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Abstract

Supervised learning-based methods yield robust denoising results, yet they are inher-
ently limited by the need for large-scale clean/noisy paired datasets. The use of unsu-
pervised denoisers, on the other hand, necessitates a more detailed understanding of the
underlying image statistics. In particular, it is well known that apparent differences be-
tween clean and noisy images are most prominent on high-frequency bands, justifying the
use of low-pass filters as part of conventional image preprocessing steps. However, most
learning-based denoising methods utilize only one-sided information from the spatial
domain without considering frequency domain information. To address this limitation,
in this study we propose a frequency-sensitive unsupervised denoising method. To this
end, a generative adversarial network (GAN) is used as a base structure. Subsequently,
we include spectral discriminator and frequency reconstruction loss to transfer frequency
knowledge into the generator. Results using natural and synthetic datasets indicate that
our unsupervised learning method augmented with frequency information achieves state-
of-the-art denoising performance, suggesting that frequency domain information could
be a viable factor in improving the overall performance of unsupervised learning-based
methods.

1 Introduction
Based on clean and noisy image pairs, supervised learning-based image denoisers have
shown impressive performance compared to prior-based approaches. A large number of
high-quality image pairs play an important role in the performance of supervised learning-
based methods. However, constructing large-scale paired datasets may be unavailable or
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expensive in real-world situations. For this reason, image denoising methods that do not
require clean and noisy image pairs have recently drawn attention.

A noisy image x is usually modeled as the sum of clean background y and noise n:
x = y+n. Subsequently, noise corrupts the benign pixels, which makes it hard to distinguish
the pixels of noise and content in the spatial domain. However, in the frequency domain,
noise and content can be easily identified. As shown in Figure 1 (a), we observe that the noise
lies in the high-frequency bands and semantic information lies in the low-frequency bands.
Furthermore, in Figure 1 (b), we note that apparent differences between clean and noisy
images are most prominent on high-frequency bands. It may indicate that the frequency
domain provides useful evidence for noise removal. However, the recent learning-based
denoisers overlook the frequency domain information and use only one-sided information
from the spatial domain.

Motivated by these observations, we propose the unsupervised denoising method that re-
flects frequency domain information. Specifically, with a generative adversarial network as
a base structure, we introduce the spectral discriminator and frequency reconstruction loss
to transfer frequency knowledge to the generator. The spectral discriminator distinguishes
the differences between denoised and clean images on high-frequency bands. By propagat-
ing this knowledge to the generator for noise removal, the generator considers the frequency
domain and thus produces visually more plausible denoised images to fool the spectral dis-
criminator. The frequency reconstruction loss, combined with the cycle consistency loss,
improves the image quality and preserves the content of images while narrowing the gap
between clean and denoised images in the frequency domain.

The main contributions of our method are summarized as follows: 1) We propose the
GAN-based unsupervised image denoising method that preserves semantic information and
produces a high-quality noise-free image. 2) To the best of our knowledge, it is the first
approach to explore the potential of the frequency domain with Fourier transform in the field
of noise removal tasks. The proposed spectral discriminator and frequency reconstruction
loss make the generator concentrate on the noise and produce satisfying results. Denoised
images recovered by our method are close to clean reference images in both spatial and fre-
quency domain. 3) The proposed method outperforms existing unsupervised image denoisers
by a considerable margin. Moreover, our performance is even comparable with supervised
learning-based approaches trained with paired datasets.

2 Related Work

2.1 Image Denoising

Non-learning based image denoisers [2, 3, 9, 16, 22, 27, 34, 35, 36, 44] have tried to recon-
struct clean images using pre-defined priors which model the distribution of noise. Specifi-
cally, a widely used prior in image denoising is non-local self-similarity prior [3, 9, 16, 35].
Assuming that similar patches exist in a single image, the methods based on non-local self-
similarity [3, 9] remove the noise using these patches.

