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Abstract

Cross-modal retrieval aims to search for data with similar semantic meanings across
different content modalities. However, cross-modal retrieval requires huge amounts of
storage and retrieval time since it needs to process data in multiple modalities. Existing
works focused on learning single-source compact features such as binary hash codes that
preserve similarities between different modalities. In this work, we propose a jointly
learned deep hashing and quantization network (HQ) for cross-modal retrieval. We
simultaneously learn binary hash codes and quantization codes to preserve semantic
information in multiple modalities by an end-to-end deep learning architecture. At
the retrieval step, binary hashing is used to retrieve a subset of items from the search
space, then quantization is used to re-rank the retrieved items. We theoretically and
empirically show that this two-stage retrieval approach provides faster retrieval results
while preserving accuracy. Experimental results on the NUS-WIDE, MIR-Flickr, and
Amazon datasets demonstrate that HQ achieves boosts of more than 7% in precision
compared to supervised neural network-based compact coding models.

1 Introduction

Cross-modal retrieval aims to search for data with similar semantic meanings across different
content modalities, such as audio-text tag search in music recommender systems [13] and
image-text search in web search [8, 25]. In cross-modal retrieval scenarios, features from
different modalities are mapped to the shared space to be compared using searching and
ranking algorithms. However, storing and comparing features from multiple modalities
requires huge computational resources because of the size of the dataset and the number
of modalities [19]. To overcome these challenges, approximate nearest neighbor search
(ANN) [1] across different content modalities has gained huge attention [3]. ANN search
based on compact coding methods, including binary hashing and quantization, is known to
achieve an order of magnitude speed-ups compared to exact Nearest Neighbor (NN) search
while preserving near-optimal accuracy [1, 37].

Compact coding methods learn efficient codes (usually binary values) that can substi-
tute original continuous features. Binary hashing aims to learn binary codes that provide
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Figure 1: Deep cross-modal binary Hashing and Quantization network (HQ). In the training
step, we jointly learn binary codes and quantization codes for data from different modalities.
In the retrieval step, we first narrow down the search space by comparing the Hamming
distance of binary codes, then measure the similarity between the query and the data in the
smaller search space using quantization distance.

competitive accuracy as well as continuous features while reducing the space and the re-
trieval time. Following the success in single-modal retrieval [15, 23, 32, 35, 40], meth-
ods for creating binary hash codes that can connect multiple modalities have been pro-
posed [7, 12, 17, 18, 26, 39, 47]. Furthermore, to overcome the limitation of the expressive
power of binary hashing, quantization-based methods have been explored [6, 38, 46]. Quanti-
zation learns a shared lookup table (a dictionary) consisting of continuous values as well as
binary codes for each data point to indicate which dictionary entry the data point is hashed to.
As aresult, it obtains more accurate approximations compared to simple binary hash codes.
However, such quantization-based methods sacrifice computational efficiency compared to
binary hashing.

In this paper, we propose a new supervised cross-modal retrieval model via deep binary
Hashing and Quantization (HQ). It combines binary hashing and quantization to fully explore
each other’s strengths via simultaneously learning an end-to-end deep learning network. To
fully utilize both codes, we also leverage a two-stage retrieval framework that is widely used
in practice [9, 10, 41]. Thus, HQ can provide more accurate results than binary hashing-based
methods and require fewer computational resources than quantization-based methods. The
overview of HQ is shown in Figure 1.

Our contributions are as follows:

* We propose a cross-modal retrieval model via deep binary hashing and quantization
(HQ). It simultaneously learns binary hash codes and quantization codes using an
end-to-end deep learning architecture to preserve semantic information in multiple
modalities. Both codes are fully utilized by a two-stage retrieval, which first narrows
down search space by comparing the Hamming distance of binary codes, and then
measures the similarity between the query and the data in the smaller search space
using quantization distance measurement.

* We analyze the computation and memory complexity of HQ retrieval process. We show
O(n) times speed-up using HQ compared to the quantization method while maintaining
the same level of memory usage and retrieval accuracy (n is the feature length before
quantization or binary hash).

