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Abstract
We tackle the task of efficient video super resolution. Motivated by our study on

the quality vs. efficiency trade-off on a wide range of video super resolution architec-
tures, we focus on the design of an efficient temporal alignment module, as it represents
the major computational bottleneck in the current solutions. Our alignment module,
named Gated Local Self Attention (GLSA), is based on a self-attention formulation and
takes advantage of motion priors existing in the video to achieve a high efficiency. More
specifically, we leverage the locality of motion in adjacent frames to aggregate informa-
tion from a local neighborhood only. Moreover, we propose a gating module capable
of learning binary functions over pixels, to restrict the alignment only to regions that
undergo significant motion. We experimentally show the effectiveness of our proposed
alignment on the commonly-used REDS and Vid4 datasets, reducing the overall com-
putational cost by ∼13× and ∼2.8× respectively compared to state-of-the-art efficient
video super-resolution networks.

1 Introduction
Video Super-resolution (VSR) aims at reconstructing a high-resolution (HR) video from
its corresponding low-resolution counterpart. The task has drawn much attention recently
due to its importance in smart-phone camera use cases, such as zooming, as well as its ap-
plication in video surveillance and high-definition displays. Differently from single image
super-resolution techniques, which only rely on spatial information to reconstruct HR pixels,
current state-of-the-art video super-resolution methods aggregate additional temporal infor-
mation across frames to further enhance details. Particularly, astounding performance in
VSR is commonly obtained by aligning pixels in neighboring support frames to the input
reference frame, by means of optical flow estimation [30, 37], 3D convolutions [16, 18], or
deformable convolutions [33, 36]. While many of these methods have been focused on the
benefits of temporal information on reconstruction quality, its impact on computation has
not been investigated thoroughly. Through an empirical study on commonly used architec-
tures, we show that even though the alignment is crucial for reconstruction quality, it carries
a significant computational overhead in resource-limited scenarios.
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A promising approach to eliminate the need for costly explicit alignment is to use self-
attention [26, 28, 34]. The attention operation can seamlessly cope with misalignment in
sequences by matching an input token to a set of context tokens using a compatibility func-
tion, and it is now widely employed for representation learning in language modeling [34],
image [14, 21] and video [10, 35] tasks.
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Figure 1: Gated local self attention (GLSA).
By subsampling of key, query, and value pix-
els using motion locality and learned gates,
GLSA efficiently aligns the information be-
tween support and reference frames. Yellow
and green colors highlight local supports for
two query pixels, and φ denotes the embed-
dings for query, key, and values.

