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Abstract
Deep neural networks can be converted to multi-exit architectures by inserting early

exit branches after some of their intermediate layers. This allows their inference pro-
cess to become dynamic, which is useful for time critical IoT applications with stringent
latency requirements, but with time-variant communication and computation resources.
In particular, in edge computing systems and IoT networks where the exact computa-
tion time budget is variable and not known beforehand. Vision Transformer is a recently
proposed architecture which has since found many applications across various domains
of computer vision. In this work, we propose seven different architectures for early
exit branches that can be used for dynamic inference in Vision Transformer backbones.
Through extensive experiments involving both classification and regression problems,
we show that each one of our proposed architectures could prove useful in the trade-off
between accuracy and speed.

1 Introduction
Deep neural networks have achieved immense success in recent years [15], however, they
commonly consist of many interconnected layers containing millions of parameters which
require high computational resources and cause slow inference speed. Dynamic inference
methods [8] allow deep models to modify their computation graph during inference in order
to alleviate this problem. One such method is early exiting [20, 21], leading to multi-exit
architectures, where early exit branches are inserted after intermediate hidden layers of the
backbone network and provide early results, albeit with less accuracy compared to the final
result of the backbone network.

Early exits are useful in computationally restricted settings such as mobile and edge
computing, where early results can be used for “easy” inputs to save resources. Addition-
ally, multi-exit architectures can be helpful in anytime prediction settings where the inference
process may be interrupted at any time and the network is expected to provide a response
even if it was interrupted before completion. Examples of anytime prediction settings are
distributed environments such as edge computing systems and IoT networks, where the la-
tency depends on the communication channels, which means the exact computation time
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budget is not known beforehand and varies over time. Here, the latest result provided by a
multi-exit architecture can be given as output whenever the network is interrupted.

Vision Transformer [4] is a recently proposed architecture for computer vision which has
since been applied to various problems, such as image classification, object detection, depth
estimation, and many more [12]. To the best of our knowledge, multi-exit Vision Trans-
former architectures have not yet been studied in the literature, which limits the application
of Vision Transformers in mobile and edge computing. In this work, we propose seven
different architectures for early exit branches that can be inserted into Vision Transformer
backbones. Through extensive experiments on both image classification and crowd count-
ing, the latter being a regression problem, we show that depending on the particular problem
at hand, each of these architectures has the potential to be useful in the trade-off between
classification accuracy and inference speed. Our code will be made publicly available at
https://gitlab.au.dk/maleci/multiexitvit.

2 Related Work

2.1 Multi-Exit Architectures
A deep neural network (DNN) can be formulated as a function f (X) = fL( fL−1(... f1(X)))
where X is the input, L is the number of layers in the DNN and fi is the differentiable oper-
ator at layer i. The output of layer i is denoted by hi = fi(hi−1) and θi refers to the trainable
parameters of fi(·). The training process for this DNN can be formulated as shown in Equa-
tion (1) where θ =

⋃L
i=1 θi is the set of all trainable parameters of the DNN, {Xn,yn}N

n=1 is
the set of training samples and l(·) is a loss function.

f ∗ = argmin
θ

N

∑
n=1

l(yn, f (Xn)) (1)

In order to convert a DNN to a multi-exit architecture, an early exit branch cb(hb) = yb is
placed at every selected branch location b∈ B⊆{1, ..,L}, where cb is the classifier or regres-
sor producing the early result yb. The schematic illustration of a multi-exit architecture is
shown in Figure 1 (a). Since there are multiple outputs in a multi-exit architecture, its train-
ing procedure is not as straightforward as Equation (1). Three major strategies for training
multi-exit architectures exist in the literature [21]. The classifier-wise strategy freezes the
backbone, meaning the parameters θ will not be modified, and trains the branches separately
and independent of each other or the backbone. In the end-to-end strategy, the loss function
lt = l +∑b∈B λblb combines the losses lb of the early exit branches with the backbone’s loss
and trains the entire multi-exit architecture simultaneously. In this strategy, the contribution
of the loss of the branch at location b is captured by weight score λb. Finally, the layer-wise
strategy first trains the layers up to and including the first early exit branch. Subsequently,
the previous layers are frozen and the rest of the layers up to and including the second branch
are trained, and this operation is repeated until the entire backbone has been trained.