* We demonstrate the retrieval accuracy of HQ through extensive experiments on the
NUS-WIDE, MIR-Flickr, and Amazon datasets. HQ achieved boosts of more than 7%
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in precision compared to supervised neural network-based models that utilize either
binary hashing or quantization.

2 Preliminaries

Binary hashing Given input x € R”, we compute binary code h, = H(x) € R", where H(-) is
a function that maps continuous value to {+1,—1}. The similarity measurement is Hamming
distance: dist(hy, hy) = sum (h, XOR hy). The larger the value, the greater the dissimilarity
between the two.

Quantization Given input x € R", we compute the quantization x ~ Y, C'bl, where C! €
R"™k is the I-th dictionary book, bi € R¥ is the I-th dictionary index indicator for x. We

b,
will share the same C but will have different index indicators. We use Asymmetric Quantizer
Distance (AQD) to measure quantization similarities: AQD(x,y) = xT (¥, C! bé) A greater
value correlates with a greater similarity between the two. Generally, quantization preserves

more information than binary codes, though it is slower at searching step since AQD requires
more computation than Hamming distance.

assume the input is assigned to only one entry of the dictionary: ‘

= 1. Different inputs
0

3 Related Work

3.1 Cross-modal Hashing

With the increase of multi-modal data, the need for cross-modal retrieval increased, and
creating compact codes for cross-modal retrieval has been extensively explored to provide
efficient retrieval. Hashing methods such as Cross Modality Similarity Sensitive Hashing
(CMSSH) [3], Semantic Correlation Maximization (SCM) [47], and Semantics Preserving
Hashing (SePH) [29] mapped data into a common Hamming space and compared their
similarities using Hamming distance. Probabilistic frameworks were also introduced to
learn both the binary codes and their dimensions [14, 34]. Recently, hashing methods
utilizing deep learning to create features have been explored. Starting with deep visual-
semantic hashing [4] that utilized Convolutional Neural Network and Recurrent Neural
Network to learn text-image modal-shared features to be hashed, Correlation Hashing Network
(CHN) [5] jointly learned data representation from each modality and used a structured
max-margin loss to learn similarity-preserving and high-quality hash codes. Deep Cross-
modal hashing (DCMH) [21] utilized two deep neural networks, one for each modality,
and learned the discrete hash codes directly through a sign function. Deep Joint-Semantics
Reconstructing Hashing (DJSRH) [38] introduced a joint-semantics affinity matrix to combine
the semantic similarity in each modality and improve cross-modal coding similarity. Joint-
modal Distribution-based Similarity Hashing (JDSH) [30] further simplified DJSRH and
proposed a sampling and weighting scheme to strengthen the discriminative ability in hash
codes. UGACH [48], UCH [27] and DADH [2] used generative adversarial networks (GAN)
to learn better representations from different modalities.
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3.2 Cross-modal Quantization

To solve the limitation of the expressive power of binary hashing, quantization has been intro-
duced for single/multi-modal retrieval [16, 49]. Quantized correlation hashing (QCH) [44] is
the first attempt to integrate hash function learning and quantization for cross-modal retrieval.
Composite Correlation Quantization (CCQ) [31] mapped both paired images and texts to
shared latent space and learned composite quantizers that convert the shared latent features
into compact binary codes while preserving both intra-modal similarity and inter-modal
correlation. Collective Deep Quantization (CDQ) [6] introduced a deep neural network to
quantization for cross-modal retrieval. Shared Predictive Deep Quantization (SPDQ) [46]
created a shared subspace across different modalities and private subspaces for individual
modalities. Representations are learned from both subspaces.

Little research has been conducted in combining binary hashing and quantization. Quantization-
based hashing (QBH) [37] is the first attempt to incorporate the quantization-based method
into the similarity-preserve hashing. It learned hashing and quantization codes sequentially.
It minimized a similarity-preserving error to learn binary hash codes. The quantization error
was calculated based on the assumption that data with the same hash code should share the
same dictionary. Thus, the quantization was restricted by hashing. This approach was applied
to single-modal retrieval based on hand-crafted features.

