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Abstract

Human pose estimation is a challenging task that requires the comprehension of the
pose structure. This work can refer to spatial relation inference in a pose structure model;
how to model the dynamic spatial relation against various unreliable joints is critical. To
this end, we propose a Distilling Dynamic Spatial Relation network (DDSR), which
builds pose-based graph representation by exploiting the feature of spatial relation from
the location distribution of joints. We use a dynamic message propagation mechanism
to update the spatial relation on edges. Specifically, to filter out the noisy predictions,
we select the joints with high confidence; to enhance the spatial relation in a large re-
ceptive field, we propagate multi-stage messages among joints. Besides, to reduce the
computation cost of the multi-stage message propagation, we design a cross-resolution
distillation framework. We use a new spatial distillation loss to verify the spatial rela-
tion between the teacher model and the student model. Experimental results on COCO
and MPII datasets show that our method is superior to the state-of-the-art methods. The
visualization results further verify the interpretability of our spatial relation.

1 Introduction
Human pose estimation is an important task in the field of computer vision. This paper
concentrates on single-person pose estimation, which is the foundation of many applications
in multi-person pose estimation [11, 16, 24], video pose estimation [1, 9] and tracking [32].

To learn the joint representation for pose estimation, the CNN-based model [20, 22, 28,
33, 34, 40] describes the relation among joints as a heatmap feature. However, these CNN
features do not consider the pose structure of joints, which may lead to prediction errors, es-
pecially when the joints encounter are obscured by tanglesome background. In contrast, the
graph convolution network (GCN) can handle the relation learning in the structure of pose
[25, 30, 36], which propagates messages to generate contextual features from dependable
joints. Existing graph models employ the joint structure for various constrained inferences.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Fang, Xie, Tai, and Lu} 2017

Citation
Citation
{Jin, Liu, Ouyang, and Qian} 2019

Citation
Citation
{Papandreou, Zhu, Kanazawa, Toshev, Tompson, Bregler, and Murphy} 2017

Citation
Citation
{Artacho and Savakis} 2020

Citation
Citation
{Dong, Jiang, Huang, Bao, and Zhou} 2019

Citation
Citation
{Wang, Tighe, and Modolo} 2020{}

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

Citation
Citation
{Newell, Yang, and Deng} 2016

Citation
Citation
{Sun, Xiao, Liu, and Wang} 2019

Citation
Citation
{Wei, Ramakrishna, Kanade, and Sheikh} 2016

Citation
Citation
{Xiao, Wu, and Wei} 2018

Citation
Citation
{Zhang, Zhu, Dai, Ye, and Zhu} 2020

Citation
Citation
{Pishchulin, Andriluka, Gehler, and Schiele} 2013

Citation
Citation
{Tompson, Jain, LeCun, and Bregler} 2014

Citation
Citation
{Yang and Ramanan} 2011



2 WU, WANG, XIE, GUO: DISTILLING DYNAMIC SPATIAL RELATION NETWORK

Figure 1: Different relations in the graph structure for pose estimation. In our solution, we
focus on exploiting dynamic spatial relations, including anchor joint selection (d) and multi-
stage spatial relation inference (f). We learn the relation (edge) weights in the spatial graph
(f) of the relative location distribution from the anchor to other joints (e). In (d), blue marks
dependable anchor joints, where orange marks the general joint.

The local inference [23, 26, 31, 41], as shown in Fig. 1(b), passes the feature between adja-
cent joints in the human skeleton, which degrades the messages from the long-term joints.
The global inference [2, 3, 8, 10, 18], as shown in Fig. 1(c), considers all the connections
between any two joints, which passes all the messages without distinguishing dependable
joints. In our view, we should select dependable joints and consider their different (dynamic)
relations in the pose structure for contextual representation learning.

As spatial constraint is factual and not be influenced by noisy appearances, we calculate
the relative spatial location and embed it into the dynamic propagation to describe the edge
weight with a matrix, as shown in Fig. 1(e). In Fig. 1(f), since the graph adopts the spatial
distribution-based edge weights, the spatial graph can estimate the deformation of pose vari-
ation. For dependable joints selection, we first obtain the heatmap of each joint [28] . Then,
we check up the peak value of the heatmap with a threshold to decide whether the joint is
dependable. When the message propagates, we update these dependable joints in the graph.
Furthermore, to learn more deep relevance of joints in the graph, we adopt the multi-stage
graph with multiple times propagations in Fig. 1(f).