In the end-to-end and layer-wise strategies, the number of branches and their placement
create trade-offs between the accuracy of different exits. In addition, with the end-to-end
strategy, the weight scores introduce new hyper-parameters. In contrast, no trade-offs or new
hyper-parameters need to be considered with the classifier-wise strategy. However, since in
this case the parameters of the backbone remain unchanged, fewer parameters are affected
during the training of the branches. In this work we investigate all three training strategies.
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(a) (b)

Figure 1: (a) Schematic illustration of a multi-exit; and (b) Vision Transformer architecture.

It is important to note that branches placed later in the networks do not necessarily result
in a higher accuracy compared to previous branches. We use the term impractical in order
to refer to such branches, and the term practical for branches with a higher accuracy than
all previous branches. The usage of impractical branches would not be sensible since earlier
branches with a higher accuracy exist.

2.2 Vision Transformer
Vision Transformer (ViT) [4] is an adaptation of the Transformer architecture [25] for com-
puter vision problems. At the core of the Transformer is the self-attention layer, which takes a
sequence X = (x1, . . . ,xn)∈Rn×d as input and outputs the sequence Z = (z1, . . . ,zn)∈Rn×dv ,
which can be formulated as Equation (2), where Q = XW Q, K = XW K and V = XWV are
query, key and value matrices, respectively, in which W Q, W K and WV are learnable weight
matrices [4]. dk = dq are the size of the vectors in query and key matrices.

Z = softmax
(

QKT
√

dk

)
V (2)

In order to capture more than one type of relationship between the entities in the se-
quence, self-attention is extended to multi-head attention by concatenating the output of
several self-attention blocks, each with its own set of learnable parameters. Figure 1 (b) de-
picts the Vision Transformer architecture, where initially an input image is cut into several
image patches. A sequence of patch embeddings is then formed by projecting each patch
and concatenating a positional embedding to the resulting vector. An extra learnable classi-
fication token is also appended to the sequence. The sequence passes through L Transformer
encoder layers, each containing multi-head attention layers among other operations. Finally,
the output vector corresponding to the classification token is passed on to an MLP dubbed
classification head to obtain the final result.

2.3 Attention-Free, MLP-Based Architectures
Several MLP-based architectures for computer vision that also operate on sequences of im-
age patches have been recently proposed [6]. The aim of these architectures is to reduce the
computational cost of ViT by removing the attention mechanism, while achieving a com-
parable performance by preserving a global receptive field similar to that of ViT. Since the
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(a) (b)

Figure 2: (a) MLP-Mixer architecture; and (b) ResMLP architecture.

intermediate representations in the hidden layers of ViT is in the form of a sequence of
patches, it is simple to use the building blocks of these MLP-based architectures as early exit
branches placed on ViT backbones. These building blocks create more lightweight branches
compared to the Transformer encoders in ViT.

One such architecture called MLP-Mixer [23] is shown in Figure 2 (a). Each mixer
layer in MLP-Mixer consists of token mixing and channel mixing operations, which are
formulated as Equations (3a) and (3b), where f1(·) . . . f4(·) are linear layers and σ(·) is the
GELU activation function. The output of the final mixer layer is passed on to a global average
pooling layer and then a fully connected layer.

U = X + f2(σ( f1(Norm(X)T )))T (3a)
Y =U + f4(σ( f3(Norm(U)))) (3b)

A similar architecture called ResMLP [24] is shown in Figure 2 (b). Each ResMLP layer
consists of a cross-patch sublayer and a cross-channel sublayer, which are formulated as
Equations (4a) and (4b). In ResMLP, normalization is carried out using an affine transfor-
mation instead of layer normalization, as shown in Equation (4c) where α and β are learn-
able vectors that scale and shift the input. Similarly, the output of the final ResMLP layer is
passed on to a global average pooling layer and then a fully connected layer.

U = X +Norm( f1(Norm(X)T )T ) (4a)
Y =U +Norm( f3(σ( f2(Norm(U))))) (4b)
Norm(X) = Aff α,β (X) = Diag(α)X +β (4c)

3 Multi-Exit Vision Transformer
We assume a high-performing ViT backbone is available for the problem at hand, and the
goal is to convert this backbone to a multi-exit architecture in order to allow for dynamic
inference. We propose seven different architectures for the early exit branches added after
intermediate layers of a ViT backbone. The most intuitive approach, which we call MLP-
EE, is to add an MLP to the classification token of the intermediate layer, similar to the
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classification head in the ViT backbone. Even though MLP-EE is very lightweight, it may
not contain enough parameters and layers to extract useful features, particularly for exits
placed early. Moreover, it does not process tokens other than the classification token.