To the best of our knowledge, our work is the first attempt to integrate binary hashing
and quantization in end-to-end feature learning for efficient cross-modal retrieval. Unlike
previous methods, HQ learns binary hash codes and quantization codes simultaneously. We
theoretically and empirically demonstrate that our proposed architecture can achieve faster
retrieval time while preserving retrieval accuracy.

4 Proposed Architecture

4.1 Model Formulation

Model HQ is shown in Figure 1. We use different neural networks to extract continuous
features from different content modalities. For the image network, we can train AlexNet [22]
or VGG-Net [36], and for the text network, we can use the multi-layer perceptron (MLP).
Given the continuous features, we learn binary codes and quantization codes by minimizing
hash loss and quantization loss simultaneously.

Querying can be done in three steps: (1) compute the Hamming distance between a query
item and all items in the database using the binary hash code, (2) select @/N-out-of N closest
items (assume the database size is N, 0 < o < 1), and (3) compute distances between a query
item and the chosen aN items using quantization codes. We use Asymmetric Quantizer
Distance (AQD) to measure quantization similarities. This two-stage query is faster than
directly computing quantization distances using AQD for all N points, and it is more accurate
than only computing Hamming distances using binary codes.

4.2 Loss Functions

There are four parts in the loss function: (1) similarity loss, (2) hashing loss, (3) balance loss
and (4) quantization loss. For simplicity, we define i, j as two data points that come from
different modalities. They have continuous representation features f;, f; and the similarity
label s;; (s;; = 1 means i and j are similar, s;; = 0 means they are dissimilar).
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Similarity loss To measure the similarity of features in different modalities, we adopt the
Maximum a Posteriori (MAP) estimation. The logarithm MAP is:

log p(fi, fjlsij) < log p(sij| fi, f;) P (fi) p(f}) (1)
In Equation 1, the conditional likelihood for similarity label s;; is:
plsijlfi £7) = o ((fi fi)) " (1= 0 (i, £i)) 7 @

where s;; € {0,1}, o(x) =1/(1+¢7) is the sigmoid function. Assuming the prior for f; and
[ is known, the cross entropy loss term is:
Lyim = Y (log(1 +e/) —sijfi. f;))- 3)
i,J
Hash loss We create a binary code that has the same length as the dimension of the

continuous feature. To minimize binary code error, we define the hash loss. Given the binary
code h € {—1,+1}", the hash loss is:

2
L= Y (IIfi = hillz + 115 = hjlIF)- 4)
i,j
Balance loss To ensure we use the bit information maximally, we follow previous
works [12, 43] and minimize balance loss defined as follows:

2 2
Ly = Y (1Al + Ifl[7) )
ij
where 1 is a vector of 1s. It balances the number of +1 and —1 in a generated binary code for
each training sample.

Quantization loss To minimize quantization error, we sum over the results of multiple
dictionary books to approximate the original continuous features: f ~ Y|, C'p'. Each
dictionary book C* € R"*¥, binary indicator b’ € {0, l}k, and Hbl Ho = 1. Then, we can define
the quantization loss as follows:

Lo=Y (lfi—= Y CBilE+I1f; = Y C'BIE) (6)
=1 =1

ij =
Combining these four loss functions, we obtain the final loss function L:
L= lsimLsim + thh + A«hLb + quq 7

where Agim, A, Ap, Ay are the hyper-parameters to balance between different losses.

4.3 Learning Algorithm

We need to learn neural network parameters ®, binary code 4, dictionary book C and 1-of-k
binary indicator b. ® can be optimized by performing back propagation given loss function in
Eq. 7. The optimal solution for minimizing || f —h||% is h = sgn(f), where sgn(x) = 1 if x > 0,
sgn(x) = —1ifx < 0. since h € {—1,+1}.

