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Abstract

Poor lighting conditions result in photographs with low contrast. Most existing meth-
ods focus on low-light enhancement and perceptual quality improvement, and have not
taken both under- and overexposure into consideration. In this paper, we propose a novel
semi-supervised learning method for single image contrast enhancement. The supervised
branch is trained using paired data under the constraint of supervised losses. While in
the unsupervised branch, we explore content consistency and illumination prior as loss
functions to train the network. The advantages of the proposed approach are two folds.
First, guided by ground truth images, the supervised branch learns well to preserve im-
age details and suppress noise. Second, the unsupervised branch learns to adapt to more
illumination intensities and diverse illumination environments, which bridges the gap
between various lighting conditions. With the help of the semi-supervised strategy, our
method uses a single model to enhance both underexposed and overexposed images, and
generalizes well to various lighting conditions. Experimental results show that the pro-
posed method outperforms the state-of-the-art methods quantitatively and qualitatively.

1 Introduction

With the popularity of mobile camera devices, many people take photos to record their lives.
The exposure settings for photos involve exposure time, aperture, ISO sensitivity, etc., which
will directly affect the overall brightness of the rendered image. When expertise is lacking,
images taken under poor lighting conditions can suffer from many degradation problems,
the most common of which is low contrast due to under- and overexposure. Exposure errors
and low contrast can lead to loss of detail and color distortion, which greatly degrade the
visual quality of an image and affect the performance on high-level vision tasks (e.g., object
detection and recognition).

Many conventional algorithms have been proposed for single image contrast enhance-
ment. Histogram equalization and S-curve adjustment are simple and effective methods to
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enhance image contrast. However, such methods perform pixel-level spatial transformations
through region tone mapping functions, which tend to lose image details, amplify noise and
produce undesirable results. Methods based on the Retinex model can produce results with
better visual effects, including SSR [13], SMRCR [14], but still face some problems such as
difficulties in estimating the illumination map and producing underexposed or overexposed
local detail results.

Deep learning techniques have developed rapidly and achieving good results in low-
level vision tasks, such as super-resolution [4], image denoising [21], depth estimation 5,
6]. In the field of image enhancement, many excellent deep learning algorithms [1, 8, 12,
18, 19, 25, 28, 30, 31, 36] have also been proposed, and these algorithms have achieved
good enhancement results. Both over- and underexposed images are common in realistic
photography, however, most algorithms focus only on the enhancement of underexposed
images.

In general, when making paired datasets, the exposure values are usually set to fixed
values such as {30.5, £1.0, 2.0} for convenience. However, actual degraded images may
have more exposure levels such as {£0.8, +1.5, 1.8, £2.2}, and more complex lighting
environments such as backlit environments, and collecting a large number of ground truth
images for these data is very time-consuming labor. Moreover, there are domain gaps in the
data under different lighting conditions, and using supervised learning only would be limited
to specific data and would not generalize well to other unseen images.

Considering the above issues, in this work, we propose a semi-supervised learning method
for single image contrast enhancement. The proposed framework is divided into a supervised
branch and an unsupervised branch. In the supervised branch, the learning of the network
is driven by the supervised loss functions using ground truth images as references, such
as pixel loss, perceptual loss, and adversarial loss. In the unsupervised branch, we design
the gradient perceptual loss based on content consistency and the illumination control loss
based on the illumination prior, and integrate the total variation loss function to constrain the
network. The supervised and unsupervised branches share the network structure and model
weights and are trained in an end-to-end iterative manner. Our approach embraces the advan-
tages of both supervised and unsupervised methods. On the one hand, the supervised branch
uses ground truth images to provide the accurate guidance for the learning of the network,
which helps to reconstruct the structural details of the images and remove the noise. On
the other hand, the unsupervised branch introduces degraded images with more illumination
intensities and diverse illumination environments, and the knowledge from the unsupervised
branch bridges the gap between the various lighting conditions. With the help of the semi-
supervised learning strategy, our method enhances image contrast with a single model and
performs well against the state-of-the-art methods under various lighting conditions.

The main contributions of this work are summarized as follows.

* We propose a semi-supervised learning method for single image contrast enhance-
ment, where various lighting conditions can be handled well using only a single model.
To the best of our knowledge, it is the first attempt to apply a semi-supervised learning
strategy to correct underexposed and overexposed images (not only low-light image
enhancement).

¢ We develop the gradient perceptual loss based on content consistency and the illumina-
tion control loss based on illumination prior to constrain the learning of unsupervised
networks.
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* We experimentally demonstrate that the proposed method outperforms the state-of-
the-art methods both qualitatively and quantitatively. Furthermore, our method pro-
duces visually pleasing results and has better generalization performance.