Another approach is to convert the sequence of token vectors in the intermediate layers
of the ViT backbone to a 2D grid and further process them using convolutional filters, lead-
ing to 3 different architectures we call CNN-Ignore-EE, CNN-Add-EE and CNN-Project-EE,
each handling the classification token in a different way. Note that even though the interme-
diate layer is in the form of a sequence, each vector in the sequence corresponds to a patch
of the input image, therefore putting the vectors back in a 2D grid simulates their original
neighborhood which is essential when using convolutional filters that have a local receptive
field. The motivation behind this approach is that convolutional filters are the current ap-
proach in the literature for early exiting [10, 21, 22] and can act as a baseline for the other
proposed architectures. Furthermore, convolutional filters introduce low overhead in terms
of parameters and computation. Additionally, a fusion of CNNs that can capture local struc-
ture very well but can not handle long range interactions, with ViTs which can process long
range interactions, seems natural and may combine the advantages of both [6].

On the other hand, the local receptive field of CNN-based early exits may prove to be a
drawback. An alternative that can overcome this limitation is using the Transformer encoder
layer instead of the convolutional filters, which we call ViT-EE. Indeed, it has been shown
that Transformer encoder layers can create superior early exits for CNN backbones by intro-
ducing a global receptive field [2]. However, since the layers of ViT backbones already have
a global receptive field, it is not clear whether ViT-EE will have the same advantage over
CNN-based early exits in ViT backbones as well. Another advantage of using Transformer
encoder is the simplicity of its structure, which means it can handle various other data types
such as point-clouds and even cross-modal data [2, 6]. The main drawback of ViT-EE is its
high overhead, however, the building blocks of the recently proposed attention-free MLP-
based architectures can serve as more lightweight alternatives that still maintain a global
receptive field and structure simplicity, leading to ResMLP-EE and MLP-Mixer-EE.

Formally, the output of Transformer encoder b, denoted by Pb, consists of patch embed-
dings pb

1, . . . , pb
N corresponding to the input image patches, as well vector pb

0 corresponding
to the classification token. Since the shape of the intermediate representations is the same
for all of the hidden layers, without loss of generality, we assume that the early exit branch is
to be placed after Transformer encoder b. In MLP-EE, shown in Figure 3 (a), Pb is normal-
ized to obtain P̄b = Norm(Pb). Subsequently, an MLP consisting of three dense layers with
two dropout layers in between takes p̄b

0 as input, where P̄b = (p̄b
0, . . . , p̄b

N), and outputs the
early result. The MLP layers in all our proposed architectures have the same three layers. In
ViT-EE, shown in Figure 3 (b), Pb is given as input to a Transformer encoder layer [2]. The
output of the Transformer encoder is then normalized and passed on to an MLP, similar to
the previous architecture.

In CNN-based early exits, the N patch embeddings pb
1, . . . , pb

N can be reshaped into a ten-
sor Cb ∈R

√
N×

√
N×dv , akin to an intermediate representation in a CNN backbone, with height

and width of
√

N and dv channels, and then passed on to a convolution layer, a max pooling
layer and an MLP to obtain the early result. However, it is not clear what should be done with
classification token p̄b

0. A similar situation arises in dense prediction using Vision Transform-
ers, where three ways for dealing with the classification token are proposed [19]. In CNN-
Add-EE, the classification token is added to every patch embedding, leading to C̄b = (pb

1 +
pb

0, pb
2 + pb

0, . . . , pb
N + pb

0); in CNN-Project-EE, the classification token is concatenated to ev-

Citation
Citation
{Hu, Chen, Wang, and Wang} 2020{}

Citation
Citation
{Scardapane, Scarpiniti, Baccarelli, and Uncini} 2020

Citation
Citation
{Teerapittayanon, McDanel, and Kung} 2016

Citation
Citation
{Guo, Liu, Mu, Liang, Martin, and Hu} 2021

Citation
Citation
{Bakhtiarnia, Zhang, and Iosifidis} 2021{}

Citation
Citation
{Bakhtiarnia, Zhang, and Iosifidis} 2021{}

Citation
Citation
{Guo, Liu, Mu, Liang, Martin, and Hu} 2021

Citation
Citation
{Bakhtiarnia, Zhang, and Iosifidis} 2021{}

Citation
Citation
{Ranftl, Bochkovskiy, and Koltun} 2021



6 BAKHTIARNIA, ZHANG, IOSIFIDIS: MULTI-EXIT VISION TRANSFORMER FOR ...

(a) (b) (c) (d)

Figure 3: (a) MLP-EE; (b) ViT-EE; (c) MLP-Mixer-EE; and (d) ResMLP-EE early exit
branch architectures.