We follow [6] when updating C and b. C has a closed form solution if we fix other
parameters in Equation 6: C = [F;B! JrFJ-BJTJ (BBl +B J-BJT]’l. F, B are the batched features
and indicators for all training samples. b can be updated by thoroughly checking all possible
indicators since we restrict ||b||, = 1. In each epoch, we alternatively update C and b for a
fixed number of times until they converge.
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Model Memory Computation
Lossless O(32Nn) O(Nn)
Quantization O(32mkn+ Nmlog, k) O(mkn+ Nm)
Binary hash O(Nn) O(Nn)
HQ O(Nn+32mkn+Nmlog, k) | O(Nn+mkn+ otNm)

Table 1: Memory and computation analysis for different models. We assume the total number
of items in the database is N, dense feature dimension n, each of the m quantization dictionary
book has length k.

S Retrieval Efficiency Analysis

In this section, we analyze the computation and memory complexity of HQ and other hashing
methods in the cross-modal retrieval task. We show the complexity comparison between the
lossless model, the quantization model, and the hashing model in Table 1. We include detailed
explanations of the computation and memory complexity and approximation error analysis in
the supplemental material.

Now assume two models: (1) A model with hashing and quantization as described in
Figure 1(a) (HQ); it consists of n-length binary code and m; n X k; dictionaries. After
hamming distance search, it narrows down the database size N to aN (O< o < 1). (2) A
model with only quantization codes; it consists of m; n X ky dictionaries (CDQ [6]).

Claim. If Model one and two use the same amount of memory, retrieval time for Model one will
be O(n) times faster, where n is the continuous feature dimension, with some assumptions.

Proof. The dominant terms in memory storage for Model one and two are O(Nn-+Nm log, k1)
and O(Nm;log, k»). To make them equal, we have O(n + m;log, k1) = O(mylog, ky). We
assume logrk| ~ p1k; and logrkr = prk; and p; = p» = p, where p is a very small constant
number (0 < p < 1). Therefore, O(maky) = O(n/p +miky).

In terms of computation complexity, the dominant terms for Model one and two require
O(Nn+ aNm; + mnk;) and O(Nm, + mpnky). The computation complexity of case two
over case one is:

O(Nmy + manky) _ O(Nmy +mynk, +n2/p) ®)
O(Nn+oNmy +mink;)  O(aNmy +mink; +Nn) '

The right side is derived by assuming Model one and two use the same amount of memory,
i.e. O(lekz) = 0(n/p-|—m1k1).

We can see that the retrieval time advantage is proportional to o.. The more we narrow
down the search space, the faster the retrieval speed is. Also, the advantage is proportional to
the feature size n: we gain more benefit if feature length is large. If we assume O(Np) =1,
Equation 8 becomes O(n). O

6 Experiments

6.1 Dataset

We used NUS-WIDE dataset [8], MIR-Flickr dataset [20] and Amazon Review [33] for
experiments. NUS-WIDE public web image dataset contains images associated with textual
tags. Besides, each image-tag pair is annotated with one or multiple labels from 81 concept
labels. Following the prior work [42], we used a subset of 195,834 image-tag pairs that
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belong to at least one of the 21 most frequent labels. We randomly sampled 10,500 pairs as
training data, 1,050 pairs as validation data, and 2,100 pairs as test data. MIR-Flickr consists
of 25,000 images collected from the Flickr website. Each image-tag sample belongs to at
least one of the 24 labels.We randomly sampled 5,000 pairs as training data, 1,000 pairs as
validation data, and 2,000 pairs as test data. For Amazon dataset, we used image-title pairs
from Grocery and Gourmet Food category. Each image-title belongs to at least one of the 14
categories. We randomly sampled 10,000 pairs as training data, 320 pairs as validation data,
and 2,000 pairs as test data.

