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Abstract
Most recent generation methods synthesize images from either complex textual de-

scriptions or scene graphs. However, users need to elaborate attributes and relationships
of objects in the scene, and scene graphs are more difficult to obtain. To simplify the
burden of users, in this work, we propose a Label2im model to generate images from
object labels directly with the help of a Knowledge Graph (KG), e.g. Visual Genome. To
acquire rational interactions between objects, we explore possible relationships from the
KG. Considering that there is a large gap between the label domain and image domain,
we propose to learn knowledge representations of the scene graph from the KG to ensure
the semantic consistency. First, given several object labels, we design a Scene Graph Se-
lection Module (SGSM) to explore interactions between objects in the KG and generate
a set of scene graphs. Second, the structure representation and knowledge embedding of
the scene graph are learned and integrated in the Scene Graph Representation Module
(SGRM), which leads to rational scene layouts. Based on the scene layouts and KG,
we employ the Cascaded Refinement Network (CRN) to generate the final image. To
encode knowledge information in the generation process, we propose a Triplet Attention
Module (TAM) which is embedded in the CRN. We verify the effectiveness of the pro-
posed method on the Visual Genome dataset and demonstrate that our method is able to
generate complex images with rich content and fine details.

1 Introduction
Complex scene generation provides great potential for artistic creation, especially for non-
professionals. Users specifying their demands, scene generation models synthesize images
respecting the constraints. For most existing generation methods, users need to provide
detailed textual descriptions of the appearance of objects and their interactions [18, 30] or
elaborate scene graphs which indicate the structure of the scene [1, 11, 14, 19], or design

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
* indicates the corresponding authour.

Citation
Citation
{Li, Zhang, Zhang, Huang, He, Lyu, and Gao} 2019{}

Citation
Citation
{Tan, Liu, Liu, Yin, and Li} 2020

Citation
Citation
{Ashual and Wolf} 2019

Citation
Citation
{Ivgi, Benny, Ben-David, Berant, and Wolf} 2021

Citation
Citation
{Johnson, Gupta, and Fei-Fei} 2018

Citation
Citation
{Li, Ma, Bai, Duan, Wei, and Wang} 2019{}



2 H. XIAO ET AL: KNOWLEDGE GRAPH GUIDED IMAGE GENRATION

Figure 1: The overall architecture of the proposed method, which consists of scene graph
selection, scene graph representation, layout prediction, and image generation.

layouts which specify the spatial relationship of objects [29, 42]. However, all these inputs
increase the burdens of users and limit the model’s creativity. To this end, in this work, we
consider generating complex images directly from object labels.

Because of the domain shift problem between multi-modality data, it is non-trivial to
synthesize images from the semantic domain. In the text-to-image generation methods [18,
30, 36, 40], the uncertainty of the description leads to an uncontrollable generation process.
Therefore, it is necessary to provide specific instructions, such as the attributes and locations
of objects and the interactions among them, which raises demands for users and requires
generation modules to have a high-level understanding of textual descriptions and visual
concepts. In comparison, scene graphs [13] consist of objects as nodes and relationships as
edges and encode the structure information of the scene, which contributes to a better under-
standing of the configuration of objects in the image. However, scene graphs are difficult to
design, thus making this application hard to be used prevalently. Some works [29, 42] learn
to generate images from scene layouts which contain specified category and position of each
object, but the layout constraints limit the structural diversity of generated images.

Compared with the above mentioned tasks, synthesizing realistic images directly from
object labels is more user-friendly. However, it is challenging to project object labels to the
image domain for two reasons. First, label-to-image generation is a one-to-many mapping
problem, in which the lacking of attribute and relationship information of objects may lead
to unreasonable appearance and arrangement of objects in the generated images. Second,
labels only provide basic conceptual information, while images incorporate rich semantic
content. Therefore, there is a large gap between object labels and image domain, which
requires sufficient information and cross-domain semantic consistency.