(a) (b) (c)

Figure 4: (a) CNN-Add-EE; (b) CNN-Project-EE and (c) CNN-Ignore-EE early exit branch
architectures.

ery patch embedding, leading to C̄b = (concat(pb
1, pb

0),concat(pb
2, pb

0), . . . ,concat(pb
N , pb

0));
and in CNN-Ignore-EE, the classification token is ignored and discarded, leading to C̄b =Cb.
These three alternative architectures are depicted in figure 4.

As previously mentioned, the building blocks of attention-free MLP-based architectures
can be low-overhead alternatives for ViT-EE which uses a Transformer encoder layer. Figure
3 (c) and (d) shows the MLP-Mixer-EE and ResMLP-EE early exit branch architectures,
respectively. Note that similar to the original MLP-Mixer and ResMLP architectures, the
output of the mixer layer and the ResMLP layer are passed on to a global average pooling
layer.

4 Results
For the image classification experiments, we use CIFAR-10, CIFAR-100 and Fashion MNIST
datasets [14, 26]. We use ViT-B/16 architectures with the original pre-trained weights pro-
vided by the authors [4] as backbones, and we train them on our target datasets using a
cross-entropy loss function. For the regression experiments, we investigate crowd counting,
which is the problem of counting the total number of people present in a given image [5].
We use DISCO [9] as the dataset and TransCrowd [17] which is a ViT-based architecture as
the backbone. Mean absolute error (MAE) is commonly used to evaluate the accuracy of
crowd counting models [3]. All three backbones have 12 Transformer encoder layers.

All our models were trained using the Adam optimizer [13] with learning rates of {10−3,
10−4, 10−5} and the best result is selected. The learning rate is reduced by a factor of 0.6 on
plateau with a tolerance of 2 epochs, and an early stopping mechanism with a tolerance of 5
epochs is used.

Note that while early exits have been recently attached to high-performing CNN back-
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bones [1, 2, 7], there is no prior work for early exits on Vision Transformer backbones. Since
the performance obtained by Vision Transformer backbones is improved by a large margin,
we omit listing the comparison with early exits on CNN backbones in the following results.

4.1 Classifier-Wise
With the classifier-wise training strategy, since the branches do not affect each other or the
backbone, we place and train early exit branches with each of our proposed architectures at
every single layer in the backbone. For each early exit branch, we record the accuracy of
its early results as well as the total FLOPs up to and including the branch. The results are
depicted in Figure 5, where all practical early exits are circled. In addition, the accuracy of
the final exit of the backbone is shown in these figures.

These results can be used to select a collection of lightweight high-performing branches.
With dynamic inference, it is desirable for the model to be as fine-grained as possible, there-
fore, with the classifier-wise strategy where placing more branches does not affect other
branches or the backbone, it is desirable to place as many branches as possible on the back-
bone. To make this more clear, imagine a scenario where only two exit options are avail-
able: option A with 80% accuracy and 3B FLOPS, and option B with 90% accuracy and 6B
FLOPS. If the computation budget at hand is 5B FLOPS, the only possible option to choose is
A, resulting in 80% accuracy. However, with a finer-grained model that also includes option
C with 85% accuracy and 4B FLOPS, choosing option C leads to 85% accuracy. Hence we
examine all possible branch locations: if there exists a single practical branch at a location,
that branch should be added at that location; if there are no practical branches at a location,
then no branches should be added there, since more accurate and more lightweight exits are
available; and if there are more than one practical branches at a location (for instance, with
the DISCO dataset in Figure 5 (a), both CNN-Ignore-EE and CNN-Project-EE make practi-
cal branches at layer 2) it means that there is a trade-off between accuracy and computation
at that location, and the proper branch should be selected based on the particular application.
Alternatively, it is possible to deploy multiple branches at the same location simultaneously,
and exit the one that fits the budget during inference. Note that with the classifier-wise strat-
egy, there can be different branch types on the same backbone, for instance, there can be a
CNN-Add-EE branch at location 1 and a ViT-EE branch at location 2.

