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Abstract

Graph-based learning methods have gained more attention in colorectal adenocarci-
noma cancer (CRA) grading tasks for encoding the tissue structure information, which
patch-wise CNN based methods fail to. Graph-based methods usually involve extract-
ing nuclei features in the histology images as cell-graph node features and modeling the
connections between nodes to construct cell-graphs. However, it is infeasible to directly
train a classification model to extract nuclei features as we normally do in nature images
since different types of nuclei often cluster together. We propose a Masked Nuclei Patch
(MNP) approach to train a ResNet-50 as a strong feature encoder to extract more repre-
sentative nuclei feature for enhancing the overall performance. Graph Neural Networks
(GNNs) are often used to train cell-graphs for different tasks. But GNN may struggle to
capture the long-range dependency due to its underlying recurrent structure. Therefore,
we propose a new network architecture named HierArchical Transformer Graph Neural
Network (HAT-Net), which merits both GNN and Transformer, as a strong competitor
for CRA grading tasks. We have achieved the state-of-the-art results on two publicly
available CRA grading datasets: the colorectal cancer (CRC) dataset (98.55%) and the
extended colorectal cancer (Extended CRC) dataset (95.33%).

1 Introduction
According to Colorectal Cancer Statistics 2020, colorectal cancer (CRC) is the second cause
of cancer death worldwide [32] [34]. A well-adapted CRA grading guideline [17] classifies
the adenocarcinomas into 3 levels: normal, low grade, and high grade based on the large
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Figure 1: Regions cropped from CoNSeP dataset, different colors of nuclei boundary denote
different nuclei types. It is ambiguous to assign a nuclei label to a single image, which
makes it infeasible to train a CNN encoder like ResNet50 for nuclei feature extraction.
Malignant/dysplastic epithelial, Normal epithelial, Inflammatory, Fibroblast, Muscle,

Endothelial, Miscellaneous.

histology images, known as Whole Slice Images (WSIs), which often have larger resolution
than natural images, some of them even have ten billion pixels per image.

Due to the advancement of deep learning, many automatic algorithms are invented to
help pathologists to avoid inter-observer and intra-observer variability [7]. The common
CNN based approaches [3, 4, 24, 25, 31] for cancer grading tasks often perform a patch-wise
prediction, and finally aggregate all the predictions into an image-level prediction. But these
approaches fail to capture the tissue structure information due to the small patch size. Graph-
based methods [2, 22, 27, 40, 46] are proposed to alleviate this issue, they construct cell-
graphs from histology images to encode the tissue structure information, where nuclei are the
nodes of a cell-graph, and interactions between different nuclei are modeled as graph edges.
For the CRA grading task, Zhou et al. [46] propose a network architecture CGC-Net to fuse
the multi-level cell graph information, 16 hand-crafted nuclei features and spatial features are
used as the node features for cell-graph construction, also shows that more informative nuclei
features can contribute more to the overall performance, similar results can be observed in
[40]. However, none of the current works train a CNN model like ResNet-50 [19] to extract
informative nuclei feature as we normally do in nature images [20, 30], because different
types of nuclei often cluster together, see Fig 1. GNN is often used to train the cell-graphs,
but GNN may struggle to model long-range dependencies due to the recurrent structure [15].

To alleviate the above issues, we propose a Masked Nuclei Patch (MNP) method to train
a ResNet-50 as a strong nucleus feature extractor. This method crops nuclei patches for each
nucleus with the given nucleus at the center of each patch, and mask out nuclei with the dif-
ferent types than the one in the center to make sure only a single type of nuclei is presented
in a single patch. We train our model on these cropped patches to learn the abstraction of
each nuclei type. Our MNP approach requires nuclei coordinates and shape information for
cropping, so we utilize a public colorectal nuclei instance segmentation dataset CoNSeP [14]
to train our model. We also propose a new graph neural network architecture: HierArchical
Transformer Graph Neural Network (HAT-Net), which builds upon Graph Isomorphism Net-
work (GIN) [42] to better distinguish similar graphs. We add MinCutPool [6] layer after GIN
to cluster graph nodes and learn the hierarchical representation of graphs. Furthermore, we
add the Transformer [13] in the graph neural network, which can model long-distance fea-
tures. The main contributions are as follows:

• We develop a Masked Nuclei Patch (MNP) approach to enable us to directly train a
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Figure 2: Overview of the proposed framework.