Our method, Label2im, exploits the KG to alleviate the above issues. For the first issue,
we first construct a KG from the Visual Genome [17]. The KG consists of extensive triplets
indicating the attributes and relationships of common-seen objects in realistic scenes, that
build a bridge between the semantic domain and image domain. Given object labels, we
randomly select triplets which contain the objects from the KG and form a scene graph. For
the second issue, considering that the KG incorporates a large amount of object categories
and their interactions, and besides the specified objects, knowledge embeddings of the scene
graph can introduce external information and lead to rational scene layouts, we construct a
Scene Graph Representation Module (SGRM) to learn knowledge embeddings of the scene
graph from the KG, and then combine the structure information and knowledge embeddings
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of the scene graph by a Knowledge Fusion Module (KFM). In addition, in the image genera-
tion stage, we propose a Triplet Attention Module (TAM) to enforce the in-depth integration
of visual feature and knowledge representation. The overall Label2im network involves
four cascaded stages: first, SGSM explores relationships of objects in the KG and forms
scene graphs; second, SGRM learns structure information and knowledge embeddings of
the scene graph and combines them by the KFM; third, a scene layout is predicted based
on scene graph representation; a final image is generated by a CRN with TAMs considering
both visual and knowledge information.

Our main contributions are three folds: (1) A Label2im network which directly synthe-
sizes images from object labels by the help of the KG. (2) SGSM which automatically selects
scene graph from the KG giving object labels; SGRM represents scene graphs by structure
information and knowledge embeddings; TAM introduces knowledge representations to en-
sure semantic consistency in the image generation process; (3) Quantitative and qualitative
experiments on the Visual Genome demonstrate that the proposed method is able to generate
realistic images with fine details.

2 Related Work
Conditional Image Generation. Conditional image generation aims to synthesize images
respecting the constraints of inputs. The researches of autoregressive approaches [32], Vari-
ational Autoencoders [16], and Generative Adversarial Networks (GAN) [7] lay the foun-
dation for the development of conditional image generation. The work [20] first proposes
the conditional GAN which generates images given class labels. Based on this architecture,
various single-image generated methods are proposed [5, 6, 22]. In recent works, researchers
employ different kinds of conditions to represent the scene aiming to generate semantically
complex images, such as textual descriptions [10, 18, 30, 37], scene graphs [1, 14, 19, 31],
and layouts [3, 23, 26, 29, 42]. Specifically, Chen and Koltun [3] propose a CRN to generate
high-quality images conditioned on pixel-wise semantic layouts. Layout2im [42] gener-
ates images from scene layouts based on disentangled representations and learns appearance
information of objects from image crops. Compared to most text-to-image generation meth-
ods [27, 36, 39] that focus on the flower [21] and bird datasets [33], Obj-GAN [18] outputs
images with complicated scenes from textual descriptions and refines image details with an
object-driven attention mechanism. However, the linear structure of the text feeds the model
with redundant information.

The works of image generation from scene graphs are more related to our work. Given
a scene graph, sg2im [14] utilizes Graph Convolution Network (GCN) to encode the scene
graph, then predicts bounding boxes and masks of objects to form a scene layout, and finally
employ the CRN to generate the images. Inspired by sg2im [14], PasteGAN [19] proposes a
semi-parametric method that additionally inputs optional image crops to improve the image
quality. Considering that it may be inconvenient for users to design layouts, textual descrip-
tions, or scene graphs, our method aims to synthesize realistic images directly from object
labels.
Knowledge Graph and Knowledge Representation. KG [4, 24] is a semantic graph that
stores relation facts, e.g. the triplet (head entity,relationship, tail entity). The emergence
of it has expanded the research ideas for computer vision tasks. To enforce semantic con-
sistency during scene parsing, KE-GAN [25] designs an extra knowledge relation loss and
employs random walk to capture semantic consistencies between labels from KG. Moreover,
Zareian et al. [38] utilize a graph-based neural network to bridge the mapping between KG
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(a) (b)

Figure 2: (a) SGSM. Given the object labels and the KG, scene graphs can be constructed
by randomly selecting triplets from the KG. (b) Scene graphs constructed by the SGSM and
the corresponding generated images.

and scene graphs for better predicting the scene graph from a given image. In this work, we
are concerned with the role of KG for scene generation.