2 Related Work

2.1 Conventional Methods

The HE-based method enhances contrast by adjusting the image luminance distribution.
CLAHE [39] constructs mapping functions based on local histograms to avoid over enhance-
ment. The S-curve adjustment uses the tone mapping function for contrast enhancement.
Yuan et al. [34] splits the image into several different sub-regions and performs S-curve
transformations on each sub-region separately. However, these methods do not consider the
relationship of adjacent pixels and are prone to produce unnatural results.

The Retinex model decomposes the image into an illumination map and a reflection
map, and adjusts them to obtain enhanced results. Early Retinex methods [13, 14] directly
used reflection maps as enhanced results. Wang et al. [29] improved the Retinex model
for non-uniform illumination to make the enhanced results more natural and realistic. Li et
al. [17] proposed a robust Retinex model with noise components. Guo et al. [9, 10] used the
maximum pixel value as the initial illumination map, which was further optimized using the
structure-aware prior. However, the recovery effect of the Retinex model depends mainly
on the quality of the evaluated illumination maps, which can easily yield underexposed or
overexposed results in local regions.

2.2 Deep Learning-based Methods

Supervised Learning Methods. Supervised learning methods require paired data with
ground truth image for training. Lore et al. [18] uses an autoencoder to learn patch-level
low-light enhancement and denoising tasks. Based on the Retinex model, Wei et al. [30]
and Zhang et al. [36, 37] use CNN to decompose the image into an illumination map and a
reflection map, and then adjust the illumination map to recover the final result. Lv ez al. [19]
learns low-light image/video enhancement via the multi-branch fusion network. Wang et
al. [28] extracts global and local features to obtain an illumination map of multiple channels
to recover the image, and uses a bilateral grid to obtain real-time performance. Moran et
al. [23] performs local enhancement of images by predicting the parameters of filters. Xu
et al. [31] combines frequency decomposition to extract the structural information and im-
age details, and is capable of removing noise simultaneously. Ren et al. [25] proposes an
improved RNN to extract edge features to better restore the structural details of the images.
Zhu et al. [38] proposed the fusion network to fuse multi-exposure images in combination
with an edge enhancement module to recover extremely bright and dark areas of the image.
Afifi et al. [1] proposes a coarse-to-fine deep learning model to correct both underexposed
and overexposed photos from both color and detail perspectives, and provides a new dataset
with multiple exposure images and correctly exposed reference images.

Unsupervised Learning Methods. The unsupervised methods mainly utilize image prior
or generative adversarial networks to enhance image contrast. Guo et al. [8, 16] gradually
adjust the image by predicting multiple high-order curves. Zhang et al. [35] learns image
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Figure 1: The proposed semi-supervised framework containing a supervised branch and an
unsupervised branch for single image contrast enhancement.
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enhancement using S-shaped curves in the zero-shot learning setting. Jiang ef al. [12] and
Chen et al. [3] employ generative adversarial networks to learn effective image enhancement
in an unpaired manner.

Semi-Supervised Learning Methods. The semi-supervised methods uses both paired im-
ages and images without ground truth for learning. Yang et al. [32, 33] uses semi-supervised
learning for low-light enhancement, supervised learning to learn a recursive bandwidth rep-
resentation of images from coarse to fine, and unsupervised learning to improve the quality
of bandwidth reconstructed images using generative adversarial networks.

In contrast to existing methods, our method uses a semi-supervised strategy to learn con-
trast enhancement. Specifically, most methods focus on low-light enhancement and generic
image enhancement, while our method can enhance both underexposed and overexposed im-
ages. Our semi-supervised strategy is different from DRBN [32, 33]. Firstly, DRBN uses a
two-stage design, while our method is end-to-end training and prediction. Second, DRBN
utilizes a semi-supervised strategy to bridge the gap between fidelity and perceptual quality,
while our approach bridges the gap between various lighting conditions.

3 Proposed Method

The proposed method learns single image contrast enhancement via semi-supervised learn-
ing, as shown in Fig.1. In this section, we describe the design of the semi-supervised frame-
work, the network architecture and the loss function in detail.