ResNet-50 model on histology images to extract more comprehensive nuclei features
for better overall performance.

• We propose a hierarchical network HAT-Net, which combines GIN module and Min-
CutPool module to distinguish similar graphs more accurately, and adds Transformer
module to learn long-distance dependencies.

• We have done extensive experiments, showing that the proposed approach has achieved
the state-of-the-art result on the Colorectal Cancer (CRC) dataset [4] (98.55%) and the
extended colorectal cancer (Extended CRC) dataset [31] (95.33%).

2 Related Work

Cell Graph: A cell graph is a structural representation of the tissue in the histology image
where the nuclei and interactions between them are modeled as a graph. [1, 2, 16, 40,
46] construct cell graphs from the histology images, convert the grading tasks into graph
classification tasks. Since different nuclei often clustered together, different methods are
used to extract nuclei features, hand-crafted method [27, 46], weakly supervised approach
[40], K-means [41] combines with image thresholding [16], etc. However, using a CNN
encoder to extract the nuclei feature is still needed. [22] explores the explainability of cell-
graph.

Graph Neural Network: GNN is designed to processing structure data like graphs [18,
23, 39, 42], it recursively aggregates neighborhood node features for each iteration. [18]
continuously aggregates the information of neighboring nodes, generalizes to unseen nodes
or graphs, but can not distinguish isomorphic graphs well. [42] is much more powerful for
distinguish isomorphic graphs by aggregating nodes through summation. [39] uses a self-
attention approach to aggregates only neighboring nodes. Graph pooling [6, 44] approaches
map the graph into a compact form to generate a meaningful graph representation.

Transformer: Transformer is proposed in [38] to solve machine translation problem,
and has been proven effective to model long-range dependencies in many NLP tasks [8, 12,
28, 29]. [10, 13, 36] apply Transformer to different vision tasks. Transformer is also used
for medical image analysis [9, 37, 45].
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Figure 3: The details in constructing cell graph.

3 Proposed Approach
Our approach is illustrated in Fig.2. We generate the training data (adjacency matrix and
node features) through a cell graph construction procedure (Sec. 3.1), then use the generated
data to train our proposed HAT-Net (Sec. 3.2), so that we can get the prediction as the result.

3.1 Construct Cell Graph
We construct cell-graph from histology images to encode tissue structure information. A
cell-graph is composed of the adjacency matrix and nuclei features, we describe how to
generate the adjacency matrix here, then elaborate on our nuclei feature extraction method.

Adjacency matrix generation: We regard nuclei as the nodes of the cell graph, so we
use CIA-Net [47] to perform nuclei instance segmentation on the histology images to obtain
nuclei coordinates and shape information. Furthermore, we calculate the Euclidean distance
between nuclei in the same cell graph and connect them as graph edges, the process of
building cell graphs from histology images is shown in Fig. 3. To represent the cell graph
with the smallest adjacency matrix possible, we keep each node’s edges connect to its k-
nearest neighbors and define a maximum Euclidean distance (dmax) to reduce the number of
edges. The calculation process of the adjacency matrix is as follows:

A[i, j] =
{

1 i f j ∈ KNN(i) and D(i, j)< dmax
0 otherwise (1)

CNN-based nuclei features extraction: CGC-Net adopts 16 different hand-crafted fea-
tures and spatial features as the nuclei node features [46], but we argue that the hand-crafted
features are not as effective as the learned features, such as CNN features. However, nuclei
of different types often clustering together, makes it hard to train a CNN model. Thus, we
proposed a Masked Nuclei Patches (MNP) approach to enable us directly train a CNN en-
coder for feature extraction. CoNSeP dataset [14] is a publicly available dataset with nuclei
segmentation labels and center pixel coordinates. Based on the nuclear center pixel coordi-
nates, we crop out each nucleus from the images with a patch size of 64×64 pixels. If the
nuclear’s height or width is greater than 64 pixels, we crop out the entire nucleus instead
of 64 pixels. To alleviate the class imbalance problem of CoNSeP, we group 7 classes of
CoNSeP into 3 classes. Nuclei of different classes often cluster together, so we mask out
different classes of nuclei other than the one in the center, make sure that a single patch only
contains one class of nuclei, to avoid confusing the network during training. We split in a
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Figure 4: The cell graph of different histology images: (a) normal level, (b) low level and (c)
high level.