Knowledge representation aims to learn feature embeddings of entities and relationships
in KG. The translation-based knowledge representation methods [2, 8, 12, 34, 35] adopt an
energy-based framework and obey the translation principle h−t ≈ r, where h,r, t indicate the
representations of head entity, relationship, and tail entity in the triplet, respectively. In this
work, we employ KG2E [8] to extract knowledge representations of objects and relationships
and introduce the external information in the generation process.

3 Proposed Method
3.1 Overview
The overall architecture of the proposed method is illustrated in Figure 1. Given the KG
and a set of object labels, the proposed Label2im generates realistic images. First, SGSM
randomly selects a set of triplets which incorporates the given objects in the KG to form
scene graphs. Second, SGRM learns the representation of scene graph. In SGRM, a GCN is
employed to encode the structure information of the scene graph; a knowledge embedding al-
gorithm, KG2E [8] is applied to learn knowledge representations of objects and relationships
in the KG; and then the structure information and knowledge embeddings are combined by
the KFM. Then, a scene layout is output based on the fused features by predicting the bound-
ing box and mask of each object. Finally, we generate the final image by the CRN, in which
we propose a TAM to introduce knowledge information into the visual representations of
images. The KG consists of a large amount of commonly-seen objects as entities and rela-
tionships between them, which can be formulated as triplets T = {(li,rp, l j)} ∈ C ×R×C,
where C = {l1, l2, · · · , lN} is the set of object categories, andR= {r1,r2, · · · ,rP} is the set of
relationships. A triplet t = (li,rp, l j)∈ T represents that the head entity li and the tail entity l j
have a relationship of rp. The input object labels are denoted as O = {o1,o2, · · · ,on|oi ∈ C}.

3.2 Scene Graph Selection Module
As shown in Figure 2(a), given object labels O, the SGSM searches in the KG and randomly
selects a series of triplets {t p

i j = (oi,rp,o j)} in which both head entities oi and tail entities o j

belong to O. These triplets form a directed graph, also known as the scene graph G ∈ (O,E),
where nodes O represents object labels and E ⊆ O×R×O is a set of directed edges of the
form (oi,rp,o j). Note that the number of selected triplets can be specified by users. Because
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Figure 3: SGRM. The scene graph is fed into a GCN to output structure representations of
objects. Based on the KG and labels, knowledge embeddings of objects and relationships
are learned by KG2E. KFM integrates the two features.

of the randomness, we can obtain various scene graphs. Figure 2(b) demonstrates such scene
graphs generated by the SGSM based on the same set of object labels.

3.3 Scene Graph Representation Module
The goal of SGRM is to extract features of the scene graph. As shown in Figure 3, we learn
the structure information and knowledge embeddings of the scene graph, and combine the
two representations by a KFM. We design the following 3 branches.
Structure Representation. A series of graph convolutional layers [14] are employed to
encode the scene graph G = (O,E). Given the initial vectors vi,v j,vp ∈ Rin for objects
oi,o j ∈ O and relationship (oi,vp,o j) ∈ E, the output features v

′
i,v
′
j,v
′
p ∈ RD are computed

by considering the neighborhood features along edges. By pooling candidate features of head
entities and tail entities, we obtain the vector si ∈ RD to represent the structure information
of the object oi.
Knowledge Embedding (KE). We employ KG2E [8] to learn knowledge embeddings of
objects and relationships from the KG. Given the KG T = {(li,rp, l j)}, KG2E represents en-
tities and relationships as high-dimensional Gaussian distributions, namely P l

i ∼N (µ l
i ,Σ

l
i)

for entity li, and Pr
p ∼N (µr

p,Σ
r
p) for relationship rp, where µ ∈ RD is the mean vector and

Σ ∈ RD×D is the covariance matrix (actually replaced with the diagonal covariance). To in-
troduce extra information beyond objects in the scene graph, we randomly sample from the
knowledge representationN (µ l

i ,Σ
l
i) and get ki ∈ RD to represent the knowledge embedding

of object oi. For the relationship rp, we use the mean vector µr
p as its feature embedding.

