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Abstract

We present a global registration algorithm for multi-modal geometric data, typically
3D point clouds and meshes. Existing feature-based methods and recent deep learning
based approaches typically rely upon point-to-point matching strategies that often fail
to deliver accurate results from defect-laden data. In contrast, we reason at the scale of
planar shapes whose detection from input data offers robustness on a range of defects,
from noise to outliers through heterogeneous sampling. The detected planar shapes are
projected into an accumulation space from which a rotational alignment is operated.
A second step then refines the result with a local continuous optimization which also
estimates the scale. We demonstrate the robustness and efficacy of our algorithm on
challenging real-world data. In particular, we show that our algorithm competes well
against state-of-the-art methods, especially on piece-wise planar objects and scenes.

1 Introduction
3D registration of multi-modal data is a long-standing challenge when working with real-
world 3D objects. Geometric data obtained from different acquisition modalities (e.g. laser
scans, multi-view stereo reconstruction) or created by modeling tools are represented in var-
ious forms, i.e. as point clouds or meshes, and exhibit different geometric properties in terms
of noise, resolution or the scale. Classical problems in multi-modal registration involve reg-
istering a low-quality point cloud to a high-quality mesh, and registering a dense point cloud
to a simplified mesh model.

Challenges in multi-modal registration arise from several aspects. Imperfection in data
acquisition includes occlusions and non-uniform sampling density. Different surface repre-
sentations, i.e. meshes and point clouds, often have different levels of detail and accuracy,
making both traditional feature-based methods [32, 55, 57, 75] and deep learning architec-
tures [3, 15, 40, 68, 69] unsuited for this task. Variation in acquisition modalities can lead
to scale ambiguity, e.g. multi-view stereo generates data in an unknown scale, which further
complicates the problem. The majority of existing methods [6, 12, 43, 49, 72, 74] focus
on aligning 3D models to depth scans under the assumption that the model and the depth
scan are already at the same scale. This is not the case for many real-world scenarios, where
either the collected data or the 3D object model may have no absolute scale associated.
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Simple pre-processing by estimating and correcting the scale before calling the registration
step often fails for non-uniformly sampled data or partially overlapping data. Several works
[17, 21, 28, 34, 44] have considered relative scale estimation. These methods treat the scale
estimation as a separate step, therefore there lacks a uni�ed formulation that simultaneously
solve for the scale, rotation and translation.

In this work, we present a method for the global registration of multi-model geometric
data of different scales, as illustrated in Fig. 1. It consists in, �rst, a rotational alignment
that analyses the surface-normal distributions of the mesh and planar shapes detected from
the input point set, and then a local re�nement based on continuous optimization with Lie
Algebra. The motivation behind our use of planar shapes arises from two aspects. First, pla-
nar shape detection methods, which have been successfully used in various vision tasks such
as camera pose estimation [51], Structure from Motion [52, 77], or surface reconstruction
[5], offer robustness to noise, outliers and varying sampling density, as opposed to directly
working with raw point clouds. Second, it gives a natural approximation of the distance
�eld of the underlying surface of the point cloud. The surface-normal representation is in-
variant to scaling and translation, which enables the estimation of the initial rotation matrix
independently. In contrary to previous work, we formulate the scale estimation as a part of
the continuous optimization problem based on distance �eld in the re�nement step, with no
need of an initial guess for the scale. Our non-feature-based approach is robust to variations
of levels of details, noise and sampling density across different inputs, and is suitable for
processing large point clouds.

2 Related Work

We distinguish four families of methods for registering rigid 3D objects.

Local registration with known scale. ICP [6] is the best-known algorithm for �nding
the SE(3) transformation between surfaces. Variants of ICP [7, 24, 53, 54, 59, 74] are pro-
posed to address different issues, such as radius of convergence, computational ef�ciency,
noise, partiality and sparsity. Probabilistic approaches like EM-ICP [27] and Gaussian Mix-
ture Model based methods [20, 22, 25, 36] are introduced for robustness to noise and outliers.
Another branch of work concerns direct matching of distance functions [11, 13, 48, 60],
which is more accurate and robust than ICP given suf�cient spatial resolution.