3.1 Semi-Supervised Framework

In semi-supervised learning framework, a labeled paired dataset Dy = {(x;,y;),i € (1,2,...,M)}
and an unlabeled dataset D, = {(z;),i € (1,2,...,N)} are provided, where M and N denote
the size of the dataset, x; and z; denotes the input image, and y; denotes the ground truth
image corresponding to x;, respectively.
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Our semi-supervised learning framework can be divided into a supervised branch and
an unsupervised branch as shown in Figl. In the supervised branch, given a CNN model
f(-) parameterized by 6, we can obtain the enhanced image f(x;|6;) from the image x; in
the unpaired dataset D;. Since ground truth images are available in the labeled dataset, we
get the optimal parameter 6; by minimizing the loss function between the input image and
the ground truth image, such as L1 loss, MSE loss and perceptual loss. The supervised loss
function can be expressed as:

Zc (x:165) ,vi) (1)

In the unsupervised branch, given a CNN model f(-) with parameters 6,, feeding an
image z; from an unlabeled dataset D), into the network yields an enhanced result f(z;|6,).
Since there is no ground truth image, we can explore the image prior as the loss functions
to optimize the network parameters, such as content, illumination, smoothness, sparsity, etc.
The unsupervised loss function can be expressed as:

LU El0) 2)

Under the supervision of ground truth images, the supervised branch is able to learn
knowledge about image detail recovery and noise removal. However, using only the super-
vised branch leads to restriction to specific data, and to avoid this, the unsupervised branch
is used to acquire knowledge about how to adapt to more illumination intensities and diverse
illumination environments. The goal is to integrate the supervised and unsupervised knowl-
edge in a single model, so we share the network architecture and model weights, denoted
as O; = 0,. This allows the benefits of both supervised and unsupervised to be exploited,
ultimately improving the generalization performance of the model under various lighting
conditions.

3.2 Network Architecture

Enhancement Network. We use a Unet-like structure as our enhancement network. The
encoder contains three downsampling modules for reducing the resolution of the feature
maps. The downsampling module on each scale consists of one convolutional layer and
three residual blocks. The downsampling operation is implemented by the Conv layer with
the stride size of 2, instead of the pooling layer which loses information. We use the residual
block from Nabh et al. [24], which removes all normalization and pooling layers. Symmet-
rically with the encoder, the decoder contains three upsampling modules that improve the
resolution of the feature maps. The upsampling module at each scale stacks three residual
blocks and a ConvTranspose layer with the stride size of 2. The skip connection fuses
shallow and deep features between the downsampling and upsampling modules at the same
scale, which helps to preserve the shallow structural features. Finally, we also use a residual
learning strategy to learn delta images instead of the enhanced results to retain the detailed
information in the input images.

Discrimiator Network. The discrimination task is relatively easy and we directly use
PatchGAN [11] as the discriminator network. PatchGAN stacks 5 convolutional layers, each
followed by LeakyReLU as the activation function. The discriminator determines whether
the image is a generated image or a real image.
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3.3 Loss Function

Given low contrast images /; as input, the network can generate enhanced images I,. In
the supervised branch, we use the ground truth images I; to compute the supervised loss
functions, including pixel loss Lp;, perceptual loss Lp,,, and adversarial loss Lyg,. In the
unsupervised branch, we calculate the unsupervised loss functions, including illumination
control loss L;, gradient perceptual loss Ly, and total variation loss L.

The total loss function can be expressed as

Liotal :Lsuper + Lunsuper

(3)
:A'ILpix + AZLper + )~3Ladv + BlLic + ﬁZLgp + ﬁ3Ltv

where the parameter A1, Ay, A3,81,58, and B3 denote the weights of each loss.

Supervised Loss. In low-level vision tasks, the pixel loss is often used as an objective
function to optimize the network. The pixel loss improves the overall similarity by reducing
the pixel differences between the enhanced result and the ground truth image. However, the
pixel loss does not take into account structural details and tends to blur the edges. Here we
use the mean squared error as the pixel loss:

Lpix = IE| ‘]e _Igt| |2 “4)

The perceptual loss function focuses on the perceptual quality of the enhanced image.
We use a pre-trained VGG-19 network to extract the semantic features of I, and Iy, and
¢; denotes the features extracted at the ith layer. Then the distance between features is
calculated using L2 distance as the perceptual loss:

Lper = E|[¢i(Le) — ¢i (Ig1) | |2 (5)

The training of the generative adversarial network is a game between the generator and
the discriminator, where the generator learns to generate images to deceive the discriminator,
and the discriminator learns to distinguish the generated images from the real ones as much
as possible. The adversarial loss is used to improve the detail of the image and produce
impressive visual effects, and the adversarial loss is defined as:

Laay = By, [log (1 =D (L))] +Ey, [log D (Iy)] 6)

