BAKHTIARNIA, ZHANG, IOSIFIDIS: MULTI-EXIT VISION TRANSFORMER FOR ... 1

Multi-Exit Vision Transformer for Dynamic
Inference

Arian Bakhtiarnia DIGIT,

arianbakh@ece.au.dk Department of Electrical and Computer
Qi Zhang Engineering,

qz@ece.au.dk Aarhus University,

Alexandros losifidis Aarhus, Denmark

ai@ece.au.dk

Abstract

Deep neural networks can be converted to multi-exit architectures by inserting early
exit branches after some of their intermediate layers. This allows their inference pro-
cess to become dynamic, which is useful for time critical IoT applications with stringent
latency requirements, but with time-variant communication and computation resources.
In particular, in edge computing systems and IoT networks where the exact computa-
tion time budget is variable and not known beforehand. Vision Transformer is a recently
proposed architecture which has since found many applications across various domains
of computer vision. In this work, we propose seven different architectures for early
exit branches that can be used for dynamic inference in Vision Transformer backbones.
Through extensive experiments involving both classification and regression problems,
we show that each one of our proposed architectures could prove useful in the trade-off
between accuracy and speed.

1 Introduction

Deep neural networks have achieved immense success in recent years [15], however, they
commonly consist of many interconnected layers containing millions of parameters which
require high computational resources and cause slow inference speed. Dynamic inference
methods [8] allow deep models to modify their computation graph during inference in order
to alleviate this problem. One such method is early exiting [20, 21], leading to multi-exit
architectures, where early exit branches are inserted after intermediate hidden layers of the
backbone network and provide early results, albeit with less accuracy compared to the final
result of the backbone network.

Early exits are useful in computationally restricted settings such as mobile and edge
computing, where early results can be used for “easy” inputs to save resources. Addition-
ally, multi-exit architectures can be helpful in anytime prediction settings where the inference
process may be interrupted at any time and the network is expected to provide a response
even if it was interrupted before completion. Examples of anytime prediction settings are
distributed environments such as edge computing systems and [oT networks, where the la-
tency depends on the communication channels, which means the exact computation time

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{LeCun, Bengio, and Hinton} 2015

Citation
Citation
{Han, Huang, Song, Yang, Wang, and Wang} 2021

Citation
Citation
{Sabet, Hare, Al-Hashimi, and Merrett} 2021

Citation
Citation
{Scardapane, Scarpiniti, Baccarelli, and Uncini} 2020

2 BAKHTIARNIA, ZHANG, IOSIFIDIS: MULTI-EXIT VISION TRANSFORMER FOR ...

budget is not known beforehand and varies over time. Here, the latest result provided by a
multi-exit architecture can be given as output whenever the network is interrupted.

Vision Transformer [4] is a recently proposed architecture for computer vision which has
since been applied to various problems, such as image classification, object detection, depth
estimation, and many more [12]. To the best of our knowledge, multi-exit Vision Trans-
former architectures have not yet been studied in the literature, which limits the application
of Vision Transformers in mobile and edge computing. In this work, we propose seven
different architectures for early exit branches that can be inserted into Vision Transformer
backbones. Through extensive experiments on both image classification and crowd count-
ing, the latter being a regression problem, we show that depending on the particular problem
at hand, each of these architectures has the potential to be useful in the trade-off between
classification accuracy and inference speed. Our code will be made publicly available at
https://gitlab.au.dk/maleci/multiexitvit.

2 Related Work

2.1 Multi-Exit Architectures

A deep neural network (DNN) can be formulated as a function f(X) = fo(fr 1(::f1(X)))
where X is the input, L is the number of layers in the DNN and f; is the differentiable oper-
ator at layer i. The output of layer i is denoted by &; = f;(h; 1) and Q; refers to the trainable
parameters of f;(). ghe training process for this DNN can be formulated as shown in Equa—
tion (1) where q = j=; Q; is the set of all trainable parameters of the DNN, fX,,; yngn_1 is
the set of training samples and /() is a loss function.