However, the multi-stage model introduces vast parameters, especially when the high-
resolution backbone model further increases the size of the input feature [5, 28]. As well-
known, knowledge distillation [14, 21, 37, 38] is emergent for vast parameters, where the
teacher network models multi-stage high-resolution and the student uses the single-stage
low-resolution model parameters. In our work, as shown in Fig. 2, the teacher model pro-
vides the predicted heatmap as the soft label to train the student model. We adopt the pre-
dicted heatmap to design a spatial relation loss to distill the spatial relation of joints in the
pose structure.

The contributions are summarized as follows.
(1) We propose a Distilling Dynamic Spatial Relation (DDSR) network, which leverages

the spatial location distribution to constraint the pose graph. The edge weight is described
by a statistic of relative joint coordinates of pose instances.

(2) We design a dependable dynamic message propagation in the pose graph. We select
the dependable joints on the peak value of the joint heatmap. We propagate messages to
update the dependable joints with a spatial relation convolution.

(3) To enhance the relation in a large receptive field, we consider a multi-stage network.
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To reduce the computational cost, we adopt a cross-resolution distillation scheme. A new
spatial distillation loss is designed to verify the spatial relation between the teacher model
and the student model. Finally, we obtain a student model with small parameters and promis-
ing performance.

(4) Experimental results on COCO and MPII datasets show that DDSR is superior to the
state-of-the-art methods. The visualization results further verify the interpretability of our
spatial relation.

2 Related Works
Human Pose Estimation. Traditional single-person pose estimation methods used skeleton-
based graph structure [25, 30, 36]. Subsequently, a large number of works have been devel-
oped with the CNN technique [4, 11, 17, 34, 35, 39, 45]. With the development of CNN,
convolutional pose machine [33] and stacked hourglass [22] learned the joint feature by using
deep networks. A powerful CNN backbone, High-Resolution Net (HRNet) [28] is widely
used [5, 15, 27, 31, 40, 42, 43, 44]. These methods produce high-quality features but ignore
the inherent spatial relation of joints. A 2D weight matrix [19, 41] is designed to model
spatial relation, but it is a latent variable learning rather than modeling with joint coordinates
directly.

Graph Neural Network. Graph neural networks can be divided into two categories. One
is applying CNN to graph directly [2, 3, 8, 10, 18] by updating the nodes in the graph. The
other is using message passing mechanism [12, 26] in the graph to update both nodes and
edges. For the task in the paper, graph neural networks have also been used [6, 23, 30, 31].
We adopt the graph structure with high-confident joints and integrate the spatial message of
human structure for pose estimation.

Knowledge Distillation. Knowledge distillation is an effective solution that uses a large
trained network to help train a small network [14, 21, 38]. Knowledge distillation can reduce
massive parameters in existing pose estimation networks [38]. In the task of pose estimation,
knowledge distillation [39] transfers richer structured information of the dense joint confi-
dence graph into a small pose CNNs. Inspired by this, our model makes use of knowledge
distillation and designs a new spatial loss function to ensure efficient feature extraction and
comprehensive inference of spatial relations.

3 Methodology
In this paper, we propose a human pose detection model named Distilling Dynamic Spatial
Relation (DDSR) network, which aims at learning spatial relation in the pose graph. The
network can be divided into three parts: spatial graph construction referring to anchor joint
selection, dynamic message propagation, and spatial knowledge distillation.

3.1 Graph Construction

To build the pose graph, we focus on anchor selection and spatial relation extraction for mes-
sage propagation. Given the initial joint scores from the backbone, heatmap [28], dependable
anchors are selected by a dependable threshold τ , which aims to avoid the message passing
from noisy joints. The propagation weights along the edges can be described by the spatial
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Figure 2: The overall framework of Distilling Dynamic Spatial Relation (DDSR) network.
The spatial graph is propagated based on anchor joint selection and relative location distribu-
tion learning (a). Furthermore, the graph is embedded into a knowledge distillation solution
with multiple stages (b).

relative location distribution of these dependable anchors. In addition, as shown in Fig. 2,
we use multiple stages DSR× 4 to enlarge the receptive field of the spatial relation.

Anchor Joint Selection. In a skeleton graph of human body GGG = (VVV ,EEE), where nodes
VVV = {vi} represent the body joints and edges EEE = {ei j} represent the connection, where i, j
are the indexes of the joints. To remove the low-confidence joints in the graph, we realize an
anchor selection with a dependable threshold τ . The anchor joints AAA are decided by the peak
value of joint heatmaps as follows:

AAA={vi, peak(hhhvi)> τ}, (1)

where hhhvi is the joint heatmap of vi, i is the joint index, and peak(·) is the peak value function.
Spatial Relation in Graph. Here, we calculate the edge weight to describe the spatial

relation (i.e., relative location distribution) between the joints. At first, we build a statis-
tical location matrix by counting the distance vector of pairwise joints. As the pairwise
joints have directed relations, the distance vectors from joint i to joint j are defined as the
location difference of joint j’s coordinates substracts joint i’s coordinates, i.e., d(vi,v j) =
(xv j −xvi ,yv j −yvi), where (x,y) are the coordinate dimensions. The pairwise joints have the
range from −W to W in width and from −H to H in height, where W is the image width and
H is the image height. A relative location distribution on all the edges referring to anchors
has the shape of [2W,2H,N,N], where N is the number of all the joints.