However, the potential of self-attention as a
pixel-level alignment operator is still under-
explored, with a couple of works on video
segmentation [13, 25]. These solutions are
not directly applicable to the video super
resolution problem, as they are sub-optimal
in two aspects: First, they attend globally,
by accounting for every pixel in the neigh-
boring support frame, which may lead to
overlooking local information that is cru-
cial for an accurate reconstruction. Sec-
ond, they assume that every pixel has to
be aligned, which may lead to inefficiency
as many pixels may not undergo significant
motion. To address these challenges, we
propose a novel attention-based alignment
model, named Gated Local Self Attention
(GLSA), as shown in Fig. 1, tailored for the
task of efficient video super resolution. Our
proposal takes advantage of two motion pri-
ors existing in the video domain. First, we leverage the locality of motion among neigh-
boring support frames. As pixels typically undergo small displacements between consec-
utive frames, we restrict the attended context to a local spatial neighborhood, making the
alignment operation more efficient. Moreover, not all pixels undergo the same amount of
motion. Therefore, alignment is computationally wasteful in regions not affected by any
displacement: as such, we limit the alignment operations only on the regions with signifi-
cant changes. This trait is enabled by designing a gating module capable of learning binary
functions over pixels, indicating, conditioned on the current input, where alignment can be
skipped. The module is fed with the residual between support and reference frames, and the
binary gates are trained jointly with the super resolution model, by means of the Gumbel-
Softmax reparametrization. Our alignment model, set up within a simple CNN backbone
network, achieves∼13× and∼2.8× reduction in computational cost on the REDS and Vid4
datasets respectively, compared to the most efficient VSR models. We summarize our con-
tributions as follows: i. We conduct a systematic study on the quality-efficiency trade-off of
current temporal aggregation techniques in VSR, highlighting the central role of the align-
ment operator. ii. We introduce a feature alignment operator based on self-attention, that
efficiently aggregates information from a local vicinity in neighboring frames to reconstruct
high-resolution details. iii. We propose a conditional gating function to restrict the alignment
operation to regions that undergo significant motion across frames. This further improves
the efficiency as the alignment module learns to skip unnecessary computation for stationary
pixels.
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2 Related Work
Video Super Resolution. Current VSR models can be categorized in two aspects: i. ar-
chitectural designs for temporal integration and ii. operations used for aligning frames.
In terms of architecture, one solution is the use of multi-frame designs [11, 16, 18, 20, 33,
36], which feed the model with multiple support frames and exploit them in several ways:
for example, by explicit alignment and fusion [20, 33, 36], or by 3D convolutions [16, 18].
On the other hand, recurrent architectures restrict the support information to the previous
timestep only [15, 30] or use bidirectional schemes [5], and are typically more efficient
than multi-frame models. As we focus on efficiency, we deploy our alignment operation in
recurrent architectures. However, our method can be in principle applied to both families.
In terms of alignment operators, early models mainly rely on optical flow [3, 30, 32, 37].
More recently, designs based on deformable convolutions [7, 40] gained popularity, spanning
from single layers [33] to feature pyramids [36]. Another strategy is implicit alignment, by
processing frames with 3D [16, 18] or 2D [9, 15] convolutions. Unlike previous models, our
work explores self-attention as an alignment operator.

Self attention. Since its original formulation for language modeling [34], self-attention
has found an increasing use in vision applications, such as action recognition [10, 35], object
detection [4], segmentation [13, 25] and classification [8, 28, 39]. A lot of works have also
been directed towards efficient self-attention, by sparsifying the attention matrix with block-
wise [27], local [26, 28] or sparse hand-crafted patterns [1, 6, 12]. In this work, we rely on
local self-attention for efficiency, however restricting its application to a subset of queries,
conditioned on the current input, to save more computation.
A few models employ attention mechanisms for image [21] and video [16, 38] super resolu-
tion. However, in these efforts attention represents a mean to improve or suppress represen-
tations rather than temporally aligning them. As such, these methods rely on coarse schemes
such as attending entire feature maps [16] or spatio-temporal tubelets [38]. In contrast, we
employ self-attention at a fine pixel-level scale, for solving misalignments.

3 Temporal Modeling in VSR Architectures
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Figure 2: Overview of VSR architectures.

VSR aims at reconstructing a sequence of
high-resolution frames Y = [Y1, . . . ,YT ],
with Yi ∈ Rc×sh×sw, from their low-
resolution counterparts, denoted by X =
[X1, . . . ,XT ], where each Xi ∈ Rc×h×w and
s represents the targeted upsampling fac-
tor. The typical way to obtain the low-
resolution input clipX is by applying a spe-
cific downsampling kernel to each Yt , char-
acterizing VSR as a complicated inverse
problem.

VSR architectures. Many VSR architectures can be described, at a high level, as follows
(see Fig. 2). The input frame Xt goes through a frame encoder defined as a cascade of
residual blocks. The encoded frame Ht is then fed to an alignment function, along with
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feature maps from one or multiple support frames. The alignment function involves motion
estimation and compensation steps to spatially align the features from one or more support
frames to the reference frame. We formalize the alignment function as:

Ĉsup = A(Ere f ,Esup,Csup), (1)

where Ere f and Esup denote the feature maps from the reference and support frame respec-
tively, that is used for motion estimation. Csup denotes the support feature map to be aligned
based on the estimated motion, and Ĉsup is the aligned features to be passed to the clip en-
coder. Clip encoder feeds the aligned features, together with the frame encoding Ht , to a
cascade of residual blocks to generate a clip encoding Zt . Finally, the high resolution esti-
mate Ŷt is obtained by upsampling the clip encoding using sub-pixel convolution [31] and
by summing it with the bicubic magnification of the frame, as in [36].

