CT-slices and may contain missing annotations. The lesion detection is
classified as true positive (TP) when the IoU between the predicted and the ground-truth
bounding-box is larger than 0.5. We report average sensitivity, computed at 0.5, 1, 2, and 4
false-positives (FP) per image, as the evaluation metric on the standard test-set split for the
fair comparison.
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Figure 3: Sensitivity comparison for different lesion sizes and organs. a) Sensitivity (at FP= 4) for
lesions with 3 different size ranges is compared with existing methods [32, 34, 37] and our proposed
DKMA-ULD network w/o self-supervision. b) Average sensitivity comparison per organ computed
using our proposed lesion detector without and with domain knowledge & multi-head attention. Here,
BN, LNG, MDT, LVR, KDY, ABM, PLS and ST represent different organs such as bones, lungs,
mediastinum, liver, kidney, abdomen, pelvis and soft-tissues, respectively.
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Figure 4: Average sensitivity comparison for different lesion sizes and organs. a) Average sensitivity
(FP = {0.5,1,2,4}) for lesions with 3 different size ranges is compared with MULAN [34] and our
proposed DKMA-ULD. b) Organ-wise average sensitivity of MULAN and DKMA-ULD.

Training: The proposed DKMA-ULD is trained on 3 channel CT images of size 512×512
with a batch size of 4 on a single NVIDIA Tesla V100 having 32GB GPU-memory. We
use cross-entropy and smooth `1 loss for classification and bounding-box regression, respec-
tively. The model is trained until convergence using SGD optimizer with a learning rate (LR)
and decay-factor of 0.02 and 10, respectively. The SSL model is trained using cross-entropy
loss with a batch size of 64, Adam optimizer [11], and LR of 3e−4 for 300 epochs.

Results and Discussions: We evaluate the performance of our DKMA-ULD against previous
methods in the literature, as shown in Table 1. Our experiments demonstrate that by using
only 3 slices per patient, the proposed method DKMA-ULD outperforms all the previous
state-of-the-art ULD methods at different FP per image and achieves an average sensitiv-
ity of 86.88% when Imagenet pre-trained weights are used for the backbone initialization.
Here, one important point to note is that the base model of MELD [30] (refer row 6 of Ta-
ble 1) achieves an average sensitivity of 85.90% by training on 4 heterogeneous datasets,
namely LUNA [20], LiTS [4], NIH-Lymph [1] and DeepLesion [33]. On the other hand,
our proposed DKMA-ULD base model w/o self-supervision, despite being trained only on
DeepLesion train-set, beats MELD on Deeplesion test-set by achieving an average sensitiv-
ity of 86.88%. Therefore, it is evident that the introduction of domain-specific features and
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Figure 5: Qualitative comparison of DKMA-ULD and MULAN [34] (at FP =2) on CT-scans of dif-
ferent body regions. The green, magenta, and red color boxes represent ground-truth, true-positive
(TP), and false-positive (FP) lesion detection, respectively. Please note that ULD w/o DKMA repre-
sents when 3 slices with only one HU window ([1024,4096]), default anchors, and without convolution
augmented multi-head attention feature fusion are used. We can observe that after incorporating do-
main knowledge in the form of multi-intensity CT slices, custom anchors, and multi-head attention
(i.e., DKMA-ULD), the number of FP reduced drastically resulting in improved lesion detection per-
formance as compared to MULAN.

multi-head attention-based feature fusion have enabled DKMA-ULD to learn robust represen-
tations. Hence, it validates our claim that domain knowledge can alleviate the requirement
of a set of diverse datasets for learning good representations in medical imaging analysis.
Furthermore, we observe that previous methods such as MULAN [34] and MELD [30] im-
proved the performance of their base models by incorporating techniques such as the use
of tagging in MULAN; Missing Annotation Matching (MAM) and Negative Region Mining
(NRM) in MELD (refer row 5 and 7 of Table 1). Hence, we also experimented by initializing
our network with self-supervised weights. As shown in Table 1, it leads to a gain in perfor-
mance and achieves a final average sensitivity of 87.16%. For more results on organ-wise
sensitivity, refer supplementary material.