Recently, with the advent of deep neural networks, supervised learning-based image de-
noisers [23, 40, 41] show promising performance on a set of clean and noisy image pairs.
However, it is challenging to construct clean and noisy image pairs in a real-world scenario.
To address the above issues, denoisers that do not rely on clean and noisy image pairs have
been proposed [7, 11, 20, 21, 30]. N2N [21] learns reconstruction using only noisy im-
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Figure 1: The spectrum analysis in the frequency domain. (a) Visualization of images in the
spatial domain and corresponding spectrum maps in the frequency domain. (b) The statistics
(mean and variance) after azimuthal integral over the power spectrum on clean and noisy
images of CBSD68. We use AWGN with a noise level σ = 50 to yield noisy images.

age pairs without ground-truth clean images. N2V [20] estimates a corrupted pixel from its
neighboring pixels based on a blind-spot mechanism. GCBD [7] generates the noisy im-
ages while modeling the real-world noise distribution through the GAN [15] and trains the
denoiser with pseudo clean and noisy image pairs. LIR [11] trains an image denoiser by
disentangling invariant representations from noisy images with an unpaired dataset.

2.2 Frequency Domain in CNNs

In traditional image processing, analyzing images in the frequency domain is known to be ef-
fective by transforming the image from the spatial domain to the frequency domain. Inspired
by this idea, several works attempt to utilize the information from the frequency domain in
deep neural networks. Xu et al. [37] accelerate the training of neural networks utilizing the
discrete cosine transform. Dzanic et al. [13] observe that discrepancy exists between the im-
ages generated by the GAN [15] and the real images through the analysis of high-frequency
Fourier modes. In addition, attempts to utilize the frequency domain information in the var-
ious fields, including image forensics [12, 14, 42], image generation [4, 8, 17], and domain
adaptation [38, 39] are gradually increasing. However, image denoising methods combining
the frequency domain analysis with DNN remain much less explored.

3 Method

In this section, we first introduce the spectral discriminator and frequency reconstruction
loss that use information from the frequency domain. Then, we present an unsupervised
framework for image denoising, integrating the proposed discriminator and loss with the
GAN. The proposed framework is illustrated in Figure 2.

3.1 Frequency Domain Constraints

Spectral Discriminator The simple way for the generator to consider the frequency do-
main is that the discriminator transfers the frequency domain knowledge to the generator. To
this end, we propose the spectral discriminator similar to that introduced by [8] to measure
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Figure 2: An overview of the proposed framework. Given an unpaired clean yc and noisy
image xn, the generator Gn2c for image denoising takes the noisy image xn as an input and
learns the mapping for noise removal. Additional network Gc2n is used to impose the cycle
consistency. Three discriminators DC, DT , and DS try to distinguish the denoised image
Gn2c(xn) from real clean image xc in terms of both spatial domain and frequency domain.
The whole framework is end-to-end trainable.

spectral realness. We compute the discrete Fourier transform on 2D image data f (w,h) in
size W ×H to feed frequency representations to the discriminator.

F(k, l) =
W−1

∑
w=0

H−1

∑
h=0

f (w,h)e−2πi kw
W e−2πi lh

H (1)

for spectral coordinates k = 0, ...,W −1 and l = 0, ...,H−1.
Recent studies [8, 12] show that the 1D representation of the Fourier power spectrum is

sufficient to highlight spectral differences. Following their works, we transform the result of
Fourier transform to polar coordinate and compute azimuthal integration over θ .

F(r,θ) = F(k, l) : r =
√

k2 + l2, θ = arctan
l
k
, AI(r) =

1
2π

∫ 2π

0
|F(r,θ)|dθ (2)

where AI(r) means the average intensity of the image signal about radial distance r.
We propose the spectral discriminator that allows the generator to focus on noise using

high-frequency spectral information. To learn the differences on high-frequency bands, we
pass the 1D spectral vector into the high-pass filter Fhp and input it to the spectral discrimi-
nator.

vI = Fhp(AI(r)), Fhp(x) =

{
x, r > rτ ,

0, otherwise
(3)

where rτ is a threshold radius for high-pass filtering and vI is a high-pass filtered 1D spectral
vector of an input I.