Quality vs. Efficiency: an empirical study. Many existing VSR architectures can be
instantiated from the aforementioned formulation based on how to choose the alignment
inputs. To understand the impact of alignment on the quality and efficiency of VSR models,
we conduct an empirical study on a wide range of architectures. Specifically, we fix Ere f =
Ht and consider:

• MF [16, 20, 36]: a multi-frame ar-
chitecture that aligns a set of K = 7
neighboring frames as Esup = Csup :=
{Ht−K−1

2
, . . . ,Ht+K−1

2
}

• REC-H [15]: a recurrent architecture that
aligns the clip encoding as Esup := {Ht−1}
and Csup := {Zt−1}.

• REC-Y [30]: a recurrent architecture that
aligns the previous output as Esup :=
{Ht−1} and Csup := {Ŷt−1} .

• REC-H+REC-Y: a recurrent architecture
that aligns the both clip encoding and out-
put as Esup := {Ht−1} and Csup := {Zt −
1, Ŷt−1} .

• MF+REC-H: a multi-frame architec-
ture with a clip encoding feedback
as Esup := {Ht−K−1

2
, . . . ,Ht+K−1

2
} and

Csup := {Ht−K−1
2
, . . . ,Ht+K−1

2
,Zt−1}.

• MF+REC-Y: a multi-frame architec-
ture with an output feedback as Esup :=
{Ht−K−1

2
, . . . ,Ht+K−1

2
} and Csup :=

{Ht−K−1
2
, . . . ,Ht+K−1

2
, Ŷt−1}.

• MF+REC-H+REC-Y [9]: a multi-
frame architecture with feedback on both
clip encoding and output as Esup :=
{Ht−K−1

2
, . . . ,Ht+K−1

2
} and Csup :=

{Ht−K−1
2
, . . . ,Ht+K−1

2
,Zt−1, Ŷt−1}.

For each architecture, we consider models both in the absence and the presence of an align-
ment operation. In the latter case, we rely on a deformable convolution [7, 40], which is the
current state-of-the-art for VSR [33, 36].
We conduct our study on the REDS dataset [24] using a light backbone1. We summarize our
results in Fig. 3, where we report, for every model, the PSNR gain and the computational
overhead with respect to an image-based counterpart with no temporal modeling. The results
show that, under all architectural designs, the use of support information is only beneficial in
the presence of the alignment operator: indeed, the alignment module allows for a significant
increase in PSNR, spanning from 0.52 db for recurrent models up to 0.67 db to more complex

12 and 5 residual blocks, with 32 channels, as frame and clip encoder
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Figure 3: Quality vs. Efficiency in VSR architectures. Green and red bars represent the
increase in quality (PSNR) and computation (MAC). (Left) Without alignment, temporal
information from support frames is marginally beneficial w.r.t an image model (28.26 db
/ 16.55 GMACs). (right) The same architectures prove successful whenever alignment is
applied. However, the improvement comes with significant computational overhead.

designs. On the contrary, support information, under any architectural choice, in the absence
of alignment can hardly improve the image-based model, with gains always under 0.1 db.
However, alignment improvements also come at a significant cost. Indeed, the overhead of
alignment is at least 36% in the case of recurrent models, and can increase up to 288% when
multi-frame schemes are involved. The finding suggests the need for efficient alignment
solutions that can enable VSR to operate in low-computational, high-accuracy regimes.

4 Gated Local Self Attention

Self-attention as an alignment operator. Following the notations introduced in Sec. 3, we
associate Ere f , Esup and Csup to queries, keys and values embeddings used in self-attention:

Qre f = φq(Ere f ) ∈ Rhw×dk Ksup = φk(Esup) ∈ Rhw×dk Vsup = φv(Csup) ∈ Rhw×dv ,
(2)

where each φ is a pixel-wise projection function, parametrized separately for q, k and v,
followed by reshaping, and dk and dv represent the dimensionality of keys and values. In
this formulation, each reference pixel in Ere f is represented by a query vector. Moreover,
support pixels in Esup and Csup are represented by key and value vectors, defining a h×w
search space. The alignment operator is then described as