Next, we show a comparison of sensitivity at FP = 4 for different lesion sizes and av-
erage sensitivity (over FP = {0.5,1,2,4}) for different organs. We observe from the Fig-
ure 3(a) that DKMA-ULD improves the detection of very small (< 10mm) and medium-sized
(10−30mm) lesions over 3DCE [32], improved RetinaNet [37], and MULAN [34]. Unlike
3DCE [32] and improved RetinaNet [37], sensitivity values of MULAN [34] for different
lesion sizes and organs are not mentioned in their paper. Moreover, as the best trained model
of MULAN with tags is not available publicly, we use the official released base model of
MULAN [34] (average sensitivity of 84.33%) for computing lesion size-wise and organ-
wise sensitivity values on DeepLesion test-set. For a fair comparison, we use the base model
of our proposed DKMA-ULD without self-supervision (average sensitivity of 86.88%) in
Figure 3 and Figure 4. Further, in Figure 3(b), we observe that our proposed method of
including domain-specific information in the lesion detection network improves the average
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Sr. No. HU windows Backbone Attention Custom Anchors Avg. Sensitivity
1 1 x101 77.59
2 3 x101 80.66
3 5 x101 82.37
4 5 x101 X 83.30
5 5 x101 X X 84.23
6 5 x152 X X 84.85
7* 5 x152 X X 86.88

Table 2: Ablation studies and average sensitivity comparison (%) of introducing different modules in
the proposed lesion detection (DKMA-ULD) on the test-set of the DeepLesion dataset. *CT-slices after
cropping of outer black-region are used for this experiment.

sensitivity across all organs. Furthermore, we provide a comparison of average sensitivity of
MULAN and DKMA-ULD for different lesion-sizes and organs in Figure 4 and demonstrate
that DKMA-ULD substantially improves over MULAN in all the cases. For all the above
experiments, we use cropped CT slices by clipping the black border region, as mentioned in
previous state-of-the-art methods [30, 34], to focus on the region of interest.

Now, we present the ablation study on the introduction of different modules in the pro-
posed lesion detection pipeline, as shown in Table 2. Our proposed 5 HU windows to give
organ-specific domain knowledge results in an improvement of approximately 2% in the
average sensitivity (82.37%), as shown in row 3 of Table 2. Subsequent to this, we exper-
iment with the inclusion of our novel convolution augmented multi-head attention module
for feature fusion and custom anchors to detect varied-sized lesions effectively. We observe
a performance boost by achieving an average sensitivity of 84.23%. All the ablation experi-
ments are performed on CT-slices without applying cropping during the pre-processing step.
Later in our experiments, we replace our feature extraction backbone with ResNeXt-152 and
clip black borders in CT slices enabling the network to focus only on the region of interest.
This resulted in a quantitative improvement by achieving a state-of-the-art average sensitiv-
ity of 86.88%. Finally, we show a qualitative comparison of lesion detection performance
of our proposed DKMA-ULD in the form of reduction of FP in Figure 5. For more detailed
experimental results, please refer supplementary material.

5 Conclusion and Future Work

In this paper, we demonstrate the potential of exploiting domain knowledge in medical imag-
ing data for developing a robust universal lesion detection network named DKMA-ULD that
detects lesions across multiple organs of interest with improved sensitivity as compared to the
state-of-the-art methods. We also prove that domain-specific weight initialization of ULD us-
ing self-supervision on the DeepLesion dataset gives a boost in lesion detection performance.
Further, we provide evidence for our choices in using multiple HU windows, lesion-specific
custom anchors, multi-head attention-based feature fusion and surpass the state-of-the-art
ULD methods by achieving a sensitivity of 87.16% with only 3 slices per patient. This idea
of exploiting maximum information in the dataset and learning self-supervised weights can
prove useful for any medical image analysis task. In the future, we intend to extend this work
by developing an anchor-less lesion detection network and making it robust to shifts in the
domain, acquisition protocols, etc. using domain adaptation techniques.
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