Generally, the most distinct characteristics between clean and noisy images exist on high-
frequency bands. Thus, if there is some remained noise on denoised images, the spectral
discriminator easily distinguishes the difference between the clean and denoised images on
high-frequency bands. By transferring this knowledge to the generator, the generator for
noise removal learns to yield visually more plausible images to fool the spectral discrimina-
tor.
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Frequency Reconstruction Loss Cai et al. [4] demonstrate the existence of a gap between
the real and generated image in the frequency domain, which leads to artifacts in the spatial
domain. Motivated by this observation, we propose to use frequency reconstruction loss with
cycle consistency loss to ameliorate the quality of denoised images while reducing the gap.
We aim that the frequency reconstruction loss which is complementary to cycle consistency
loss enables the generator to consider the frequency domain. Furthermore, we expect that
it can serve as an assistant in generating high-quality denoised images. To compute the fre-
quency reconstruction loss, we map an input xn and reconstructed image Gc2n(Gn2c(xn)) to
the frequency domain using Fourier transform. Then, we calculate the frequency reconstruc-
tion loss by measuring the difference between the two results of the Fourier transform and
taking a logarithm to normalize it. Finally, we minimize the following objective:

LFreq = log(1+
1

WH

W−1

∑
k=0

H−1

∑
l=0
|Fxn(k, l)−FGc2n(Gn2c(xn))(k, l)|) (4)

3.2 Unsupervised Framework for Image Denoising
Our goal is to learn a mapping from a noise domain XN to a clean domain YC given unpaired
training images xn ∈ XN and yc ∈ YC. To learn this mapping, we use the CycleGAN-like
framework consisting of two generators, Gn2c and Gc2n, and three discriminators, DC, DT ,
and DS. Given a noisy image xn, the generator Gn2c learns to generate a denoised image
Gn2c(xn). While distinguishing the denoised image Gn2c(xn) from the real clean image yc,
the discriminator DC makes the generator produce the denoised images closer to the real
clean domain YC. To stablize training, we use the Least Squares GAN (LSGAN) loss [24]
for adversarial loss. The LSGAN loss for Gn2c and DC is:

LClean
adv = Eyc∼Pc [(DC(yc))

2]+Exn∼Pn [(1−DC(Gn2c(xn)))
2] (5)

where Pn and Pc are the data distributions of the domain XN and domain YC, respectively.
As introduced in [31], we adopt the texture discriminator DT in order to guide the gen-

erator to produce clean contour and preserve texture while removing the noise. Following
the scheme of [31], a random color shift algorithm Mshi f t is applied to the denoised image
Gn2c(xn). The texture loss for Gn2c and DT is:

LTexture
adv = Eyc∼Pc [(DT (Mshi f t(yc)))

2]+Exn∼Pn [(1−DT (Mshi f t(Gn2c(xn))))
2] (6)

As discussed in Section 3.1, we use the spectral discriminator DS to guide the generator to
generate more realistic images by reducing the gap between the clean and denoised image in
the frequency domain. The spectral loss for Gn2c and DS is:

LSpectral
adv = Eyc∼Pc [(DS(vyc))

2]+Exn∼Pn [(1−DS(vGn2c(xn)))
2] (7)

where v denotes the high-pass filtered 1D spectral vector in Eq. 3.
CycleGAN [43] imposes the two-sided cycle consistency constraint to learn the one-

to-one mappings between two domains. On the other hand, we use only one-sided cycle
consistency to maintain the content between noisy and denoised images. By incorporating
a network Gc2n, we let Gc2n(Gn2c(xn)) be identical to the noisy image xn. The cycle consis-
tency loss is expressed as:

LCC = ||xn−Gc2n(Gn2c(xn))||1 (8)
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where || · ||1 is the L1 norm.
Furthermore, we add the reconstruction loss between the Gc2n(Gn2c(xn)) and xn to stabi-

lize the training. We employ the negative SSIM loss [32] and combine it with the frequency
reconstruction loss LFreq in Eq. 4. The reconstruction loss is expressed as:

LRecon = LFreq(xn,Gc2n(Gn2c(xn)))+LSSIM(xn,Gc2n(Gn2c(xn))) (9)

where LSSIM(a,b) denotes the negative SSIM loss, −SSIM(a,b).
To impose the local smoothness and mitigate the artifacts in the restored image, we adopt

the total variation loss [5]. The total variation loss is expressed as:

LTV = ∑
w,h

(||5wGn2c(xn)||2 + ||5h Gn2c(xn)||2) (10)

where || · ||2 denotes the L2 norm,5w and5h are the operations to compute the gradients in
terms of horizontal and vertical directions, respectively.