Att = softmax(Qre f KT
sup), (3a) Ĉsup = Att ·Vsup, (3b)

where Att is a dense hw× hw matrix holding normalized pairwise similarities between all
the reference queries and support keys. Eq. 3a resembles the motion estimation step in an
alignment module, as the attention matrix Att can inform about the spatial displacement
between the reference and support features. Intuitively, in this stage, each query explores the
key search space to find the most similar ones to itself. Next, Eq. 3b computes the output
aligned feature map Ĉsup ∈Rhw×dv : this operation resembles the motion compensation step,
as it transforms the support values, Vsup, according to the attention matrix.
In summary, self-attention gracefully fits the requirements for its use as an alignment module.
However, the current formulation is sub-optimal in terms of computation. Next, we propose
our key and query subsampling strategies, making it suitable for efficient VSR.
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Figure 4: Impact of key and query subsampling on the sparsity of the attention matrix.
(a) In global self-attention, every query is compared to all the the keys. (b) Keys are subsam-
pled to shrink the search space as [13]. (c) A local self-attention searches in a local k = 2
neighborhood of each query. (d) our proposed method subsamples both keys and queries.

Local key subsampling. The global search space defined by Eq. 2 and illustrated in Fig. 4 (a),
carries a quadratic cost in the number of pixels which makes global self-attention often pro-
hibitive to compute. A popular solution is to spatially subsample the key search space [13,
35] as shown in Fig. 4 (b). However, this solution is still based on a global search that
is sub-optimal as VSR problem concerns the local pixel reconstruction. Moreover, grid-
subsampling decreases the spatial resolution and exposes coarser information that is hardly
beneficial for the task of super resolution.
Differently, we limit the search in a local k× k neighborhood of each query, as shown in
Fig. 4 (c), resulting in the following embedding dimensionalities:

Qre f ∈ Rhw×dk , Ksup ∈ Rk2×dk , Vsup ∈ Rk2×dv . (4)

By assuming that motion is limited in the consecutive frames, we drop global search in favor
of local search. This allows the search to operate at a fine resolution which is both efficient
and desirable for video super resolution task.

Dynamic query subsampling. The locality over keys presented above enables efficiency
by limiting the search space for each query. However, in many cases a significant amount
of pixels undergoes a negligible motion between consecutive frames and, as such, doesn’t
require alignment (e.g. no camera motion). In this case, we can save computation by carrying
out the alignment for moving regions only and skipping it wherever not needed. To this end,
we introduce a query subsampling method that learns to adaptively skip alignment in several
locations of the reference feature map. In particular, we introduce a binary gating function
g, as represented in Fig. 1, that takes as input Ere f and Esup and computes a binary mask
m ∈ {0,1}hw over pixels, representing for which of them alignment is needed:

m = g(Ere f ,Esup)

{
∼ Bern(p) if training,
= round(p) if inference,

where p = σ( fθ (‖Ere f −Esup‖1)). (5)

First, the function g computes the residual feature map between Ere f and Esup, which con-
veys strong prior cues about which pixels are affected by motion. Then, the residual is fed
to a single-channel convolution fθ , parametrized by θ , followed by sigmoid activation func-
tion σ . The result, p ∈ [0,1]hw, represents, for each pixel, a soft decision on performing
or skipping alignment. In order to train hard decisions, we rely on the Gumbel-Softmax
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reparametrization [17, 22] to sample stochastic Bernoulli realizations of the mask m. In the
forward pass, we add noise to the output of fθ , sampled from a Gumbel distribution, before
applying the sigmoid and rounding to {0,1}. In the backward pass, we get a biased esti-
mate of the gradient by employing the straight-through estimator [2]: as such, we bypass the
rounding operation and backpropagate the gradient as-is. During inference, the binary mask
is obtained simply by rounding the sigmoid-activated values p.
The gating module g enables a formalization of the alignment operator whose computa-
tional complexity varies depending on the input content, by modulating the number of active
queries through the mask m, resulting in the following embedding dimensionalities:

Qre f ∈ R‖m‖1×dk , Ksup ∈ Rk2×dk , Vsup ∈ Rk2×dv (6)

where ‖m‖1� h×w represents the number of active queries. Specifically, wherever m = 1,
pixels undergo alignment as specified in Eq. 3a, 3b. On the contrary, where m= 0, alignment
is skipped and Ĉsup = Csup. We can understand the latter case as sparse rows in the attention
matrix, filled with zeros except for the main diagonal, as depicted in Fig. 4 (d).
When training the model, gates may naturally learn to activate all queries, as the super reso-
lution objective only aims for maximizing the quality of the reconstruction. Therefore, they
may not bring any save in computational efficiency. To overcome this problem, we regu-
larize the gates by enforcing them to fire only where alignment is strictly needed. We thus
introduce an sparsity objective as an l1 regularization over gates: Lgate = ‖m‖1. The gating
parameters θ are learned jointly with the model parameters by minimizing the overall objec-
tive Lvsr +βLgate. The hyper-parameter β balances the model accuracy, measured by Lvsr,
and the alignment efficiency, measured by Lgate.

5 Experiments
We start by reporting ablation studies on query subsampling. Then, we fix the backbone
model and compare our proposal against current alignment solutions in terms of accuracy
and efficiency. Finally, we report a comparison with several state-of-the-art VSR models.

Datasets and metrics. We conduct experiments on two datasets: First, we employ the
REDS dataset [23], and follow the partitions defined in [36], comprising 266 clips for train-
ing and 4 clips for testing (REDS4). Each clip contains 100 frames. As a second dataset, we
train our models on 83,877 Vimeo90k [37] 7-frame clips, and test them on the commonly
used Vid4 benchmark. In both datasets, we tackle 4x upsampling. For REDS, we use as in-
put the released low-resolution sequences, downgraded with bicubic interpolation (BI). For
Vid4 we rely on gaussian downsampling (BD) [18] as used in [9, 18, 30, 33]. We rely on
Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM), to as-
sess reconstruction quality. For every reported result on REDS4, PSNR and SSIM metrics
are computed on RGB channels. For Vid4, metrics are computed on the Y channel. We
measure the computational cost as Multiply-Accumulate Count (MAC) required per-frame.
For our model, we include the small overhead induced by gating modules in the MAC com-
putation. We plug the GLSA alignment module into a simple convolutional backbone as
depicted in Fig. 2, of which we define two variants at two different MAC operating points.
The lighter backbone (B0) is composed of 2 and 5 residual blocks, each with 32 channels, as
frame and clip encoders respectively. In the heavier backbone (B1) frame and clip encoders
are made of 5 and 10 residual blocks with 64 channels. In all the experiments, we rely on a
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Figure 5: Dynamic query subsampling. Our proposed gating function outperforms other
sampling baselines for different backbones and attention kernel sizes k.

recurrent architecture (REC-H, see Sec. 3) since it yields the best tradeoff between accuracy
and efficiency.

Optimization. Our models are trained on 7-frames random clips using Adam [19] opti-
mizer for 100 epochs using batches of 16 clips. On REDS dataset, we optimize a Charbon-
nier objective with an initial learning rate of 0.0004. On Vimeo90k dataset, we optimize the
mean squared error with an initial learning rate set to 0.0001. We decay the learning rate by
a factor of 10 after 60 epochs. Unless otherwise specified, we fix the local neighborhood for
key subsampling to k = 21. Gate parameters are learned by fine-tuning the model using the
same optimizer with 10× lower learning rate. To get different accuracy vs. efficiency trade-
offs, we vary the regularization parameter β within [50,300] for REDS and within [1,10] for
the Vimeo90k dataset. Precise configurations of β can be found in the supplement.

Dynamic query subsampling. We compare the proposed dynamic query subsampling to
four baselines: i. No sampling, meaning local self-attention without query selection; ii. Ran-
dom sampling, that limits the query to a random set of pixels; iii. Uniform sampling, that
selects queries on a strided grid; iv. Motion-norm, that similar to GLSA samples the query
pixels based on their motion. However, instead of using the learnable gating function it sim-
ply relies on the magnitude of feature differences to select query pixels. More specifically, it
limits the query to pixels for which ‖Ere f −Esup‖1 exceeds a preset threshold. Fig. 5 reports
the results for two backbones using two different k: 9×9 and 15×15. GLSA and Motion-
norm, which rely on motion information for sampling, consistently outperform Uniform and
Random samplings. This finding advocates for the intuition that motion provides a strong
cue on what pixels greatly benefit from the alignment. Moreover, the superior performance
of GLSA compared to Motion-norm suggests that the motion alone is not sufficient for an
effective query subsampling.