ratio of 9:1 into training and testing sets, resulting in 21899 patches for training and 2433
patches for testing, a total of 24332 patches. We use an ImageNet pre-trained ResNet-50 as
our feature extractor, fine-tuned on our nuclei classification dataset. The first max-pooling
layer is removed since our input image is small (64×64). The extra global average pooling
is applied for dimension reduction during feature extraction. During feature extraction, we
crop out the nuclei region based on the instance segmentation results from CIA-Net, resize
to 64x64 pixels, then feed into the ResNet-50 network. The output features right before the
MLP layer will be used as our nuclei features since it is more linearly separable. Additional
parameter-free channel dimension reduction will be applied through global average pooling.

3.2 Hierarchical Network Architecture

The recurrent structure of GNN makes it hard to model long-range dependencies, we com-
bine Transformer with GNN to alleviate this issue. We propose a Hierarchical Transformer
Graph Neural Network (HAT-Net), which contains three stages and each stage is an aggre-
gation of different modules, as shown in Fig. 5. The input of the HAT-Net is the cell-graph,
represented by the adjacency matrix and node features, the output is the classification results
of histology images. Our network builds upon GIN, which can distinguish similar graphs
more accurately, we add the MinCutPool module into our network to cluster similar nodes.
Due to the large computational complexity of Transformer[38], we only add the Transformer
in the second stage and the third stage to reduce the computational cost. We apply a LSTM-
based jumping knowledge [43] to fuse hierarchical information from different layers. The
MLP layer is applied to produce the final prediction.

Notations Definition: Given a graph G = (V,E), where V represents a set of nodes,
E represents a set of edges. The adjacency matrix A ∈ Rn×n is used to describe the graph
edges, and the matrix h ∈ Rn×d is used to describe the node features, where d is the feature
dimensions of the nodes. We use Ai ∈ Rni×ni and hi ∈ Rni×di to represent adjacency matrix
and node feature matrix in the ith layer. We have two GIN at each stage before the pooling
layer, we denote the output from one GIN as embedding matrix Mi ∈ Rni×di , and output
from another GIN as assignment matrix Si ∈ Rni×ni+1 , ni+1 is the number of cluster, also
the number of nodes after pooling layer. And for a node u, we use hi(u) to represent node
embedding in the ith layer, use N(u) to denote the set of neighborhood nodes of u. What’s
more, MSA represents Multi-Head Attention and LN represents Layer Norm [5].

GNN Module: GIN [42] has a provably strong power to learn the discriminative graph
features. Specifically, we apply two GIN in each stage, one is to calculate Mi, the other is to
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Figure 5: Overview of HAT-Net.

calculate Si. First, we compute node embedding hi(u) through hi−1, see Eq. 2.

hi(u) = MLP(hi−1(u)+ ∑
v∈N(u)

hi−1(v)) (2)

Then we can get the graph level embedding by concatenating all node embeddings by Eq. 3.

Mi = CONCAT( ∑
u∈G

hi(u)|i = 0,1) (3)

In addition to changing the embedding dim d, we can also obtain Si in the same way.
Pooling Module: We use MinCutPool [6] as the pooling module, which is a method of

spectral clustering. After we obtain Si and Mi by GIN, we will feed them into MinCutPool
to generate the new node features of the next layer. Then the feature matrix hi+1 of the
new node can be calculate by Eq. 4, and the corresponding adjacency matrix Ai+1 can be
calculated with Eq. 5. What’s more, two losses are generated: the orthogonality loss and the
minCUT loss, please refer [6] for more details.

hi+1 = softmax(Si)
T ·Mi (4)

Ai+1 = softmax(Si)
T ·Ai · softmax(Si) (5)

Transformer architecture: We integrate the Transformer [13] into our network. Through
the self-attention mechanism in the Transformer, a node can pay attention to the features of
nodes far away from it. Thus we can use Transformer to learn the long-distance features of
nodes. We stack 6 Transformer layers together to enhance the performance. We use Eq. 6
and Eq. 7 to generate the new features in each Transformer layer:

h′ι+1 = MSA(LN(hι))+hι (6)

hι+1 = MLP(LN(h′ι+1))+h′ι+1 (7)

Jumping Knowledge Technique: We add an LSTM-based jumping knowledge [43] in
our network to fuse hierarchical features from different layers. For each layer, we use a Max
Readout to obtain the graph representation of each layer. We feed all the graph representa-
tions into a LSTM-based jumping knowledge to fuse the different graph representations.