Global registration with known scale. A popular family of methods involve establish-
ing feature correspondences [32, 55, 57]. Fast Global Registration (FGR) [75] improves
the inlier ratio of the correspondence set effectively by simple tests without recomputation.
4PCS [2] and Super4PCS [43] effectively lower the complexity of RANSAC by exploring
the motion space with co-planar 4-point quadrilateral matching. Another family of methods
use a branch-and-bound (BnB) strategy to exhaustively explore the solution space for a good
optimum, but suffer from slow convergence (Go-ICP [72], GOSMA [12]). Fast rotation
search algorithm with a new bounding function for BnB has been introduced for accelera-
tion [49]. Eckart et al. [21] propose a multi-scale point matching process using a hierarchy
of Gaussian Mixtures. Many works explore the use of alternative shape embedding. One
family of methods utilize the Fourier transform to decouple rotation and translation [8, 38],
but is sensitive to the voxel resolution. The signed distance �eld, encoded in a discrete voxel
grid, is a popular implicit representation for registering depth images [10, 47, 61].
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Learning-based methods with known scale.Recent advances in deep learning lead
to the development of several neural networks for point cloud registration. The models can
be roughly categorized as non-iterative and iterative methods. Non-iterative models have a
natural speed advantage. Deep Closest Point [68] utilizes a transformer network for feature
matching coupled with SVD for point-to-point registration. DeepGMR [73] avoids point-to-
point matches by integrating the network inside a probabilistic registration paradigm: this
solution reduces complexity while improving robustness. Iterative methods are believed to
be more robust to partially overlapping inputs [3, 15, 40, 69]. In particular, PointNetLK
[3] adapts PointNet into the Lucas-Kanade algorithm. PRNet [69] extends DCP to an itera-
tive pipeline with keypoint detection designed for partial-to-partial registration. IDAM [40]
proposes a distance-aware similarity matrix convolution for �nding correspondences. Deep
Global Registration [15] is an end-to-end 6D ConvNet built upon FCGF [23] and works well
on real-world dataset.

Multi-modal registration with an unknown scale. The registration of multi-modal
geometric data often involves estimating the relative scale between different types of data,
e.g. when aligning a CAD model to a point cloud scan, and when registering volumetric
images obtained from different modalities. A survey covering issues and methods related to
this task can be found in [56]. The most straightforward method which simply normalizes
scales in pre-processing [33] is unsuitable for partially overlapping and noisy data. Exten-
sions of ICP integrate scale factor estimation by including a separate minimization step [78],
by incorporating a bounded scale matrix [19], by registering cumulative contribution rate
curves [41], or by using the maximum correntropy criterion [71]. Coherent Point Drift [45]
and its extensions [30, 31] formulate the task as a probability density estimation problem
and re-parametrizes GMM centroids with rigid parameters including the scale. Corsini et al.
[17] extend 4PCS and propose a method for point-cloud-to-3D-model registration. Bulow
et al. [9] extend the Fourier transform approach to incorporate scale estimation. Paudel et al.
[50] formulate the task as a point-to-plane assignment problem utilizing a plane-based as-
sumption of the 3D scene. Mellado et al. [44] introduce a descriptor based on Growing Least
Squares for scale-invariant matching. Registration of 3D images from different scan modal-
ities is an important task in medical imaging [42], where level-set algorithms [18, 64, 67]
are widely applied. Another sub-family of methods concern aligning CAD models from a
collection of pre-speci�ed categories to depth scans. These approaches determine the scale
via object detection in terms of 3D bounding boxes, but are limited to training categories.
Among these studies, Song et al. [62] assume that the gravity direction is known and estimate
rotation only around the gravity axis. Gupta et al. [28] rely on traditional ICP for aligning
the input point set and the point set rendered from the model. Izadinia et al. [35] proposes
a learning-based ICP approach which formulates the rotation estimation problem as a policy
learning task for viewpoint prediction. Deformation of the CAD model is considered by a
few works [4, 34, 46] for better �tting. Our approach differs from the above pipelines by
integrating scale, rotation and translation into a single optimization framework.

3 Algorithm

We consider as input a pair of 3D data composed of a point cloud and a surface mesh which
we denote by the source and the target respectively. The relative scale between them is un-
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Figure 1: Overview of the proposed method. Planar shapes are �rst extracted from the input
point cloud and surface mesh. From the surface-normal distribution of planar shapes (green
corresponds to a high portion of planar area with normal pointing towards the arrow direc-
tion), three dominant directions are estimated, called a 3-frame. The 3-frames are aligned
between the source and the target, leading to 24 possible rotations (only three are represented
here). The re�nement step takes each candidate rotation and estimate a �nal similarity trans-
form. The alignment with the minimal loss is kept as the �nal result (see red frame).

known and the overlap can be partial. The goal is to determine the parameters of a similarity
transformationSwhich best aligns the source against the target,

S=
�
sR t
0T 1

�
2 R4� 4 (1)

wheres2 R, R2 R3� 3 andt 2 R3 are the scale factor, the rotation matrix and the translation
vector respectively.

The application of distance function representation removes the need for explicitly solv-
ing for correspondences. At �rst glance, it is intuitive to formulate the task as a least squares
problem in the same way as rigid registration [24] using the distance �eld. Letf dig

nd
1 be

a set ofnd points from the source, andDm: p 2 R3 7! d 2 R be the distance �eld of the
target surface, which maps a 3D pointp to its Euclidean distanced to the closest point on
the surface. Simple adaptation of the rigid registration formulation leads to a loss function
given by

U(S) =
nd

å
i= 1

jDm(Sdi)j2 (2)

where conversion from homogeneous coordinates to Cartesian coordinates is omitted for
simplicity of notations. The above formulation, however, has an in�nite number of global
minimaU = 0 at scale factors = 0, where the source simply shrinks to a single point on
the target. These undesirable global minima result from the difference between Euclidean
transformation and similarity transformation.

We propose an improved formulation by considering also the distance �eldDd of the
underlying surface of the source. Letf mig

nm
1 denote a set ofnm points sampled from the