N
f =argmin }" [Gn; £(Xa)) M
q n=1

In order to convert a DNN to a multi-exit architecture, an early exit branch ¢, (k) =y}, is
placed at every selected branch location b2 B f1;::; Lg, where ¢, is the classifier or regres-
sor producing the early result y,. The schematic illustration of a multi-exit architecture is
shown in Figure 1 (a). Since there are multiple outputs in a multi-exit architecture, its train-
ing procedure is not as straightforward as Equation (1). Three major strategies for training
multi-exit architectures exist in the literature [21]. The classifier-wise strategy freezes the
backbone, meaning the parameters ¢ will not be modified, and trains the branches separately
and independent of each other or the backbone. In the end-to-end strategy, the loss function
Iy =1+ Y55 1,l;, combines the losses [, of the early exit branches with the backbone’s loss
and trains the entire multi-exit architecture simultaneously. In this strategy, the contribution
of the loss of the branch at location b is captured by weight score 1. Finally, the layer-wise
strategy first trains the layers up to and including the first early exit branch. Subsequently,
the previous layers are frozen and the rest of the layers up to and including the second branch
are trained, and this operation is repeated until the entire backbone has been trained.

In the end-to-end and layer-wise strategies, the number of branches and their placement
create trade-offs between the accuracy of different exits. In addition, with the end-to-end
strategy, the weight scores introduce new hyper-parameters. In contrast, no trade-offs or new
hyper-parameters need to be considered with the classifier-wise strategy. However, since in
this case the parameters of the backbone remain unchanged, fewer parameters are affected
during the training of the branches. In this work we investigate all three training strategies.

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Khan, Naseer, Hayat, Zamir, Khan, and Shah} 2021

Citation
Citation
{Scardapane, Scarpiniti, Baccarelli, and Uncini} 2020

https://gitlab.au.dk/maleci/multiexitvit

BAKHTIARNIA, ZHANG, IOSIFIDIS: MULTI-EXIT VISION TRANSFORMER FOR ... 3

Layer Norm

)

Multi-Head Attention

Layer b

Layer Norm

Early Exit Early L e . ¢
Branch Result .
: B MLP ‘
i Transformer Encoder -
\ % J

Final =
Layer L _
[MLP |—>Class:Car>
(a) (b)

Figure 1: (a) Schematic illustration of a multi-exit; and (b) Vision Transformer architecture.

It is important to note that branches placed later in the networks do not necessarily result
in a higher accuracy compared to previous branches. We use the term impractical in order
to refer to such branches, and the term practical for branches with a higher accuracy than
all previous branches. The usage of impractical branches would not be sensible since earlier
branches with a higher accuracy exist.

2.2 Vision Transformer

Vision Transformer (ViT) [4] is an adaptation of the Transformer architecture [25] for com-
puter vision problems. At the core of the Transformer is the self-attention layer, which takes a

which can be formulated as Equation (2), where Q = XW2, K = XWX and V = XW" are
query, key and value matrices, respectively, in which W¢, WX and WV are learnable weight
matrices [4]. dx = d, are the size of the vectors in query and key matrices.

KT
Z = softmax %d: \%4 2)
k

In order to capture more than one type of relationship between the entities in the se-
quence, self-attention is extended to multi-head attention by concatenating the output of
several self-attention blocks, each with its own set of learnable parameters. Figure 1 (b) de-
picts the Vision Transformer architecture, where initially an input image is cut into several
image patches. A sequence of patch embeddings is then formed by projecting each patch
and concatenating a positional embedding to the resulting vector. An extra learnable classi-
fication token is also appended to the sequence. The sequence passes through L Transformer
encoder layers, each containing multi-head attention layers among other operations. Finally,
the output vector corresponding to the classification token is passed on to an MLP dubbed
classification head to obtain the final result.