Alignment methods comparison. We now provide a fair assessment of different align-
ment operators, by comparing them in the same settings. For every alternative we use the
B0 backbone with REC-H architecture and the same training pipeline. We carry out the ex-
periment on REDS, and consider the following alignment modules: i) None, an image-based
baseline; ii) optical-flow based alignment, using either SpyNet [29] as done in [5, 37] or the
shallow network used in [3, 32] (OF-simple); iii) deformable convolutions, either as a single
operator [7, 40] (dconv), or in the pyramidal scheme in [36] (PCD); iv) the correlation-based
search in MuCAN [20].
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REDS4
000 011 015 020 avg GMAC

Bicubic 24.63 / 0.6529 26.17 / 0.7290 28.61 / 0.8042 25.52 / 0.7417 26.24 / 0.7319 -

ToFlow [37] 26.52 / 0.7540 27.80 / 0.7858 30.67 / 0.8609 26.92 / 0.7953 27.98 / 0.7990 133.01
DUF 52L [18] † 27.30 / 0.7937 28.38 / 0.8057 31.55 / 0.8847 27.30 / 0.8165 28.64 / 0.8251 1662.00
EDVR-M [36] 27.75 / 0.8153 31.29 / 0.8732 33.48 / 0.9133 29.59 / 0.8776 30.53 / 0.8698 463.50
EDVR-S 27.48 / 0.8048 30.71 / 0.8628 32.92 / 0.9061 29.16 / 0.8682 30.07 / 0.8605 300.47
EDVR-XS 27.26 / 0.7941 30.18 / 0.8525 32.55 / 0.9002 28.83 / 0.8598 29.70 / 0.8517 157.2
EDVR-XXS 27.05 / 0.7846 29.58 / 0.8382 32.02 / 0.8911 28.35 / 0.8466 29.25 / 0.8401 81.01

RLSP 7-64 [9] 26.21 / 0.7367 28.75 / 0.8114 31.31 / 0.8740 27.43 / 0.8169 28.43 / 0.8097 16.28
RLSP 7-256 [9] 27.25 / 0.7941 29.56 / 0.8319 32.38 / 0.8965 28.02 / 0.8363 29.30 / 0.8397 243.47

GLSA-B0 26.88 / 0.7775 29.72 / 0.8400 31.93 / 0.8892 28.43 / 0.8483 29.24 / 0.8388 18.61
GLSA-B1 27.36 / 0.8003 30.60 / 0.8595 32.73 / 0.9024 29.03 / 0.8644 29.93 / 0.8566 88.85

Table 1: State of the art on REDS4. Our GLSA model is computationally cheap and outper-
forms existing approaches. Performances are reported as (PSNR / SSIM) on RGB channels.
GMAC computed for an input size of 180×320. † Results based on BD downsampling.
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Figure 6: PSNR/MAC trade-off of align-
ment operators. For all the alignment meth-
ods we use the same backbone (B0, REC-H)
and training pipeline. GLSA achieves the best
tradeoff with only ∼13% computational over-
head with respect to the image-based model.
GMACs are hereby reported for the alignment
operator only (i.e. backbone is not accounted).

The results are reported in the MAC/PSNR
plot in Fig. 6. In terms of PSNR the best
alignment is obtained by the PCD module,
that however introduces a significant com-
putational overhead. The optical flow align-
ment based on SpyNet is comparable in
computational cost to the PCD alignment,
but shows a 0.51 db drop in PSNR. The
efficiency can be increased both for opti-
cal flow and deformable convolution based
alignment by using simpler modules. How-
ever, this strategy incurs a significant PSNR
reduction, as testified by the OF-simple and
dconv models. Our GLSA operator for
alignment achieves the best trade-off, be-
ing able to improve the performance over
the baseline image model (16.55 GMAC)
by∼1 db with only a 13% MAC overhead.