Inspired by [11, 31], we use the perceptual loss [18] to ensure that extracted features
from the noisy and denoised image are semantically invariant. This allows the image to keep
its semantics even after the noise has been removed. The perceptual loss is expressed as:

LV GG = ||φl(xn)−φl(Gn2c(xn))||2 (11)

where φl(·) denotes the pre-trained VGG-19 [29] on ImageNet [10], l denotes lth layer from
VGG-19, and we use the Conv5-4 layer of VGG-19 model in our experiments.

Moreover, we employ the background loss to preserve background consistency between
the noisy and denoised image. The background loss constrains the L1 norm between blurred
results of the noisy and denoised image. As a blur operator, we adopt a guided filter [33] that
smooths the image while preserving the sharpness such as edges and details. The background
loss is expressed as:

LBG = ||GF(xn)−GF(Gn2c(xn))||1 (12)

where GF(·) denotes the guided filter.
Our full objective for the two generators and the three discriminators is expressed as:

min
Gn2c,Gc2n

max
DC ,DT ,DS

LClean
adv +LTexture

adv +LSpectral
adv +LCC+

λV GGLV GG +λBGLBG +λTV LTV +λReconLRecon

(13)

We empirically define the weights in the full objective as: λV GG = 2, λBG = 2 , λTV = 0.2,
and λRecon = 0.2.

4 Experiment
In this section, we provide the implementation details of the proposed method. Then, we
present extensive experiments on synthetic and real-world noisy images. Lastly, we conduct
an ablation study to show the effectiveness of the proposed method. For synthetic noise, we
use Additive White Gaussian Noise (AWGN) to synthesize the noisy images. We adopt the
CBSD68 [25] for evaluation. For real noise, we use the Low-Dose Computed Tomography
dataset [26] and real photographs SIDD [1] to demonstrate the generalization capacity of the
proposed method. We employ PSNR and SSIM [32] to evaluate the results.
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(a) Input (b) LPF (c) CBM3D (d) DnCNN (e) FFDNet (f) RedNet-30

(g) N2N (h) DIP (i) N2V (j) LIR (k) Ours (l) GT

Figure 3: Qualitative results of our method and other baselines on CBSD68 corrupted by
AWGN with a noise level σ = 25.

Traditional Paired setting Unpaired setting
Methods LPF CBM3D [9] DnCNN [40] FFDNet [41] RedNet-30 [23] N2N [21] DIP [30] N2V [20] LIR [11] Ours

Noise level PSNR (dB)
σ = 15 25.93 33.55 33.72 29.68 33.60 33.92 28.51 28.66 30.44 32.21
σ = 25 24.61 30.91 30.85 28.71 30.68 31.31 27.26 27.20 29.08 29.37
σ = 50 21.49 27.47 27.19 26.79 26.42 28.10 23.66 24.52 25.69 26.03

Noise level SSIM
σ = 15 0.7079 0.9619 0.9254 0.8616 0.9620 0.9301 0.8851 0.9024 0.9414 0.9502
σ = 25 0.6102 0.9331 0.8724 0.8254 0.9308 0.8857 0.8613 0.8684 0.9126 0.9124
σ = 50 0.4266 0.8722 0.7490 0.7463 0.8502 0.7973 0.7510 0.7927 0.8435 0.8375

Table 1: The average PSNR and SSIM results of our method and other baselines on CBSD68
corrupted by AWGN with noise levels σ = {15,25,50}. Our results are marked in bold.

4.1 Implementation Details
We implement our method with Pytorch [28]. The generator and discriminator architectures
are detailed in the supplementary material. We train our method up to 100 epochs on Nvidia
TITAN RTX GPU and RTX A6000 in experiments. We adopt ADAM [19] for optimization.
The initial learning rate is set to 0.0001, and we keep the same learning rate for the first 70
epochs and linearly decay the rate to zero over the last 30 epochs. We set the batch size to 16
in all experiments. We randomly crop 128×128 patches for synthetic noise removal and use
input patches of size 256×256 for real-world noise removal. We randomly flip the images
horizontally for data augmentation. For high-pass filter on spectral discriminator, rτ is set
to bH/2

√
2c where H is the height of an image and b c is a floor operator. Loss weights are

described in Section 3.2. Our model is evaluated with three random seeds, and we report its
average values for rigorous evaluation.