2.3 Attention-Free, MLP-Based Architectures

Several MLP-based architectures for computer vision that also operate on sequences of im-
age patches have been recently proposed [6]. The aim of these architectures is to reduce the
computational cost of ViT by removing the attention mechanism, while achieving a com-
parable performance by preserving a global receptive field similar to that of ViT. Since the

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Guo, Liu, Mu, Liang, Martin, and Hu} 2021

4 BAKHTIARNIA, ZHANG, IOSIFIDIS: MULTI-EXIT VISION TRANSFORMER FOR ...

. R Affine
et e M E Transpose

[¢ 1§

iy

Linear

- LV T

.

. Transpose
[1 4] ._

. -
. _ —
. A I
. ResMLP Layer -
: 2
-.- B Gilobal Average Pool . o)
S (%]
Global Average Pool B 25

Fully Connected

Class:Can>

. Linear

(a) b)

Figure 2: (a) MLP-Mixer architecture; and (b) ResMLP architecture.

intermediate representations in the hidden layers of ViT is in the form of a sequence of
patches, it is simple to use the building blocks of these MLP-based architectures as early exit
branches placed on ViT backbones. These building blocks create more lightweight branches
compared to the Transformer encoders in ViT.

One such architecture called MLP-Mixer [23] is shown in Figure 2 (a). Each mixer
layer in MLP-Mixer consists of foken mixing and channel mixing operations, which are
formulated as Equations (3a) and (3b), where fi()::: fa() are linear layers and S(') is the
GELU activation function. The output of the final mixer layer is passed on to a global average
pooling layer and then a fully connected layer.

U =X+ f(s(fi(NormX)T))T (3a)
Y = U+ fu(s (fs(Norm(U)))) (3b)

A similar architecture called ResMLP [24] is shown in Figure 2 (b). Each ResMLP layer
consists of a cross-patch sublayer and a cross-channel sublayer, which are formulated as
Equations (4a) and (4b). In ResMLP, normalization is carried out using an affine transfor-
mation instead of layer normalization, as shown in Equation (4c) where a and b are learn-
able vectors that scale and shift the input. Similarly, the output of the final ResMLP layer is
passed on to a global average pooling layer and then a fully connected layer.

U = X + Norm(fi Norm(X)T)T) (4a)
Y = U+ Norm(f3(s (f2(Norm(U))))) (4b)
Norm(X) = Aff 5. (X) = Diag(a)X +b (4¢)

3 Multi-Exit Vision Transformer

We assume a high-performing ViT backbone is available for the problem at hand, and the
goal is to convert this backbone to a multi-exit architecture in order to allow for dynamic
inference. We propose seven different architectures for the early exit branches added after
intermediate layers of a ViT backbone. The most intuitive approach, which we call MLP-
EE, is to add an MLP to the classification token of the intermediate layer, similar to the

Citation
Citation
{Tolstikhin, Houlsby, Kolesnikov, Beyer, Zhai, Unterthiner, Yung, Steiner, Keysers, Uszkoreit, Lucic, and Dosovitskiy} 2021

Citation
Citation
{Touvron, Bojanowski, Caron, Cord, El-Nouby, Grave, Joulin, Synnaeve, Verbeek, and Jégou} 2021

BAKHTIARNIA, ZHANG, IOSIFIDIS: MULTI-EXIT VISION TRANSFORMER FOR ... 5

classification head in the ViT backbone. Even though MLP-EE is very lightweight, it may
not contain enough parameters and layers to extract useful features, particularly for exits
placed early. Moreover, it does not process tokens other than the classification token.