Comparison to state of the art. On the
REDS dataset, we compare with RLSP [9],
a recurrent architecture designed for efficiency, that we trained it by using the code publicly
released by the authors. As shown in Table 1, our B0 significantly outperforms the 7-64
architecture, at a comparable computational cost. Moreover, with similar reconstruction
quality, B0 requires ∼13x less computation than 7-256. Finally, our best model, B1, im-
proves over RSLP 7-256 by 0.63 db, while being∼2.7 times more efficient. We additionally
compare GLSA to standard multi-frame models that operate in a high computational regime,
namely TOFlow [37], DUF [18] and EDVR-M [36], relying on optical-flow, 3D convolu-
tions, and deformable convolutions for alignment respectively. To enable a fair comparison
at comparable GMACs, we also train cheaper EDVR models (S,XS,XXS) with the code re-
leased by the authors. The details of such models, streamlined from EDVR-M by reducing
the number of residual blocks and their filters, are presented in the supplementary material.
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Figure 7: Comparison with EDVR cheap
variants. GLSA achieves a better PSNR un-
der the same computational budget.

Our B1 model outperforms ToFlow and
DUF by a large margin (more than 1 db
in PSNR) in reconstruction quality while
using lower MAC overall. It’s also note-
worthy that even our B0 model still out-
performs them with ∼7x and ∼90x less
computation, respectively. On the quality
side, EDVR-M performs the best among all
competing methods, but its cost is signif-
icantly higher with respect to our method.
It is interesting compare our proposal with
cheap EDVR models, for which we re-
port PSNR / GMACs plots in Fig. 7.
GLSA achieves achieves similar perfor-
mances w.r.t. EDVR-S, requiring 29.57%

of the GMACs. Comparing to EDVR variant with closest cost, EDVR-XXS, our proposal
outperforms its PSNR by a 0.7 db. Some reconstruction examples are reported in the
supplementary document.
Similar trends can be observed for Vid4, for which the comparison is reported in Table 2. As
the table shows, GLSA performs on par with RLSP 7-256 in terms of reconstruction quality,
while being ∼2.8x more efficient. Our proposal also outperforms expensive models, except
for EDVR-M, while requiring less computation. It is interesting to notice how the gap
between RLSP and alignment based methods, such as GLSA and EDVR-M, is reduced on
Vid4 as compared to REDS4. We conjecture that the reason of this behavior lies in the higher
motion that characterizes REDS4, comprising hand-held fast camera movements. In those
settings, the absence of an explicit alignment module significantly impacts the reconstruction
quality, contrarily to the case of Vid4, whose mild moving patterns that can be modeled im-
plicitly.

PSNR SSIM GMAC

SPMC [32] 26.05 0.776 255.22
TDAN [33] 26.58 0.801 126.79
DUF 28L [18] 26.99 0.822 184.80
EDVR-M [36] 27.45 0.841 203.90

FSRVSR [30] 26.69 0.822 80.49
RLSP 7-128 [9]∗ 26.85 0.821 27.40
RLSP 7-256 [9]∗ 27.05 0.831 107.12

GLSA-B1 27.04 0.824 37.87

Table 2: Comparisons with state of the art
on Vid4. PSNR is reported on Y channel.
GLSA obtains competitive performance with
less computation. GMAC computed for an in-
put size of 144×176. ∗ Results obtained by
training with the code publicly released.

6 Conclusions

In this paper, we tackled efficient video su-
per resolution. We showed that although
alignment is a crucial step to obtain high
reconstruction quality, it comes at a signifi-
cant computational cost. As a consequence,
we presented GLSA, an efficient align-
ment method based on local self-attention
that operates in low-computational, high-
accuracy regimes. To achieve efficiency,
our proposed method uses a gating func-
tion, trained to allow the network to adap-
tively skip alignment operations on regions
in the frame with negligible motion. Com-
prehensive experiments show the suitability
of our model in balancing accuracy and ef-
ficiency in video super resolution.
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