Classification Module: In order to output the final prediction, we feed the output of
the jumping knowledge module to the linear layer for a 3-class classification prediction, a
cross-entropy loss is applied after the linear layer.
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4 Experiments

We choose CoNSeP dataset [14] to train our nuclei segmentation network[47] and nuclei
feature extractor, then evaluate our proposed method on CRC dataset [4] and a larger dataset
Extended CRC dataset [31].

Colorectal cancer(CRC) dataset: The CRC dataset is a commonly used dataset for
histology image grading which contains 139 H&E stained histology images with an average
size of 4548 × 7520 at 20× magnification. Annotated as follows: 71 normal, 33 low grade,
and 35 high grade. All 139 images are taken from 37 different patients.

Extended colorectal cancer(Extended CRC) dataset: The Extended CRC dataset is
an extension of CRC dataset. It contains 300 images, including 120 normal, 120 low grade,
and 60 high grade images, with the size of 4548 × 7548 and 5000 × 7300 pixels, extracted
at 20× magnification.

For the above two datasets, we extract patches with a size of 1792 × 1792 from images
to construct cell graphs. In our experiments, we use the majority voting method to generate
the image-level prediction. The image-level accuracy metric is used to evaluate our method,
which refers to the percentage of correctly classified images.

Colorectal nuclear segmentation and phenotypes (CoNSeP) dataset: The CoNSeP
dataset consists of 41 H&E stained image tiles, each of size 1000 × 1000 pixels at 40×
objective magnification. It has 24319 annotated nuclei with 7 associated classes. We also
merge 7 classes into 4 classes[14], then we discard the miscellaneous/others class due to the
small number of nuclei, resulting in 3 classes, same as [46].

4.1 Experimental Setup

We normalize all node features according to their mean and standard deviation. We imple-
ment our proposed approach based on PyTorch[26] framework. It takes 8 hours on a server
equipped with 1 NVIDIA GeForce RTX 3090 GPU to train our model on the CRC dataset.

Dataset Split: We extract the patches of size 1792 × 1792 with a stride of 224 from
images, resulting in 31500 patches for the CRC dataset and 114243 patches for the Extended
CRC dataset. We split the CRC dataset and the Extended CRC dataset into 3 folds respec-
tively for cross-validation. To conduct fair experiments, we use the same split as in [46] and
[31] to guarantee the consistency of experiment data. Patches extracted from the same case
are placed into the same fold, to avoid the patches from the same patient appearing in both
the training set and test set, same as[31, 46].

Hyper-parameter: We use Adam optimization[21] in our experiment, setting the learn-
ing rate to 0.001 by fine-tuning our learning rate through a grid search. We train our model
for 30 epochs with a batch size of 20.

4.2 Ablation Studies

We conduct ablation experiments on the CRC dataset to test the influence of the different
components of our proposed approach.

Impact of putting Transformer into different stages: In order to assess the impact
of Transformer, we construct an ablation experiment to evaluate the impact of placing the
Transformer in different stages. We first train the Hierarchical Graph Neural Network (HA-
Net) without Transformer, then we add Transformer to the 2nd stage, the 3rd stage, and
both the 2nd and 3rd stages to verify the effectiveness of the Transformer. The experimental
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results can be seen in Tab. 1. Without Transformer, we can only achieve 97.76% for image-
level accuracy. If the Transformer is added to a single stage, the image-level accuracy only
has a relatively small promotion (0.03%). But if the Transformer is added into both stage-2
and stage-3 at the same time, the image-level accuracy will be greatly improved to 98.55%.
The results prove that the Transformer module can learn more efficient node features for the
graph neural network.

Network Stage Image Accuracy (%)
HA-Net - 97.76±2.27

+Transformer 2 97.79±2.17
+Transformer 3 97.79±2.17
+Transformer 2,3 98.55±1.26

Table 1: Ablation study on various stage.

