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Abstract

Video generation is a challenging task that requires modeling plausible spatial and
temporal dynamics in a video. Inspired by how humans perceive a video by grouping a
scene into moving and stationary components, we propose a method that decomposes the
task of video generation into the synthesis of foreground, background and motion. Fore-
ground and background together describe the appearance, whereas motion specifies how
the foreground moves in a video over time. We propose V3GAN, a novel three-branch
generative adversarial network where two branches model foreground and background
information, while the third branch models the temporal information without any super-
vision. The foreground branch is augmented with our novel feature-level masking layer
that aids in learning an accurate mask for foreground and background separation. To
encourage motion consistency, we further propose a shuffling loss for the video discrim-
inator. Extensive quantitative and qualitative analysis on synthetic as well as real-world
benchmark datasets demonstrates that V3GAN outperforms the state-of-the-art methods
by a significant margin.

1 Introduction
Unsupervised feature representation learning from unlabeled data has been a problem of
great interest in Computer Vision. Other tasks like classification, clustering, etc. can benefit
from the knowledge of content and dynamics present in the learned feature representation.
Deep Generative models have achieved great success in unsupervised learning by generating
images [2, 5, 11, 20] from latent noise vectors. In contrast, a similar level of success has
not yet been achieved in video generation. This is primarily because the video data is more
complex due to the presence of the temporal dimension. For generating photorealistic videos,
the model must learn the abstraction of different objects along with the evolution of their
motion over time.

Many of the existing works [21, 26, 27, 30] have proposed Generative adversarial net-
works (GANs) to address this task. However, the videos generated by these models are
still subpar from the real videos, specifically for complex datasets like UCF101. VGAN
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[27] decomposed the task of video generation into foreground and background, but it lacked
motion consistency. MoCoGAN [26] and G3AN [30] disentangled motion and appearance
in the latent space but suffered in visual quality because they focus on the foreground and
background together. Studies have shown that infants learn the physical dynamics in an un-
supervised way by connecting moving things as a single object and things moving separately
from one another as multiple objects [25]. We utilize this idea and propose a novel generative
method, V3GAN, which divides the task of video generation into foreground, background
and motion generation, as illustrated in figure 1 (left). Here, the topmost branch generates the
motion; the middle and bottom branches learn to separate the foreground and background
using the notion of a mask. We argue that the content of a video can be described using
these three key components. The foreground provides information about the main object(s)
in the video, the background informs about where they are, and the motion says what they
are doing.

To maintain the frame quality and motion consistency in the generated video, similar
to existing works, we also use image and video discriminators, as shown in figure 1 (left).
Despite using these, motion across the frames of a video is not smooth. These inconsisten-
cies can be reduced if the video discriminator can pay attention to the temporal information.
To enforce this, we propose a shuffling loss where the discriminator tries to distinguish be-
tween the real video and shuffled video. We empirically demonstrate the efficiency of the
proposed method by evaluating our method on a synthetic dataset (Shapes) and real-world
datasets (Weizmann Action, UCF101). To summarize, the key contributions of the proposed
method are as follows:(i) a novel framework V3GAN, which maps latent noise vectors to the
background, foreground and motion for video generation. (ii) a novel feature-level masking
layer that learns the mask for intermediate convolution features to obtain a refined fore-
ground mask. (iii) a novel shuffling loss for video discriminator which complements the 3D
convolution-based video discriminator by penalizing the incorrect order of frames irrespec-
tive of how realistic the individual frames are.

2 Related Work
Limited work has been done in video generation problems because of high computation re-
quirements and enormous possibilities of variations in a video. A generated video may vary
in content, speed, color, and intensity, but it has to be highly correlated along the tempo-
ral dimension. To tackle this problem, existing works have tried VAEs [13] and GAN [5]
based architectures. To reduce the complexity of the video generation task, many existing
approaches have focused on conditional video generation. For instance, the tasks of future
frame prediction [14, 17, 32], video generation from single image [15], video interpolation
[1, 16] are all conditioned on images. Presence of appearance and structure information
make these tasks simpler from unconditional video generation where the input is a noise
vector. Some of these methods also use additional cues like human keypoints [3, 10], optical
flow [15] etc. learned implicitly or explicitly from the input data.