4.2 Synthetic Noise Removal
We train the model with DIV2K [25] that contains 800 images with 2K resolution. For the
unpaired training, we randomly divide the dataset into two parts without intersection. To
construct a noise set, we add the AWGN with noise levels σ = {15,25,50} to images in one
part using the other part as a clean set. For a fair comparison, we use only the noise set and
their corresponding ground-truth when training other supervised learning-based methods.
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(a) LDCT (b) BM3D (c) RED-CNN (d) DIP (e) LIR (f) Ours (g) NDCT

Figure 4: Qualitative results of our method and other baselines on Mayo Clinic Low Dose
CT dataset. (a) Real low-dose. (b)-(f) Results of each methods. (g) Real normal-dose. As
shown in the highlighted red box, the reconstructed image by our method has few noise and
artifacts. The display window is [160,240] HU.

Traditional Paired setting Unpaired setting
Methods BM3D [9] RED-CNN [6] DIP [30] LIR [11] Ours

PSNR (dB) 29.16 29.39 26.97 27.26 30.11
SSIM 0.8514 0.9078 0.8267 0.8452 0.8728

Table 2: The average PSNR and SSIM results of different methods on Mayo Clinic Low
Dose CT dataset. Our results are marked in bold.

We select unsupervised methods, i.e. DIP [30], N2N [21], N2V [20], and LIR [11], and
supervised methods, i.e. DnCNN [40], FFDNet [41], and RedNet-30 [23], to compare the
performance. Traditional Low-Pass Filtering (LPF) and BM3D [9] are also evaluated. As
shown in Figure 3, the unsupervised methods tend to shift the color and leave apparent visual
artifacts in the sky. Especially, LIR removes the noise but fails to preserve the texture. With
frequency domain information, our method successfully eliminates noise and preserves the
texture. The classical LPF using Fourier transform alleviates the noise, but our framework
that reflects not only the frequency domain knowledge but also spatial domain knowledge
shows superior results. As shown in Table 1, our model outperforms other unsupervised
methods, i.e. DIP, N2V, and LIR, by at least +0.29 dB in PSNR. Although our model is
trained on unpaired images, it achieves superior performance in the SSIM than DnCNN and
FFDNet trained on paired datasets. We conjecture that the reason for better noise removal is
the use of the extra domain information that other previous methods do not consider.

4.3 Real-World Noise Removal
In this section, we evaluate the generalization ability of the proposed method on real-world
noise, i.e. Low-Dose Computed Tomography (CT) and real photographs. For the compar-
ison of the Low-Dose CT, we adopt BM3D [9], DIP [30], RED-CNN [6], and LIR [11] as
baselines. For the comparison of the real photographs, BM3D [9], DIP [30], RedNet-30
[23], and LIR [11] are selected as baselines.

Denoising on Low-Dose CT Since Computed Tomography (CT) helps to diagnose abnor-
malities of organs, CT is widely used in medical analysis. Reducing the radiation dose in
order to decrease health risks causes noise and artifacts in the reconstructed images. Like
the real-world noise, the noise distributions of the reconstructed image are difficult to model
analytically. Therefore, we adopt a CT dataset authorized by Mayo Clinic [26] to evaluate
the generalization ability of our method on real-world noise. Mayo Clinic dataset consists
of paired normal-dose and lose-dose CT images for each patient. The Normal-Dose CT
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(a) Input (b) CBM3D (c) RedNet-30 (d) DIP (e) LIR (f) Ours (g) GT

Figure 5: Qualitative results of our method and other baselines on SIDD.

Traditional Paired setting Unpaired setting
Methods CBM3D [9] RedNet-30 [23] DIP [30] LIR [11] Ours

PSNR (dB) 28.32 38.02 24.68 33.79 34.30
SSIM 0.6784 0.9619 0.5901 0.9466 0.9334

Table 3: The average PSNR and SSIM results of different methods on SIDD. Our results are
marked in bold.