Impact of different ways in extracting node features: The performance of GNN
mainly depends on the selection of initial node features [18]. To analyze the influence of
the initial node features on the accuracy of grading histology images, we conducted experi-
ments on the different node feature extract methods.

• Hand-crafted extracted node features: As stated in [46], we can extract hand-crafted
nuclei features to initialize the graph nodes, the hand-crafted nuclei features contain
16 morphological features, that are mean nuclei intensity, average fore-/background
difference, standard deviation of nuclei intensity, skewness of nuclei intensity, mean
entropy of nuclei intensity, GLCM of dissimilarity, GLCM of homogeneity, GLCM of
energy, GLCM of ASM, eccentricity, area, maximum length of axis, minimum length
of axis, perimeter, solidity and orientation. In addition, the nuclei features also use
centroid coordinates as spatial features.

• CNN-based extracted node features: In order to obtain more feature information, we
use the modified CoNSeP dataset which has the ground truth of nuclei segmentation
and classification to fine-tune the ResNet-50 model pretrained by ImageNet. After
getting the feature extractor model, we apply the CRC dataset to this model, and we
can obtain 2048-dimensional feature data. In order to be consistent with the hand-
crafted extracted feature dimensions, we use global average pooling to reduce the
dimensions, and finally, obtain 16-dimensional data as the morphological feature of
the nuclei. And we also use centroid coordinates of nuclei to represent spatial features.

The experimental results can be seen in Tab. 2. With the hand-crafted extracted node
features, we can only achieve 97.04% for image-level accuracy, but the result will be im-
proved by 1.51%, to 98.55%, with the CNN-based extracted node features. This shows that
the CNN-based method can obtain more comprehensive morphological information.

Nuclei Features Image Accuracy (%)
Hand-crafted features 97.04±2.57
CNN-based features 98.55±1.26

Table 2: Ablation study on the method of extracting node features.
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Impact of different pooling technique: We investigate the impact of two stage-of-the-
art pooling layers: DIFFPOOL [44] and MinCutPool [6] on the grading accuracy.

The experimental results can be seen in Tab. 3. We can achieve 98.52% for image-level
accuracy with DIFFPOOL, and 98.55% with MinCutPool. Therefore, we use MinCutPool
as our pooling layer.

Pooling Layer Image Accuracy (%)
DIFFPOOL 98.52±1.28
MinCutPool 98.55±1.26

Table 3: Ablation study on various pooling techniques.

Impact of different jumping knowledge technique: In order to adapt to different sub-
graph structures in the various layer, we use the jumping knowledge technique in our network
inspired by [43]. Different jumping knowledge techniques also have a different impact on the
experimental results. We use three common jumping knowledge techniques, max-pooling
jumping knowledge, concatenation jumping knowledge and LSTM jumping knowledge to
explore better experimental models. The experimental results can be seen in Tab. 4. The
LSTM-based approach achieves the highest result (98.55%).

Jumping Knowledge Technique Image Accuracy (%)
Max-pooling 97.76±0.06

Concatenation 97.79±2.17
LSTM 98.55±1.26

Table 4: Ablation study on various jumping knowledge technique.

How does the nuclei segmentation accuracy affect the overall result: Lower nuclei
segmentation accuracy often leads to fewer nuclei being detected. Therefore, we randomly
drop p percent number of nuclei in the training and test set to mimic the situation of low
nuclei segmentation accuracy rate, then train the network from scratch, to test how the nuclei
segmentation accuracy affects the final predictions. Results on the CRC dataset are shown
in Tab. 5. We observe a significant performance drop when setting p=50%, showing that our
method is more robust with smaller variations (p<=30%) in nuclei segmentation results than
with larger (p=50%).

Node Drop Rate (%) Image Accuracy (%) Average #Nodes
p=0 98.55±1.26 3367

p=10 97.76±0.06 3030
p=30 97.79±2.17 2356
p=50 91.75±0.48 1683

Table 5: Network performance using different node drop rates, Average #Nodes denotes that
the average number of nodes in each cell graph during training and test phase.