Unconditional Video Generation: Early video generation approaches [27] use basic
3D spatio-temporal convolution networks to capture spatial as well as temporal information.
VGAN [27] attempted to disentangle the background and foreground with two-stream 3D
convolution architecture. TGAN [21] proposed to use two generators. Temporal generator
outputs a sequence of noise vectors corresponding to the frames in a video. The image
generator then maps these noise vectors to the RGB frames. MoCoGAN [26] extends TGAN
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Figure 1: Left: Overview of proposed V3GAN architecture. Right: Illustration of back-
ground and foreground, the mask estimated, and the �nal generated video frames obtained
by combining the three former components.

by replacing the temporal generator with the recurrent GRU network. It further introduced
another noise called content noise and tried to disentangle the content (appearance) and
motion in a video. Learning motion information in latent space makes the video inconsistent
temporally. Few works [4, 8] have also tried object-centric approaches. Follow-up work of
[26], G3AN [30] proposed a three-stream generator which takes two noise vectors for motion
and appearance, respectively. Third stream takes the concatenation of both noise vectors and
passes it through spatio-temporal network to generate the output video. Disentangling the
appearance and motion is dif�cult for complex real-world data like UCF101. Thus, methods
like MoCoGAN, G3AN fail to generate high-quality videos for such distribution, see �g. 4.

We observe that decomposing the video generation into foreground, background and mo-
tion can signi�cantly reduce the learning complexity, as the model now focuses on learning
the temporal dynamics only for the moving object. We propose a framework that generates
foreground, background and motion simultaneously to create high-quality diverse videos
from the underlying data distribution. Closest to our work in the literature is VGAN [27].
But unlike VGAN which shares the weight of foreground and mask generation network ex-
cept the last layer, our model decomposes foreground and background at the feature level as
well and propagates the mask to the next layer. This enables the network to generate good
quality foreground masks.

Several works have used the shuf�e based self-supervision [18, 28, 29] on videos as it
does not require manual annotation. In [29], Wang and Gupta proposed a Siamese network
[18] trained to sort the input sequence in correct order. Wang et al. in [28] proposed a shuf�e
discriminator which learned whether the input optical �ow maps generated by the model
are shuf�ed or not. Unlike [28], we propose a shuf�ing loss which is applied to the raw
RGB images from the training data. Shuf�ed real videos helps the discriminator to focus on
temporal information even if the individual frames are realistic.

3 Proposed Method

We propose a three-branch deep generative model that addresses the problem of video gener-
ation. The model itself splits the problem into three sub-tasks, namely, foreground generation
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Figure 2: Architecture diagram of proposed V3GAN.VT , VFG, VBG correspond to temporal,
foreground, and background branches shown in blue, red, pink respectively.VM is the feature
level masking layer shown in black. InputzT andzBG are sampled from the Gaussian noise.

along with the foreground mask, background generation, and motion modelling. For learn-
ing both spatial and spatio-temporal dynamics, the model uses a frame discriminator and a
video discriminator. We propose to use shuf�ing loss so that even small temporal incon-
sistencies in the model are penalized. In section 3.1, we will elaborate upon the Generator
of V3GAN framework along with the proposed feature level masking layer. In section 3.2,
we discuss about the discriminator. In Section 3.3, we present the proposed shuf�ing loss
and the strategy used to generate the shuf�ed video. Lastly, in Section 3.4, we discuss the
objective function used for training V3GAN.

3.1 Generator

V3GAN generator consists of three branches, which are the temporal branchVT , the fore-
ground branchVFG augmented with the feature level masking layerVM and the background
branchVBG as shown in �gure 2. The inputs to the generator are two noise vectorszBG andzT
corresponding to the processing pipeline of background and motion respectively. We notice
that foreground is highly entangled with the motion, and all possible combinations of fore-
ground and backgrounds are also not semantically meaningful. For instance, a surfer sur�ng
on the road is an unrealistic scenario. Therefore, the foreground noise vector is chosen to be
the concatenation ofzBG andzT .

The choice of convolution operations is one of the key elements to enforce that each
branch learns unique features. Given the assumption that there is no appreciable camera
motion, i.e., the foreground object is the moving component, the background can be treated
as a �xed 2D bitmap layer shared over the entire video. Hence, the background branchVBG is
designed to be independent of other branches.VBG upsamples the input only spatially using
the Conv2D transpose layer. The output ofVBG is a single 2D image which corresponds to
the background of the generated video.

TheVT branch is tightly coupled with theVFG branch, as the moving foreground will
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Figure 3: From left to right: Illustrations of background, foreground, mask; and the �nal gen-
erated video obtained by combining these components on Weizmann (top), Shapes (middle),
UCF101 (bottom) datasets.

be highly correlated with the temporal dynamics. We use a noise vectorzT as input which
evolves in temporal dimension by upsampling the input with Conv1D transpose layers. This
branch learns the global motion information and guides the foreground streamVFG by pro-
viding clues on various motion aspects like how to move, with what speed, direction of
motion, etc. The output of each Conv1D transpose layer is repeated spatially to match the
dimension of the foreground features. The resulting features are then combined with the
foreground features using element-wise addition.