The similarity measurement is based on the concept labels associated with the images and
tags. Each pair is similar if they share at least one same label, otherwise they are dissimilar.
We randomly shuffled the tags and re-paired them with images to create dissimilar pairs.
After the shuffle process, we have around 31%, 53%, and 21% similar pairs for NUS-WIDE,
MIR-Flickr, and Amazon datasets respectively.

6.2 Implementation Details

To extract image features in NUS-WIDE and MIR-Flickr, we initialized image feature
extraction networks with pre-trained VGGNet-19 [36] for Section 5.3 and with AlexNet [22]
pre-trained on the ImageNet dataset [11] for Section 5.4. Amazon image features are provided
by the original paper [33]. In all datasets, final image features are 128-length vectors. For text
features, we followed previous work [21] and extracted 1,000, 1,386 and 1,000 most frequently
used tags/words for NUS-WIDE, MIR-Flickr and Amazon, respectively, and created bag-of-
word vectors for text inputs. These vectors were converted to the final 128-length text features
using a two-layer MLP.

We cross-validated the hyper parameters and finally set A, = 0.0001, Ay, = 70, A, =0.01,
A» = 0.01 for NUS-WIDE experiments, A, = 0.0001, Ay, = 50, A, = 0.01, A, = 0.01 for MIR-
Flickr experiments and A, = 0.001, Ay, = 10, A, =0.01, A, = 0.001 for Amazon experiments.
A, was set especially small because we observed quantization loss decreasing much faster
than other losses. N = 100 is set for all experiments. All experiments were performed on a
NVIDIA GeForce GTX 1080 Ti. All codes were written with PyTorch 1.1.0.

6.3 Evaluation Metrics

We performed two tasks: (1) I — T': retrieve relevant texts given an image query and (2)
T — I: retrieve relevant images given a text query. We followed prior works [5, 28] and used
Mean Average Precision (MAP)@50 to evaluate the performances. We also computed the
Harmonic mean of MAP@50 to measure the balanced performance between both tasks.

6.4 Results

In this section, we compare our model with 7 previous models: unsupervised cross-modal
hashing methods CVH [24], LCMH [50], QBH [37], DJSRH [38], JDSH [30], and supervised
methods CMSSH [3], CDQ [6] and DCMH [21]. We trained and tuned DJSRH and JDSH
using the code provided by authors'. We carefully implemented and tuned QBH, CMSSH,
CDQ and DCMH. We also provided Lossless model results as references. Lossless model
only uses a similarity loss and returns continuous-valued features. At the retrieval time, it