Knowledge Fusion Module (KFM). The KFM fuses the structure representation and knowl-
edge embedding of each object. Since structure representations are derived from the scene
graph, and knowledge embeddings which are learned in the KG incorporate extra informa-
tion beyond the objects, the combination of these two features can lead to more powerful
representations. In this module, we transform the knowledge embedding by the guidance of
the structure representation si. Concretely, the structure representation is first encoded by
two fully-connected layers, respectively, and then integrated by a linear system,

γi = fγ(si),βi = fβ (si), (1)

ei = γi�ki +βi, (2)
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Figure 4: Triplet Attention Module. Visual level: the output feature is segmented from the
spatial dimension into several image sub-region features. Triplet level: the knowledge infor-
mation of the three elements in the triplet is fused to obtain the triplet features. Finally, the
visual feature is updated by knowledge information of triplet in conjunction with attention
mechanisms.

where � means element-wise product and γi,βi ∈ RD.

3.4 Layout Prediction
Based on the integrated features output by the KFM, a scene layout is predicted by learning
the bounding box and mask of each object. Following [14], we feed the integrated represen-
tation ei of the object oi in a box prediction network and a mask prediction network to give
a bounding box bi = (xb,yb,xt ,yt) and a soft binary mask mi of shape m×m. The object
layout is obtained via warping the mask embedding to the position of the bounding box by
the bilinear interpolation operation. We sum all the object layouts to give a scene layout.

3.5 Image Generation
Given the scene layout and Gaussian noise, an image is generated and refined by a CRN [3]
in a coarse-to-fine manner. The CRN is composed of a set of Cascaded Refinement Modules
(CRMs). Each CRM takes as input the channel-wise concatenation of the scene layout and
the feature maps of the previous module. Then the input is fed into a pair of convolutional
layers. The output feature map is passed to an up-sampling layer and input to the next CRM.
Triplet Attention Module (TAM). To improve the semantic consistency between the label
domain and the image domain, we propose a TAM to integrate the triplet knowledge em-
beddings and the visual features produced by the CRM, shown in Figure 4. On the visual
level, we denote the output visual feature from the CRM as u with the size h×w× d. We
then reshape it according to the column dimension and get the visual matrix û with the size
K×d, where K = h×w. On the triplet level, we first concatenate the knowledge embeddings
ki,µ

r
p,k j of the triplet {t p

i j = (oi,rp,o j)} and then input it in a fully-connected layer to output
a knowledge vector yp

i j,
yp

i j = FC([ki,µ
r
p,k j]). (3)

We aggregate the knowledge vectors of all triplets to obtain the knowledge matrix Y with the
size M×d, where M is the number of triplets in the scene graph. Then a visual-knowledge
affinity matrix A ∈ RK×M is computed by a matrix multiplication operation

A = û×YT . (4)
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We process it with a so f tmax function to get the attention matrix At in which the summation
of each row equals to 1. Therefore, the element at

uv ∈ At represents the attention that the u-th
visual feature pays to the v-th triplet. Subsequently, the visual representation is transformed
under the guidance of the knowledge embedding of triplets

uT = At ×Y, (5)

and reshaped to the size of h×w×d. Then the concatenation feature [uT ,u] is processed by
a 1×1 convolutional layer to get u∗ ∈ Rh×w×d , which is finally input to the next CRM.