Unsupervised Loss. Gradient can extract the spatial structure of an image and is often
considered to represent the content of an image. According to the observation of Enlighten-
GAN [12], the classification results of VGG network are not very sensitive to the brightness
change of the image. Based on the characteristics of VGG networks and image gradients,
we propose the gradient perceptual loss to ensure that the content before and after image
enhancement remains as consistent as possible. We first extract the gradient maps of the
input image and the generated image separately, and then use the pre-trained VGG-19 net-
work to extract the perceptual features of the image gradient maps and calculate the distance
between the features using the mean squared error. Unlike the perceptual loss, the gradient
perceptual loss is a measure of the similarity between the enhanced result and the original
image, rather than the ground truth image. We use ¢; to denote the features of the ith layer
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extracted by VGG19 and V to denote the gradient operator, then the gradient perceptual loss
can be defined as:

Lgp =El|¢:(VL) — ¢: (VL)) |2 (7)

A badly exposed image will have an overall shift in brightness distribution relative to a
normal image. To force the illumination distribution of an enhanced image to be close to
normal, we propose illumination control loss. To be specific, we first calculate the illumina-
tion map of the image, which can be expressed as the average of the three RGB channels.
Instead of using the overall brightness of the image, we first chunk the illumination map by
16*16 and then calculate the average value of each patch to obtain the average illumination
map X. Finally, we make the expected value of the illumination of each patch close to the
normal illumination value K to constrain the overexposed or underexposed area. The value
of K is empirically set to 0.6. According to the above description, the illumination control
loss can be expressed as:

Li =E|IX — K|\ (8)

We also use the total variation loss to ensure spatial smoothing. The total variation loss
is a common regular term used to reduce the difference between adjacent pixels. The total
variation loss function can be defined as:

Loy = E|[V, (1) + Y, (1) ] ®

where V, and V, denote the gradient operator in the horizontal and vertical directions, re-
spectively.

4 Experiments

4.1 Implementation Details

All experiments are implemented using Pytorch on an Nvidia Titan V GPU. We randomly
cropped the training image to 256 x 256 pixels. The Adam optimizer with default parameters
was used to optimize the enhancement network and the discriminator network. We trained
the network for 60 epochs using the fixed learning rate of 0.0001. The hyperparameters A,
A2, A3, B1, B> and Bs are set to 1000, 10, 10, 1, 1, 1e~# as trade-offs between losses.

We use the SICE [2] dataset for the supervised training and evaluation. The SICE dataset
contains image sequences taken at different fixed exposure levels, such as outdoor scenes
with exposure values {£0.5, £0.7, £1.0, +2.0, +3.0}. We randomly select 345 image se-
quences from the Part1 of SICE as the training dataset and the remaining 15 image sequences
as the test dataset. We use the DICM [15], VV' and Fusion [27] as unsupervised training
datasets, which contain various lighting conditions after data augmentation. We further eval-
uate the generalization ability on the MEF [20], NPE [29] and LIME [9] datasets, which are
not visible during training.

4.2 Evaluation

Quantitative Comparison. We use PSNR and SSIM metrics to compare quantitatively
with several state-of-the-art methods. The compared methods include conventional meth-
ods: CLAHE [39], LIME [9], WVM [7], and deep learning methods: RetinexNet [30],

Thttps://sites.google.com/site/vonikakis/datasets
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Table 1: Quantitative comparison using PSNR and SSIM metrics on the SICE dataset. The
best results are highlighted in red. Higher PSNR and SSIM values indicate better results.

Underexposed All
Method PSNR | SSIM | PSNR | SSIM
CLAHE [39] 13.51 048 1337 0.51
WVM [7] 1432 060 1390 0.64
LIME [9] 16.33  0.70  13.50  0.65

RetinexNet [30] 15.53  0.70 13.82  0.69
MBLLEN [19] 1534 063 1552 0.65
EnlightenGAN [12] 15.88 0.67 1354  0.65
Zero-DCE [8] 16.83  0.66 14.19 0.62
Ours 1732 070  17.47  0.72

MBLLEN [19], EnlightenGAN [12], ZeroDCE [8]. Because some methods are designed for
underexposure, we divided the experiments into two groups, (1) for underexposed images
only, and (2) for all images (combining underexposed and overexposed images).

Table | shows the quantitative comparison with the state-of-the-art methods. For un-
derexposed images, our method performs on par with the state-of-the-art methods. For all
images (combining underexposed and overexposed images), our method achieves the highest
scores in PSNR and SSIM metrics, indicating that our method can effectively handle contrast
enhancement under various lighting conditions.