Thttps://github.com/zzs1994/DISRH, https://github.com/KaiserLew/JDSH
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NUS-WIDE MIR-Flickr Amazon
16 32 64 128 16 32 64 128 16 32 64 128
Lossless 0.521 | 0.525 | 0.526 | 0.528 | 0.621 | 0.623 | 0.623 | 0.617 | 0.308 | 0.309 | 0.345 | 0.376
CVH [24] 0372 | 0.363 | 0.404 | 0.390 | 0.606 | 0.599 | 0.596 | 0.589 - - - =
LCMH [50] | 0.354 | 0.361 | 0.389 | 0.383 | 0.559 | 0.569 | 0.585 | 0.593 - - - -
QBH [37] 0.524 | 0.439 | 0.266 | 0.329 | 0.573 | 0.495 | 0.401 0.602 | 0.259 | 0.259 | 0.260 | 0.291
1-T DJSRH [38] | 0.479 | 0.493 | 0.494 | 0.464 | 0.582 | 0.580 | 0.575 | 0.572 | 0.287 | 0.300 | 0.305 | 0.334
JDSH [30] | 0.370 | 0.371 | 0.372 | 0.370 | 0.558 | 0.553 | 0.556 | 0.561 | 0.272 | 0.277 | 0.273 | 0.280
CMSSH (3] | 0.351 | 0.353 | 0.353 | 0.370 | 0.605 | 0.602 | 0.579 | 0.536 | 0.283 | 0.270 | 0.280 | 0.288
DCMH [21] | 0351 | 0.467 | 0.413 | 0.389 | 0.628 | 0.633 | 0.609 | 0.595 | 0.274 | 0.292 | 0.294 | 0.305
CDQ [6] 0.498 | 0.491 | 0.508 | 0.515 | 0.638 | 0.615 | 0.604 | 0.585 | 0.265 | 0.279 | 0.286 | 0.312
HQ 0.542 | 0449 | 0.508 | 0411 | 0.585 | 0.583 | 0.610 | 0.583 | 0.293 | 0.301 | 0.332 | 0.354
Lossless 0.489 | 0.485 | 0.552 | 0.548 | 0.641 | 0.630 | 0.648 | 0.643 | 0.309 | 0.310 | 0.324 | 0.354
CVH [24] 0.401 | 0.384 | 0.442 | 0432 | 0.591 | 0.583 | 0.576 | 0.576 - - - -
LCMH 0.376 | 0.387 | 0.408 | 0.419 | 0.561 | 0.569 | 0.582 | 0.582 - - - -
QBH [37] 0.250 | 0.294 | 0.447 | 0337 | 0.604 | 0.614 | 0.523 | 0.521 | 0.273 | 0.274 | 0.274 | 0.281
T—1 DJSRH [38] | 0.365 | 0.367 | 0.378 | 0.384 | 0.578 | 0.589 | 0.583 | 0.583 | 0.280 | 0.275 | 0.273 | 0.272
JDSH [30] | 0.435 | 0.449 | 0.458 | 0.460 | 0.616 | 0.598 | 0.602 | 0.612 | 0.287 | 0.285 | 0.282 | 0.302
CMSSH [3] | 0.393 | 0.393 | 0.383 | 0.381 | 0.560 | 0.588 | 0.603 | 0.607 | 0.274 | 0.271 | 0.273 | 0.304
DCMH [21] | 0.392 | 0.358 | 0.367 | 0.406 | 0.619 | 0.621 | 0.647 | 0.603 | 0.298 | 0.284 | 0.290 | 0.289
CDQ [6] 0.419 | 0.422 | 0.525 | 0.433 | 0.606 | 0.601 | 0.626 | 0.623 | 0.283 | 0.299 | 0.311 | 0.345
HQ 0.493 | 0.473 | 0.547 | 0.432 | 0.628 | 0.640 | 0.630 | 0.625 | 0.305 | 0.309 | 0.322 | 0.332
Lossless 0.504 | 0.504 | 0.539 | 0.538 | 0.631 | 0.626 | 0.635 | 0.632 | 0.308 | 0.309 | 0.334 | 0.365
CVH [24] 0.386 | 0.373 | 0.422 | 0410 | 0.598 | 0.591 | 0.586 | 0.582 - - - -
LCMH [50] | 0.365 | 0.374 | 0.398 | 0.400 | 0.560 | 0.569 | 0.583 | 0.587 - - - -
QBH [37] 0339 | 0.352 | 0.334 | 0333 | 0.588 | 0.548 | 0.454 | 0.559 | 0.266 | 0.266 | 0.267 | 0.286
Harmonic mean | DJISRH [38] | 0.414 | 0421 | 0428 | 0420 | 0.580 | 0.584 | 0.579 | 0.577 | 0.283 | 0.287 | 0.288 | 0.300
JDSH [30] | 0.400 | 0.406 | 0.411 | 0.410 | 0.586 | 0.575 | 0.578 | 0.585 | 0.279 | 0.281 | 0.277 | 0.291
CMSSH (3] | 0371 | 0372 | 0.367 | 0.375 | 0.582 | 0.595 | 0.591 | 0.569 | 0.278 | 0.270 | 0.276 | 0.296
DCMH [21] | 0.370 | 0.405 | 0.389 | 0.397 | 0.623 | 0.627 | 0.627 | 0.599 | 0.285 | 0.288 | 0.292 | 0.297
CDQ [6] 0.455 | 0.454 | 0.516 | 0.470 | 0.622 | 0.608 | 0.615 | 0.603 | 0.274 | 0.289 | 0.298 | 0.328
HQ 0.516 | 0.461 | 0.527 | 0.421 | 0.606 | 0.610 | 0.620 | 0.603 | 0.299 | 0.305 | 0.327 | 0.343