4.3 Comparison with Existing Methods
We verify the advancement of the method proposed in this paper by comparing it with CRA
methods. BAM[4] first segment gland from histology images, then proposed a metric method
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named Best Alignment Metric (BAM) to capture the shape difference between the segmented
gland and normal gland they expect, BAM-1 computes the average BAM and BAM entropy,
BAM-2 additionally computes the Regularity Index. Context-G[33] is a method based on
context-aware learning, which first captures the context features by down-sampling from
images at different magnification levels, then use a CNN model to classify the histology
images. ResNet50 [19], Inception [35], MobileNet [21], and Xception [11] network can be
used to train LR-CNN, which can directly do classify tasks. CA-CNN[31] first encodes the
local representation of a histology image into high dimensional features, then aggregates the
features by considering their spatial organization to make a final prediction. CGC-Net [46]
also constructs cell graph first, and it uses a GNN network (Adaptive GraphSage) to classify
the graph. Since our experimental data are split in the same way as those in [31] and [46], we
directly obtain their experimental results from respective paper for comparison. VIT [13] is a
pure Transformer network. To verify that our network is better than a Transformer network,
we also use VIT for the grading task both in the CRC dataset and the Extended CRC dataset.
The results are shown in Tab. 6. We can observe that our proposed HAT-Net outperforms
former SOTA by a large margin in both the CRC dataset and the Extended CRC dataset.

Method CRC (%) Extended CRC (%)
BAM-1 [4] 87.79±2.32 -
BAM-2 [4] 90.66±2.45 -

Context-G [33] 89.96±3.54 -
MobileNet [21] 91.37±3.55 84.33±3.30
ResNet50 [19] 92.08±2.08 86.33±0.94
Inception [35] 92.78±2.74 84.67±1.70
Xception [11] 92.09±0.98 86.67±0.94
CA-CNN [31] 95.70±3.04 86.67±1.70

VIT [13] 96.28±3.45 86.67±4.04
CGC-Net [46] 97.00±1.10 93.00±0.93

Ours (HAT-Net) 98.55±1.26 95.33±0.58

Table 6: The image accuracy comparison results with other methods on two datasets.

5 Conclusion

Different from nature images, it is impractical to directly train a nucleus feature extractor
on histology images since different types of nuclei often cluster together. In this paper, we
introduce a MNP approach to enable us to train a strong CNN encoder to extract more mor-
phological information of cell nuclei, to enhance the overall performance. We also propose
a new graph neural network combined with Transformer, named Hierarchical Transformer
Graph Neural Network (HAT-Net), which exploits the micro-environmental information and
the long-range dependency in histology images. We have conducted various experiments
on the two datasets, achieved 98.55% and 95.33% classification accuracies on CRC and
extended CRC datasets, respectively. Our results outperform the former SOTA by a large
margin (+1.55%, +2.33%).
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[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. In International Conference on Learn-
ing Representations, 2018.

[40] Jingwen Wang, Richard J. Chen, Ming Y. Lu, Alexander Baras, and Faisal Mahmood.
Weakly supervised prostate tma classification via graph convolutional networks. In
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pages 239–
243, 2020.

[41] Manchek A Wong and JA Hartigan. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv preprint arXiv:1810.00826, 2018.

[43] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,
and Stefanie Jegelka. Representation learning on graphs with jumping knowledge net-
works. In International Conference on Machine Learning, pages 5453–5462. PMLR,
2018.



SU, BAI ET AL: A HIERARCHICAL TRANSFORMER GRAPH NEURAL NETWORK 15

[44] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. arXiv
preprint arXiv:1806.08804, 2018.

[45] Yundong Zhang, Huiye Liu, and Qiang Hu. Transfuse: Fusing transformers and cnns
for medical image segmentation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 14–24, 2021.

[46] Yanning Zhou, Simon Graham, Navid Alemi Koohbanani, Muhammad Shaban, Pheng-
Ann Heng, and Nasir Rajpoot. Cgc-net: Cell graph convolutional network for grading
of colorectal cancer histology images. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pages 0–0, 2019.

[47] Yanning Zhou, Omer Fahri Onder, Qi Dou, Efstratios Tsougenis, Hao Chen, and
Pheng-Ann Heng. Cia-net: Robust nuclei instance segmentation with contour-aware
information aggregation. In International Conference on Information Processing in
Medical Imaging, pages 682–693. Springer, 2019.