Several observations can be made from these results. First, all of our proposed architec-
tures create at least one practical branch. As expected, MLP-EE does not contain enough
parameters and layers to extract useful features in early locations on its own, and thus per-
forms poorly, while it catches up in the later locations where the features extracted by the
intermediate layers can compensate. Furthermore, MLP-EE only processes the classification
head, which contains only low-level features in very early layers. However, MLP-EE always
creates the first practical branch as it is the most lightweight. Secondly, CNN-based branches
outperform other types in the first few locations. This is likely because the fusion of convo-
lutional layers that capture local interactions well, with the global attention of the backbone,
combines the best of both worlds. However, this effect seems to fade in later locations,
perhaps since several layers of the backbone are able to capture both local and global inter-
actions fairly well. In addition, CNN-Ignore-EE outperforms other CNN-based early exits
in most of these early cases, as the classification token in the very early layers contains only
low-level features. Thirdly, aside from the very early locations where CNN-based branches
dominate, ResMLP-EE performs better in classification problems, while ViT-EE performs
better in crowd counting. Evident from the use of visual attention mechanisms and dilated
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convolutions in many high-performing models for crowd counting [5], global information
such as perspective plays an important role in crowd counting, therefore, ViT-EE which can
capture multiple types of attention through the use of the multi-head attention layer in Trans-
former encoder, outperforms ResMLP-EE which does not include a mechanism for handling
multiple types of attention. Fourthly, observe that MLP-Mixer-EE outperforms ResMLP-EE
in most locations in the crowd counting cases. This is because the affine transformation in
ResMLP can be used instead of normalization when the training is stable [24], however, with
crowd counting, the training process is not as stable as image classification.

Note that in the last six locations in CIFAR-10 and Fashion MNIST cases, the differ-
ences between the performance of different branch types are minuscule, and therefore less
informative. Moreover, observe that unlike multi-exit architectures with CNN backbones,
branches placed later on a ViT backbone do not necessarily provide a higher accuracy com-
pared to previous branches. This is because in CNN backbones, the network has a very local
receptive field in the early layers, and the receptive field gradually increases throughout the
network, whereas ViTs have a global receptive field from the very first layer. This means
that the accuracy of later branches of CNN backbones is expected to increase since the re-
ceptive field has increased, whereas in ViT backbones, later intermediate layers do not have
any advantages in terms of the receptive field, thus their branches may obtain a lower accu-
racy. Finally, note that in the DISCO experiments, some of the very late early exit branches
achieve a lower MAE compared to the final exit. This is because the MLP in our proposed
architectures consists of three layers while the MLP in the ViT-B/16 backbone has one.

4.2 End-to-End and Layer-Wise
Unlike the classifier-wise training strategy, it is not possible to conduct a comprehensive
study of the end-to-end and layer-wise strategies, since there are 2L−1 − 1 possible branch
placements. In addition, the end-to-end strategy can have infinitely many weight values for
each of the placements. Therefore, for these training strategies, we only investigate two
cases; one where a single early exit branch is placed after the sixth layer; the other where
three branches are placed after the third, sixth and ninth layers. In both cases, the contribution
of the final exit to the loss is double the contribution of the early exits.

Results are summarized in Tables 1 and 2. In all image classification cases, final accuracy
is decreased compared to the backbones without early exits, which have an accuracy of
98.31% for CIFAR-10, 91.24% for CIFAR-100 and 95.00% for Fashion MNIST. However,
in crowd counting, the final MAE is improved from the original 11.07 when a single MLP-
EE, ViT-EE or MLP-Mixer-EE branch is used. Similar to the classifier-wise strategy, in both
cases involving the DISCO dataset, MLP-Mixer-EE outperforms ResMLP-EE for the same
reason explained above. Furthermore, ViT-EE outperforms other branch types in most cases,
particularly when there are 3 exit branches, and performs very high in others. Since the end-
to-end training strategy affects the parameters of the backbone, perhaps ViT-EE branches
have the least negative impact on the backbone due to the similarity of their architecture with
the layers of the backbone. This is further supported by the fact that CNN-based branches
whose architectures differ the most from that of the backbone, typically perform much worse.