Qualitive Comparison. We qualitatively compare our method with other state-of-the-art
methods. Fig.2 and Fig.3 show the enhanced results for overexposed and underexposed im-
ages, respectively. As shown in Fig.2, CLAHE loses image detail, LIME and RetinexNet
produce over-enhanced results, WVM, MBLLEN and ZeroDCE still have underexposed ar-
eas, and EnlightenGAN produces color distortion. As shown in Fig.3, MBLLEN still suffers
from over-saturated results, while the other methods are unable to recover overexposed im-
ages well. Unlike these methods, our method can cope with various exposure errors simul-
taneously and produce visually pleasing results.

Generalization. We use BRISQUE [22] and PIQE [26] as no-reference quality accessment
metrics for unlabeled images, where BRISQUE is based on the predictable statistical proper-
ties of natural images and PIQE is related to human visual perception. The lower BRISQUE
and PIQE values are better. We test the generalization ability on the NPE, MEF and LIME
datasets. Note that the trained model has not seen these images. As seen in Table 2, our
method achieves overall top ranking results on both BRISQUE and PIQE metrics, indicating
that our method has better perceptual quality and better generalization performance.

Ablation Study. We perform several ablation studies on MEF dataset to demonstrate the
effectiveness of the unsupervised branch and the unsupervised loss. We remove the un-
supervised branch and place the unsupervised losses on the supervised branch, denoted by
w/o UB. Each loss is removed separately and denoted by w/o L;., w/o Lgp, and w/o Ly,
respectively. We replace the gradient perceptual loss in the full model with the perceptual
loss, denoted as Lg, — Ly, The quantitative and qualitative ablative results are presented
in Table 3 and Fig.4, respectively.
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CLAHE LIME WVM RetinexNet

MBLLEN EnlightenGAN ZeroDCE Ours GT
Figure 2: Qualitative comparison of underexposed images

EnlightenGAN ZeroDCE Ours GT
Figure 3: Qualitative comparison of overexposed images

MBLLEN

Table 2: Generalization evaluation using BRISQUE and PIQE metrics on unlabeled datasets
(LIME, MEF, NPE). Red color indicates the best result. Lower BRISQUE and PIQE values
indicate better results.

Method LIME MEF NPE AVG
CLAHE [39] 34.46/49.52 35.38/55.26  29.16/40.83  33.00/48.54
WVM [7] 24.18/34.80  26.76/40.06 27.25/37.34  26.06/37.40
LIME [9] 23.57/38.20 29.62/43.32  28.60/40.20 27.26/40.57

RetinexNet [30] 26.10/42.77 29.28/40.91 29.05/38.97  28.14/40.88
MBLLEN [19] 30.39/52.28 30.33/47.07 28.61/44.91 29.78/48.09
EnlightenGAN [12] 20.61/33.72 25.71/31.34  24.87/32.81 23.73/32.62
ZeroDCE [8] 23.33/35.87 29.68/36.59 29.96/37.57 27.66/36.68
Ours 22.93/2321 21.42/22.86  24.96/26.62  23.10/24.23
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Table 3: Quantitative ablation studies of the unsupervised branch and the unsupervised loss
on MEF datset. The best results are highlighted in red. Lower BRISQUE and PIQE values
indicate better results.

Model  BRISQUE PIQE

Ours 21.42 22.86
w/o UB 24.66 25.03
w/0 L. 23.44 28.18
w/lo Lg, 27.83 27.39
w/o Ly, 22.85 25.66

Ly — Lper 2835  25.67

Input Ours w/o UB w/o L;, w/o Lg, W/0 Ly, Lgp = Lper

Figure 4: Visualization results of ablation studies for the unsupervised branch and the unsu-
pervised loss.

As shown in Table 3, the best results were obtained by the full model, which proved
the effectiveness of the unsupervised branch and each unsupervised loss. Fig.4 shows the
visualization results of the ablation study. The results of removing the unsupervised branch
appear color distorted compared to the full model. This shows that the unsupervised branch
can avoid limiting to specific data and learn to adapt to more lighting conditions. When
the illumination control loss L;. is removed, the enhanced brightness may not be uniform
enough. Without gradient perceptual loss Lg,, the image will appear jagged textures, sug-
gesting that L, helps to retain the content of input image. Removing the total variation loss
Ly, the enhanced result loses the relative relationships of the neighborhoods and introduces
undesired artifacts. Compared with perceptual loss Lp,,, gradient perceptual loss L,, can
better preserve the image content under different illumination conditions and avoid blurred
results.

5 Conclusion

In this paper, we propose a semi-supervised method for single image contrast enhancement.
The supervised branch is trained using supervised losses under the guidance of ground truth
images. In the unsupervised branch, we use gradient perceptual loss, illumination control
loss and total variation loss to constrain the network. Experimental results demonstrate that
the proposed method outperforms the state-of-the-art methods.
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