Task Method

Table 2: The MAP@50 of our approach and previous models varying compact code dimension.
Harmonic mean is based on I — T and T — I tasks. (CVH and LCMH results are cited from
the previous paper [45].)

computes cosine similarity between features. The performance results are listed in Table 2.
Comparison to unsupervised models. Compared to the unsupervised method DJSRH,
HQ achieved a relative improvement of 14.37% of average Harmonic mean with different
code dimensions on NUS-WIDE, 5.05% on MIR-Flickr, and 9.95% on Amazon. DJSRH
outperformed other unsupervised and some supervised methods. This is because DJISRH
measures similarities in both single and cross modalities with more parameters. For example,
DJSRH has almost twice the parameters of HQ? when both models use 64-length codes. In
addition, we noticed that the MAP improvements on NUS-WIDE and Amazon were higher
than the ones on MIR-Flickr when comparing supervised and unsupervised models. This
is because NUS-WIDE and Amazon datasets have larger variances in image and text (In
NUS-WIDE and Amazon, the average number of labels for one image were 2.2 and 1.5, while
it was 3.7 for MIR-Flickr.), which makes retrieval difficult without supervision.
Comparison to supervised models. CMSSH uses a boosting algorithm to learn a linear
projection of the original feature and then converts it to binary codes. It does not utilize
any deep neural nets. Thus, it is less accurate than the others. When we compared CDQ
(the quantization model) with DCMH (the binary hashing model), CDQ boosted the average
Harmonic mean on NUS-WIDE and Amazon by 21.5% and 3.4%, while decreasing 1.1% on
MIR-Flickr. Compared to the second best model CDQ, HQ achieved an average Harmonic
mean improvement of 1.75% and 7.24% on NUS-WIDE and Amazon.

Comparison to the model that uses both hashing and quantization. Compared to QBH,

2DISRH requires 120M parameters while HQ requires 62M. The number of parameters was obtained by PyTorch’s
model.parameters().
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Amazon

Task Method 6 V) o 8
Task Method Amazon CDQ+L1 | 0.259 | 0.289 | 0.259 | 0.264
16 32 64 128 I—T | CDQ+L2 | 0.284 | 0.292 | 0.282 | 0.318
T QBH 0.259 | 0.259 | 0.260 | 0.291 HQ 0.293 | 0.301 | 0.332 | 0.354
HQ-b 0.286 | 0.298 | 0.295 | 0.310 CDQ+L1 | 0.296 | 0.292 | 0.318 | 0.297
QBH 0273 | 0274 | 0274 | 0281 T—1 CDQ+L2 | 0.288 | 0.293 | 0.305 | 0.296
T=1 1 Hob | 0289 | 0.290 | 0.288 | 0.306 HQ 0.305 | 0.309 | 0322 | 0.332
QBH 0266 1 0266 | 0.267 | 0.286 CDQ+L1 | 0.276 | 0.290 | 0.285 | 0.280

H-Mean HQ-b | 0.287 | 0.294 | 0.291 | 0.308 H-Mean | CDQ+L2 | 0.286 | 0.292 | 0.293 | 0.307
HQ 0.299 | 0.305 | 0.327 | 0.343

Table 3: MAP@50 of HQ-with-Hamming-

. ) Table 4: MAP@50 of HQ and CDQ-with-
distance evaluation.

regularizer models varying compact code di-
mension.