Another approach is to convert the sequence of token vectors in the intermediate layers
of the ViT backbone to a 2D grid and further process them using convolutional filters, lead-
ing to 3 different architectures we call CNN-Ignore-EE, CNN-Add-EE and CNN-Project-EE,
each handling the classification token in a different way. Note that even though the interme-
diate layer is in the form of a sequence, each vector in the sequence corresponds to a patch
of the input image, therefore putting the vectors back in a 2D grid simulates their original
neighborhood which is essential when using convolutional filters that have a local receptive
field. The motivation behind this approach is that convolutional filters are the current ap-
proach in the literature for early exiting [10, 21, 22] and can act as a baseline for the other
proposed architectures. Furthermore, convolutional filters introduce low overhead in terms
of parameters and computation. Additionally, a fusion of CNNs that can capture local struc-
ture very well but can not handle long range interactions, with ViTs which can process long
range interactions, seems natural and may combine the advantages of both [6].

On the other hand, the local receptive field of CNN-based early exits may prove to be a
drawback. An alternative that can overcome this limitation is using the Transformer encoder
layer instead of the convolutional filters, which we call ViT-EE. Indeed, it has been shown
that Transformer encoder layers can create superior early exits for CNN backbones by intro-
ducing a global receptive field [2]. However, since the layers of ViT backbones already have
a global receptive field, it is not clear whether ViT-EE will have the same advantage over
CNN-based early exits in ViT backbones as well. Another advantage of using Transformer
encoder is the simplicity of its structure, which means it can handle various other data types
such as point-clouds and even cross-modal data [2, 6]. The main drawback of ViT-EE is its
high overhead, however, the building blocks of the recently proposed attention-free MLP-
based architectures can serve as more lightweight alternatives that still maintain a global
receptive field and structure simplicity, leading to ResMLP-EE and MLP-Mixer-EE.

Formally, the output of Transformer encoder b, denoted by P’ consists of patch embed-

to the classification token. Since the shape of the intermediate representations is the same
for all of the hidden layers, without loss of generality, we assume that the early exit branch is
to be placed after Transformer encoder b. In MLP-EE, shown in Figure 3 (a), P’ is normal-
ized to obtain P’ = Norm(P"). Subsequently, an MLP consisting of three dense layers with
early result. The MLP layers in all our proposed architectures have the same three layers. In
ViT-EE, shown in Figure 3 (b), P’ is given as input to a Transformer encoder layer [2]. The
output of the Transformer encoder is then normalized and passed on to an MLP, similar to
the previous architecture.

sorCP 2R N N & akin to an intermediate representation in a CNN backbone, with height
and width of ~ N and d, channels, and then passed on to a convolution layer, a max pooling
layer and an MLP to obtain the early result. However, it is not clear what should be done with
classification token ﬁg. A similar situation arises in dense prediction using Vision Transform-
ers, where three ways for dealing with the classification token are proposed [19]. In CNN-
Add-EE, the classification token is added to every patch embedding, leading to C? = (pll7 +

Citation
Citation
{Hu, Chen, Wang, and Wang} 2020{}

Citation
Citation
{Scardapane, Scarpiniti, Baccarelli, and Uncini} 2020

Citation
Citation
{Teerapittayanon, McDanel, and Kung} 2016

Citation
Citation
{Guo, Liu, Mu, Liang, Martin, and Hu} 2021

Citation
Citation
{Bakhtiarnia, Zhang, and Iosifidis} 2021{}

Citation
Citation
{Bakhtiarnia, Zhang, and Iosifidis} 2021{}

Citation
Citation
{Guo, Liu, Mu, Liang, Martin, and Hu} 2021

Citation
Citation
{Bakhtiarnia, Zhang, and Iosifidis} 2021{}

Citation
Citation
{Ranftl, Bochkovskiy, and Koltun} 2021

Citation
Citation
{Krizhevsky} 2009

Citation
Citation
{Xiao, Rasul, and Vollgraf} 2017

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Gao, Gao, Liu, Wang, and Wang} 2020

Citation
Citation
{Hu, Mou, Wang, Gao, Hua, Dou, and Zhu} 2020{}

Citation
Citation
{Liang, Chen, Xu, Zhou, and Bai} 2021

Citation
Citation
{Dai, Liu, Ma, Cao, Zhao, and Zhang} 2019

Citation
Citation
{Kingma and Ba} 2015