3.6 Training
We train two discriminators Dimg and Dob j adversarially against the generation network,
similar to sg2im [14]. SGSM does not participate in training. Given the scene graphs, the rest
components of Label2im including SGRM, layout prediction, and image generation network
are trained in an end-to-end manner. We use ground truth scene graphs during training and
use SGSM to generate scene graphs at test time. The generation network minimizes the
following objective function which consists of 7 losses,

L= λ1Lpix +λ2Lbox +λ3Limg
GAN +λ4Lob j

GAN +λ5Lob j
AC +λ6Limg

p +λ7Lob j
p , (6)

where pixel loss Lpix = ‖I − Î‖1 is the L1 loss between the ground truth image and the
generated image; box loss Lbox = ∑

n
i=1 ‖bi − b̂i‖ is the L1 loss between the ground truth

boxes and predicted boxes; image adversarial loss Limg
GAN and object adversarial loss Lob j

GAN

are from the discriminators Dimg and Dob j, respectively; auxiliary classifier loss Lob j
AC ensures

each generated object to be classified by Dob j; image perceptual loss Limg
p is the cosine

distance between the features of ground truth image and the generated image, similar to [19];
object perceptual loss Lob j

p is the cosine distance between the features of the ground truth
object crop and the generated object, similar to Limg

p ; and coefficient λ1,λ2, · · · ,λ7 are hyper-
parameters. Note that the first 5 losses are consistent with sg2im.

4 Experiments
4.1 Experiment Settings
Dataset. We train and test the proposed method on the Visual Genome [17]. Visual Genome
incorporates a large amount of triplet annotations of different object categories from various
realistic scenes. Based on these triplet annotations, we construct a large-scale KG and adopt
the preprocessing and data split strategy of [14].
Implementation Details. The feature dimension is set to D = 128 in Section 3.3. The
hyper-parameters λ1,λ2, · · · ,λ7 in Equation 6 are 1, 10, 1, 1, 0.1, 0.5 and 1. Our model
is optimized by the Adam algorithm [15] with learning rate 10−4 and batch size 32 for 1
million iterations. All experiments are conducted on a single GeForce RTX 2080 Ti GPU.
According to the settings of previous works [14, 19, 42], we train our model to generate
64×64 images.
Evaluation Metrics. We employ four commonly-used metrics to evaluate the performance
of compared methods, including Inception Score (IS) [28], Fréchet Inception Distance (FID)
[9], Diversity Score (DS) [41], and Classification Accuracy (AC) [43]. More implementation
details and descriptions of metrics can be found in the supplementary material.
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Figure 5: Visual results of sg2im [14] and Label2im on the Visual Genome.
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Method IS↑ FID↓ DS↑ AC↑
Real Imgs 13.9±0.5 - - 50.16
sg2im[14] 5.5±0.1 71.27 0.12±0.06 32.72
PasteGAN[19] 6.9±0.2 58.53 0.24±0.09 -
Label2im-sg 7.4±0.2 43.49 0.11±0.13 39.75
Label2im 7.2±0.2 44.61 0.35±0.07 33.65
sg2im(GT) 6.3±0.2 52.96 0.15±0.12 43.44
Layout2im[42] 8.1±0.1 31.25 0.17±0.09 48.09
PasteGAN(GT) 8.2±0.2 35.25 0.29±0.08 -
Label2im(GT) 8.4±0.2 37.97 0.08±0.10 48.99

Table 1: Performance of the evaluated methods on the Visual Genome. Label2im-sg means
providing ground truth scene graphs during test time. GT means using ground truth bounding
boxes.