0.64 /"\
2.2{ —*— CDQ retrieval time/ HQ retrieval time

g 0.62 20 -e- CDQ average MAP/ HQ average MAP
g 1.8
0.60 °
= 1.6
50 60 70 80 90 100 & 14
\\\ 12
- 0.60 e
-@ 1.0
% 0.8
0.55 200 400 600 800 1000
—e— HQ c+D| n
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Compression ratio(%)
Figure 3: Retrieval efficiency and quality
Figure 2: MAP@50 of models with differ- of HQ and CDQ on NUS-WIDE varying
ent code-learning strategy on MIR-Flickr. n. Average MAP is the average of I — T
(I — T on the top, T — I on the bottom) and 7 — I MAP@50.

which learns hashing and quantization codes sequentially, HQ achieved better performances.
There are two possible reasons: (1) QBH cannot fully utilize the quantizer since it is restricted
by hash codes; accordingly, the quantization error was calculated based on the assumption
that data with the same hash code should share the same dictionary, and (2) QBH uses
Hamming distance while HQ uses asymmetric quantizer distance which is more accurate,
especially when the hash code length is short. To remove the measurement bias, we evaluate
the performance of HQ-b which is HQ using the same distance measurement with QBH:
Hamming distance between the query’s and database’s quantization codes in the second-
stage retrieval. In Table 3, we observe that with the same distance measurement, HQ-b still
outperforms QBH.

6.5 HQ Effectiveness Analysis

In this section, we demonstrate the effectiveness of HQ in terms of learning strategy, retrieval
strategy, and retrieval efficiency.

Impact of learning two compact codes. We assume that learning binary code acts as a
regularizer for learning quantization code, and vice versa. To verify this assumption, we
implemented CDQ with L1 and L2 regularizers on the feature extraction neural networks.
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Figure 4: MAP@50 (left) and retrieval time [¢~*sec] (right) per query varying .

The result is shown in Table 4. Indeed, CDQ with L1/L2 regularizer underperformed HQ and
thus verified our assumption.

Impact of simultaneous code-learning. In HQ, we learn quantization codes and binary
codes together. We compare HQ with another model which uses a different learning strategy
while keeping the same loss target and the retrieval method: C+D. C+D trains a CDQ
and DCMH separately, and uses the two-stage retrieval process; it uses DCMH to narrow
down search space and then retrieve final results using CDQ. Unlike HQ, this model learns
quantization codes and binary hash codes separately. We show MAP@50 of both models
varying compression ratio in Figure 2. The compression ratio is calculated based on the
memory required for storing the features. The compression ratio is 1 — P—,;‘ where P, is the
size of memory we need for retrieval in the compressed models, and P is the memory needed
in the lossless model (See Table 1). From Figure 2, C+D did not achieve equally good
results compared to HQ. This proves that learning binary hash codes and quantization codes
simultaneously achieves a better result than learning them separately.

Impact of the two-stage retrieval. In HQ, we select aN-out-of N data points at the first
retrieval step. The size of the subset is important as it balances retrieval accuracy and retrieval
speed. In Figure 4, we show the MAP@50 and retrieval time while varying a. a = 0.0
indicates that we compute MAP @50 only using binary codes, and ¢ = 1.0 indicates we only
use quantization codes to compute distance scores. We found that (1) the combination of
hashing and quantization achieved the best results, (2) the best performance was achieved
when o was around 0.1 ~ 0.3 and 0.6 ~ 0.8, (3) retrieval time was always proportional to o.
Since we learn both hash and quantization codes simultaneously, the information is diffused to
both codes. Therefore, using only quantization for retrieval does not yield best performance.
Retrieval efficiency In Section 5, we proved that HQ retrieval process is O(n) times faster
than CDQ, where n is the continuous feature dimension. We computed the retrieval time
of the two models varying n while keeping the same memory usage amount in Figure 3. It
showed HQ is almost linearly faster than CDQ while keeping similar retrieval accuracy.

7 Conclusions

We proposed HQ, a new cross-modal retrieval structure that combines binary hashing and
quantization. It simultaneously learns both codes to preserve semantic information in multiple
modalities using an end-to-end deep learning architecture. We also leveraged a two-stage
retrieval method for faster and more accurate retrieval results. The experimental results
demonstrated that HQ outperformed supervised neural network-based compact coding models.
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