With the layer-wise strategy, we encounter a problem. Since Vision Transformers are
data-hungry [12], they need to be pre-trained on very large datasets. For the first step of
the layer-wise strategy where all layers up to and including the first early exit branch are
trained, pre-trained weights exist, therefore, the training procedure achieves results with a
high accuracy on par with their end-to-end counterpart. For instance, in the case of CIFAR-
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(a)

(b)

(c)

(d)

Figure 5: Performance of different multi-exit architectures on (a) DISCO; (b) CIFAR-10; (c)
CIFAR-100 and (d) Fashion MNIST datasets trained with classifier-wise strategy. Practical
early exit branches are circled. In order to highlight the differences, early exits with MLP-EE
architecture are removed in (b) and (d) and branches 1 to 6 and 6 to 11 are separated.
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Branch Arch. CIFAR-10 Acc. CIFAR-100 Acc. Fasion MNIST Acc. DISCO MAE FLOPS
Early@6 Final Early@6 Final Early@6 Final

MLP-EE 94.90% 96.73% 81.12% 87.45% 94.47% 94.85% 11.04 10.72 28.04
CNN-Ignore-EE 95.95% 97.10% 77.97% 85.90% 94.43% 94.67% 21.88 11.09 28.10
CNN-Add-EE 94.94% 96.87% 75.75% 86.96% 94.22% 94.77% 18.46 11.24 28.10

CNN-Project-EE 94.66% 96.80% 77.95% 86.89% 94.33% 94.69% 18.23 11.29 28.16
ViT-EE 95.89% 96.99% 85.23% 89.44% 94.39% 94.84% 11.06 11.01 32.65

MLP-Mixer-EE 95.78% 97.07% 81.72% 87.53% 94.41% 94.88% 13.03 10.93 31.11
ResMLP-EE 95.44% 97.35% 82.41% 87.57% 94.38% 94.95% 16.99 11.36 31.02

Table 1: Performance of multi-exit architectures with one branch, trained with end-to-end
strategy. The last column shows the FLOPS up to and including the branch.

Branch Arch. CIFAR-10 Acc. CIFAR-100 Acc. DISCO MAE
Early@3 Early@6 Early@9 Final Early@3 Early@6 Early@9 Final Early@3 Early@6 Early@9 Final

MLP-EE 87.21% 94.48% 95.64% 96.19% 61.00% 79.83% 84.42% 86.46% 13.77 11.54 11.55 11.44
CNN-Ignore-EE 91.44% 95.68% 96.55% 96.56% 65.08% 79.35% 84.74% 86.32% 20.99 23.65 20.88 11.42
CNN-Add-EE 90.27% 95.63% 96.80% 96.94% 62.66% 78.86% 85.11% 87.01% 18.33 19.25 18.92 11.77

CNN-Project-EE 91.19% 95.77% 96.81% 96.99% 64.26% 78.63% 84.47% 86.19% 21.25 21.46 17.99 11.49
ViT-EE 92.35% 96.01% 97.25% 97.33% 74.73% 84.31% 87.43% 87.88% 12.76 11.27 11.59 11.18

MLP-Mixer-EE 91.16% 95.99% 96.96% 96.99% 66.24% 81.84% 86.68% 87.29% 12.24 13.95 15.29 11.46
ResMLP-EE 92.53% 95.87% 96.76% 96.86% 70.45% 82.61% 87.36% 87.85% 14.15 14.71 17.05 11.09

Table 2: Performance of multi-exit architectures with 3 branches, trained with end-to-end
strategy.

10, CNN-Ignore-EE achieves 95.97% accuracy at the sixth layer. However, for subsequent
steps, the original pre-trained weights can not be used since the weights of earlier layers have
changed. We tested the training process with no pre-trained weights, with the original pre-
trained weights as well as pre-trained weights from the end-to-end strategy, however, neither
achieved a high accuracy.

5 Conclusion and Future Direction

We proposed seven architectures for early exiting Vision Transformer backbones, provided
the motivations behind each of these architectures, and showed that depending on the branch
locations, training strategy and the problem at hand, any of our proposed architectures can
prove useful. Furthermore, we provided recommendations on selecting lightweight high-
performing branches based on the results of our experiments. We discussed the role of archi-
tectural elements such as local and global interactions, receptive field, classification token,
support for multiple types of attention, normalization and similarity of branch architecture
with the backbone layers, on the performance of multi-exit ViT architectures.

A potential future research direction would be to check whether other recent architectures
for computer vision that operate on a sequence of image patches such as Perceiver [11],
gMLP [18] and FNet [16] produce suitable early exits for Vision Transformer backbones.
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