Foreground branchVFG seeks to generate the spatio-temporal features. This branch con-
sists of �ve Conv(1+2)D transpose layers. Conv(1+2)D operation [31] is factorized form
of Conv3D transpose which is Conv1D transpose followed by Conv2D transpose. Conv1D
transpose helps the foreground to learn the temporal component and Conv2D transpose helps
to learn the spatial content of the foreground. The output features of Conv(1+2)D layer are
added with the corresponding temporal features. The resulting features are then concate-
nated with the feature level masking layer as shown in �gure 2. Conv3D layer is introduced
at the output ofVFG to get the desired foreground in RGB domain from the learned features.

Feature level masking: Another key element for achieving the successful decomposi-
tion of foreground and background is the quality and accuracy of the generated foreground
mask. Inspired by [27], we attempt to learn the mask from the foreground branchVFG in
an unsupervised manner by using the following relationship between the foreground (F),
background (B) and mask (M) for videoX.

Xi = Mi � Fi + ( 1� Mi) � Bi ; Mi 2 [0;1] (1)

whereXi , Mi , Fi and Bi are theith pixel in the video, mask, foreground and background
respectively.

The input to the masking layer is a �xed vectorzM = 1 concatenated withzFG along
the channel dimension. ConsideringzM = 1 implies thatzFG completely belongs to the
foreground, which enforces the branchVFG to focus on foreground features. The implicit
assumption here is that at the initial layer, all channels ofzFG represent the foreground. The
input is then passed through �ve Conv3D transpose layers to learn the spatio-temporal fea-
tures. Each intermediate masking feature is concatenated with foreground features. Output
of each stage has a single channel with sigmoid activation function. Empirical results show
that feature level masking improves the performance of the video generation substantially.
The evaluation results are reported later in section 4.
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3.2 Discriminator

V3GAN consists of two discriminators similar to MoCoGAN [26], a video discriminator and
an image discriminator. Unlike MoCoGAN, we also pass shuf�ed video as input to video
discriminator. Video discriminator contains Conv(2+1)D layers and the image discriminator
contains Conv2D layers. We used spectral normalization [19] in the discriminator as well as
in generator to stabilize the training.

3.3 Shuf�ing Loss

The video discriminatorDV uses (2+1)D convolution to focus on both spatial and temporal
aspects of the input. We propose a shuf�ing loss that exploits the sequential ordering of
frames of a video. This loss enforcesDV to emphasize on the correctness of motion. The
knowledge of incorrect ordering of frames vs. the correct ordering of frames is imparted to
DV , explicitly, by training it to classify a shuf�ed real video sequence as fake. Letsh be
the shuf�ing function which takes the real videoX and shuf�ing parametera as input to
generate the shuf�ed video that is hard for the discriminator to classify. The shuf�ing loss is
then de�ned as follows:

Lshu f f le(X;a ) = E[log(1� DV (sh(X;a ))] (2)

The shuf�ing parameter controls the fraction of frames to be shuf�ed. The functionsh is
de�ned as follows:
Step 1: Selecta N frames uniformly at random from the real video whereN (here 16) is
the length of the video.Step 2: Swap a selected frame with its �rst or second neighbouring
frame. The empirical analysis for shuf�ing loss can be found in Section 4.3.

3.4 Loss Function

The feedback from bothDV and DI are used to train the network. BothDV and DI use
adversarial loss functions as proposed in [20]. The learning problem of V3GAN is given in
eq. 3 whereFI is the loss function of image discriminator andFV is the loss function of video
discriminator. The de�nitions for these losses are given as:

min
G

max
DI ;DV

(FI (G;DI ) + FV (G;DV )) (3)

FI = E[logDI (Xf )] + E[log(1� DI (G(zBG;zT ) f ))] (4)

FV = E[logDV (X)]+ E[log(1� DV (G(zBG;zT )))] + Lshu f f le(X;a ) (5)

G represents the generator. Subscriptf in the loss function ofDI refers to the randomly
sampled frame from the video.Lshu f f lerepresents the shuf�ing loss as described in eq. 2.

4 Experiments

We evaluate our method on the following datasets:
Shapes Dataset[26] is a synthetic dataset, containing 4000 videos of circles and squares

of different colors and sizes on a black background. To understand the ability of the model
to decompose foreground, background and motion, we randomly sample a texture as back-
ground from 7 different textures and apply it to each moving shape video.
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Figure 4: Qualitative comparison of performance with state-of-the-art methods: MoCoGAN
and G3AN, on: Weizmann (top), Shapes (middle) and UCF101 (bottom) datasets. For the
sake of illustration, frames are sampled at equal intervals from the video.