(NDCT) and the Low-Dose CT (LDCT) images correspond to clean and noisy images, re-
spectively. For the training, we obtain 2,850 images in 512×512 resolution from 20 different
patients. We construct 1,422 LDCT images from randomly selected 10 patients as a noise set
and 1,428 NDCT images from the remaining patients as a clean set for unpaired training. For
the test, we obtain 865 images from 5 different patients. As shown in Table 2, our method
achieves the best and the second-best performance in PSNR and SSIM, respectively. Note
that our model trained on the unpaired dataset outperforms the RED-CNN trained on the
paired dataset in PSNR. It indicates that our method can be more practical in medical anal-
ysis where obtaining paired datasets is challenging. We also compare the qualitative results
with other baselines. As shown in Figure 4, other methods tend to generate artifacts or lose
details. On the other hand, our method shows a reasonable balance between noise removal
and image quality. More qualitative results are provided in the supplementary material.

Denoising on Real Photographs To demonstrate the effectiveness of our method on real
noisy photographs, we evaluate our method on SIDD [1] which is obtained from smartphone
cameras. Because the images of the SIDD comprise various noise levels and brightness,
this dataset is the best appropriate to validate the generalization capacity of the denoisers.
The SIDD includes 320 pairs of noisy images and corresponding clean images with 4K or
5K resolutions for the training. For the unpaired training, we divide the dataset into 160
clean and 160 noisy images without intersection. The other training settings are the same
as implementation details. For evaluation, we use 1280 cropped patches of size 256× 256
in the SIDD validation set. As show in Figure 5, other baselines tend to leave the noise or
fail to preserve the color of images. In contrast, our method removes the intense noise while
keeping the color compared to other baselines. We also report the quantitative results in
Table 3. More qualitative results are provided in the supplementary material.

4.4 Ablation Study
We conduct an ablation study to demonstrate the validity of our key components: the texture
discriminator DT , the spectral discriminator DS, and the frequency reconstruction loss LFreq.
We employ an additional evaluation metric LFD [17] to measure the difference between de-
noised images and reference images in the frequency domain. The small LFD value indicates
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DS DT LFreq PSNR (dB) SSIM LFD
7 7 7 25.59 0.8290 6.5955
3 7 7 25.79 0.8304 6.5649
3 3 7 25.82 0.8334 6.5874
3 3 3 26.03 0.8375 6.5795

Table 4: Ablation study. Quantitative results of our method with and without the texture
discriminator DT , spectral discriminator DS, and frequency reconstruction loss LFreq on
CBSD68 corrupted by AWGN with a noise level σ = 50. we report the PSNR, SSIM (higher
is better) and LFD (lower is better). The best results are marked in bold.

that the denoised images are close to the reference images. First, to verify the effectiveness
of the DS, we only add the DS to the base structure. As shown in Table 4, when the DS is
integrated, both PSNR and SSIM increase by 0.2 dB and 0.0014, respectively. It demon-
strates that the spectral discriminator leads the generator to remove high-frequency related
noise effectively by transferring the difference between noisy and clean images on the high-
frequency bands. Also, we see that the spectral discriminator makes the denoised images
close to clean domain images in the frequency domain, resulting in the decrease of LFD.
Next, to verify the effectiveness of the DT , we integrate it with the DS. Distinguishing the
texture representations helps restore clean contours and fine details related to image quality,
which improves the SSIM metric. A curious phenomenon is that the texture discriminator
increases the LFD. We conjecture that the introduction of DT causes a bias to the spatial do-
main in maintaining the balance between the spatial and frequency domains, thus increasing
the distance in the frequency domain. Adding the LFreq shows results validating our hypoth-
esis that narrowing the gap in the frequency domain is crucial to generate the high-quality
denoised image. In addition, through the decrease of LFD, the frequency reconstruction loss
may help to maintain the balance between the spatial and frequency domain.

5 Conclusion

In this paper, we propose an unsupervised learning-based image denoiser that enables the
image denoising without clean and noisy image pairs. To the best of our knowledge, it
is the first approach that aims to recover a noise-free image from a corrupted image using
frequency domain information. To this end, we introduce the spectral discriminator and
frequency reconstruction loss that can propagate the frequency knowledge to the generator.
By reflecting the information from the frequency domain, our method successfully focuses
on high-frequency components to remove noise. Experiments on synthetic and real noise
removal show that our method outperforms other unsupervised learning-based denoisers and
generates more visually pleasing images with fewer artifacts. We believe that considering
the frequency domain can be advantageous in other low-level vision tasks as well.
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