4.2 Comparison with State-of-the-Arts
We compare the proposed method with 3 state-of-the-art scene generation models, including
sg2im [14], PasteGAN [19], and Layout2im [42].
Quantitative Evaluation. As shown in Table 1, for fairness, if we provide ground truth
scene graphs at test time, our method (Label2im-sg) performs favorably against the com-
pared methods on most metrics except for the DS, which indicates that our method is infe-
rior in generating diverse images. This may be because that we employ the KG2E to extract
knowledge representations of objects. This method models the certainty of entities and rela-
tionships, and thus degrades the diversity of our generation model. However, we can solve
this problem by randomly generating different scene graphs by the SGSM (see Label2im
in Table 1). Note that both PasteGAN and Layout2im extract appearance information from
real image crops, while we compensate information from the KG with non-image modali-
ties. Our method achieves competitive or even better performance with these models given
ground truth bounding boxes (see Label2im(GT) in Table 1).
Qualitative Evaluation. The visual results in Figure 5 show that our method improves im-
age quality and is more sensitive to relationships in the scene graph. Such as Figure 5(e),
images generated by our method is more fitting to the triplet (man,above,snow). This at-
tributes to the knowledge representation learning in the KG which makes our method better
understand the interactions between objects. The improvement in image quality from given
ground truth layout also demonstrates the effectiveness of the TAM. The two scene graphs
(Generated Graph(A and B) in Figure 5) output by the SGSM and the generated images (La-
bel2im(A and B)) indicate that our method can generate diverse images. More visual results
are shown in the supplementary material.

4.3 Ablation Study
Given ground truth scene graphs, we conduct ablation studies to verify the necessity of
SGRM and TAM. As shown in Table 2, compared to sg2im, Baseline further adopts the im-
age and object perceptual lossLimg

p andLob j
p (Equation 6). In +KE+Cat, based on the Base-

line, we further learn knowledge embeddings of scene graphs, and replace the KFM with
the concatenation operation. In +KE+KFM+Global, to replace TAM, inspired by [31],
we extract a global vector from the scene graph and concatenate it with the layout in the im-
age generation process. TAM w/o Rel omits the relationship features in the TAM. w/o Limg

p
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Figure 6: Generated images given scene graphs in the ablation study.

Method IS↑ FID↓
Real Imgs 13.9±0.5 -
Sg2Im[14] 5.5±0.1 71.27
Baseline 6.1±0.2 53.86
+KE+Cat 6.4±0.1 51.64
+KE+KFM 6.7±0.1 50.93
+KE+KFM+Global[31] 6.8±0.2 50.75
+KE+KFM+TAM w/o Rel 7.1±0.2 44.34
+KE+KFM+TAM w/o Limg

p 6.5±0.1 53.55
+KE+KFM+TAM w/o Lob j

p 7.3±0.2 44.06
+KE+KFM+TAM (Ours) 7.4±0.2 43.49

Table 2: Ablation Study on IS and FID. ↑ means higher is better; ↓ means lower is better.

and w/o Lob j
p omit the image and object perceptual loss Limg

p and Lob j
p respectively during

training phase.
+KE+Cat outperforms the Baseline, which verifies that knowledge information con-

tributes to the representations of scene graphs. Compared with +KE+Cat, the better per-
formance of +KE+KFM indicates that it is beneficial to integrate structure information and
knowledge embeddings adaptively. Comparing +KE+KFM +Global and +KE+KFM+
TAM, it is more effective to employ the TAM to guide the generation process. Comparing
+KE+KFM+ TAM w/o Rel and +KE+KFM+TAM, it shows that relationship informa-
tion is important to image generation. The visual results in Figure 6 prove that knowledge
embedding is necessary for image details and TAM enhances semantic consistency between
images and triplets (note the part marked in blue in the scene graph).

5 Conclusion
In this paper, we propose an image generation method from object labels, called Label2im.
To ease and diverse the access to relationship interactions between labels, we generate pos-
sible scene graphs by the SGSM. To fill the gap between the semantic domain and the image
domain, we propose to learn and integrate structure information and knowledge embeddings
of the scene graph in SGRM. In the image generation process, we propose a TAM to intro-
duce knowledge representation to ensure the semantic consistency. Extensive experiments
on the Visual Genome demonstrate that our method is able to generate realistic images given
object labels and better respects the scene graph.
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