Weizmann Action Dataset[6] contains 93 videos of 9 people performing 10 actions,
including running, jumping jack, etc. We augment the data by horizontal �ipping.

UCF101[24] is a commonly used dataset for video generation, containing more complex
and variety of videos. It includes 13,220 videos of 101 different action categories. Since
UCF101 contains some videos with moving background, we stabilize the camera motion by
adopting the stabilization process as in [27]. For both Action and UCF101 datasets, the video
frames are rescaled to 85x64 then centre cropped to 64x64, same as in [21].

Implementation Details: For all our experiments, the dimension ofzBG is set to 128 and
that ofzT is set to 10. Shuf�ing parameter is set toa = 0:5 and batch size is 16. The input
videos contain 16 frames with resolution of 64� 64. Adam optimizer [12] is used to train the
network withb1 = 0:5 andb2 = 0:999. Learning rate for generator and discriminators is set
to 10� 4. The details of the network architecture design can be found in the supplementary
document (SD). Source code will be made public.

4.1 Quantitative Evaluation

We compare the proposed method quantitatively with four state-of-the-art (SOTA) meth-
ods, VGAN, TGAN, MoCoGAN and G3AN using Frechet Inception Distance (FID) [9] and
Inception Score(IS) [23]. FID metric is the squared Wasserstein distance between two mul-
tidimensional Gaussian distributions:N (m;S). We used a deep 3d CNN network of [7]
to extract the mean and covariance of the distributions, which is then used to calculate the
FID metric using FID= jm� mwj2 + tr(S+ Sw � 2(SSw)1=2). Lower FID indicates better
quality of the generated videos. For evaluation, we generated 5000 video samples using the
trained model and calculate FID value. IS is the KL divergence between class conditional and
marginal probability distribution exp(Ex� pg(KL(p(yjx)jj p(y)))) . Since the inception model
must be pretrained on the data for which IS is calculated, we reported IS only for UCF101.

Table 1 contains the FID and IS for four prior published works along with ours. Our
method outperforms all other baseline methods suggesting that the learned data distribu-
tion is closer to the real data distribution. V3GAN outperforms the SOTA even without
using shuf�ing loss indicating that the decomposed representation is able to learn the spatio-
temporal dynamics better. We note that, for Shapes dataset, the FID of our method is signi�-
cantly lower than G3AN model. On visualizing the generated videos using both methods, we
found that the videos generated by G3AN lack diversity. It generates a combination of only 3
backgrounds out of 7, whereas V3GAN generates videos with all 7 backgrounds. Moreover,
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Method Shapes Weizmann UCF101
UCF101
(Stable)

(FID#) (FID#) (FID#) (IS" ) (FID#)
VGAN [27] - 158.04 115.06 2.94 -
TGAN [21] - 99.85 110.58 2.74 -
MoCoGAN [26] 144:87† 92.18 104.14 3.06 218:59†

G3AN [30] - 86.01 91.21 3.62 -
G3AN* 168† 68:19† 86:73† 3.44 102:13†

V3GAN (w/o shuf�e) 62.59 64.33 78.71 3.84 75.64
V3GAN + shuf�e (Ours) 28.07 62.65 80.18 3.88 74.36

Table 1: Quantitative comparison with SOTA methods using FID metric for Shapes, Action,
UCF101 including stabilized UCF101 datasets. † indicates that the values are obtained by
training the of�cial codes provided by the authors. G3AN* contains value after running
of�cial code with modi�ed discriminator, which uses Conv(2+1)D instead of Conv3D.

Figure 5: (a) Ablation study: Generated videos obtained by removing each branch of
V3GAN. (b) Examples of videos generated by V3GAN on Shapes (�rst two rows and
UCF101 (last two rows) datasets.

by design, V3GAN uses the same background over all frames in a video leading to a much
better temporal consistency. Since the background of synthetic data does not contain illumi-
nation, shadows and other inherent variations over frames, it gives an impetus to our model
for a drastic improvement for Shapes dataset. UCF101 dataset contains small background
motion. Therefore, we have trained our model on the original data as well as stabilized data.
Our method outperforms SOTA methods in both scenarios. In the last row of table 1, we
show the effect of using the proposed shuf�ing loss. It is evident that shuf�ing improves the
temporal consistency of the video resulting in better FID values on all datasets.

4.2 Qualitative Evaluation

In �gure 3, we show the background, foreground and mask generated by our model along
with the generated video for the three datasets. Our network is able to decompose the fore-
ground and background with the help of the mask without any supervision. To verify the
improvement in the visual quality of the generated videos, we compare our results with that
of MoCoGAN and G3AN qualitatively. Figure 4 shows that, our method is able to generate
in-line appearance of the front content. In the �rst row, the hands of the person are clearly