To be specific, as shown in Fig, 2.(a), a statistical location matrix DDDi→ j (the relation from
joint i to joint j, i, j ∈ [1,N]) counts the similar distance vectors at each position in the image
range of [2W,2H],

DDDi→ j =

∑
l
I[(x,y),dl(vi,v j)], i f vi is an anchor joint;

000, else
(2)

where x ∈ [−W,W ], y ∈ [−H,H]. It means that for any position (x,y) in the image area, we
collect the homogeneous points (joints) of pose instances. l is the number of pose instances.
I[·] is an indicator function, when (x,y) = dl(vi,v j), it outputs 1, otherwise 0.
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Then, based on the relative location matrix DDD, we learn the spatial relation on edge EEE as
PPP, and use a normalization layer and a convolutional layer with a kernel size of 7× 7. The
operation of each edge is formulated as follows:

PPP =Conv(Norm(DDD)) ∈ R2W×2H . (3)

It is worthy noting that in our graph, here are DDDi→ j 6= DDD j→i and PPPi→ j 6= PPP j→i. In other
words, the relation between joints i and j has different values along different directions.

3.2 Dynamic Propagation

In the anchor-based joint graph, each node is described with its joint heatmaps. To explore
the heatmap difference between two joints, we subtract the heatmap of the joint i from the
heatmap of joint j: hhhei j = hhhv j −hhhvi . To rich the contextual features of both nodes and edges,
we transform the vectorized heatmap and reshape it back to the matrix.

hhh′vi
= ϕ

h(φ(ϕ1(BN(hhhvi)))) ∈ RW×H ; (4)

hhh′ei j
= ϕ

h(φ(ϕ1(BN(hhhei j)))) ∈ RW×H , (5)

where BN denotes Batch normalization, ϕ1(·) denotes the vectorizing function, φ(·) denotes
the FC layer, and ϕh(·) is a reshape function.

According to Eq. 5, we know that each node has adaptive neighbor joints according to
their respective spatial relation in the image. Thus, we deem that each spatial graph has
a dynamic relation obeying the characteristics of the pose instance itself. As the dynamic
propagation process shown in Fig. 2 (a), we jointly combine the spatial relation PPPi→ j and
contexts of node hhh′vi

and edge hhh′ei j
to propagate the message through the edge form i to j as

follows:

hhh(s+1)
v j = ReLU(

1
NA ∑

i∈AAA
(ds(PPP(s)

i→ j�hhh′(s)ei j ))+hhh′(s)vi +bbb(s)i j )), (6)

where i is an anchor joint, AAA is the set of selected anchor joints, NA is the joint number of
AAA, and bbb(s)i j is a bias term. ReLU(·) denotes the Rectified Linear function. The first term
in Eq. 6 performs a spatial relation convolution � to realize the spatial relation integration
(with both relative location distribution and heatmap). ds denotes a downsampling operation
with nearest-neighbor interpolation to transform the variable into the shape of [W,H]. The
second term is to integrate all the heatmaps of anchor neighbors {i} ∈ AAA. At last, s denotes
the stage index. We use the above dynamic propagation to compose a multi-stage module to
further exploit message propagation deeply.

3.3 Spatial Knowledge Distillation

We design the spatial knowledge distillation scheme for two reasons. On one side, the teacher
model provides a soft label of joint distribution which is complementary to a hard label in
the form of the ground truth. On the other side, the teacher model can learn high-resolution
solutions in the multi-stage mode, which can help the student model with small parameters
and less training cost to achieve promising performance.
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Generally, Mean Squared Error (MSE) loss is used for single joint location estimation
[39]:

LLOC =
1
N

N

∑
i=1
||mmmvi −mmmgt

vi
||22, (7)

where mmmvi refers to the confidence heatmap for the joint i, mmmgt
vi is the ground-truth heatmap,

and N is the number of all the joints.
To estimate the spatial relation of edge ei j, a confidence heatmap mmmei j is introduced as

follows:

mmmei j(x,y,σ) =
1

2πσ2 exp(
−
{
[x− (x j− xi)]

2− [y− (y j− yi)]
2
}

2σ2 ), (8)

where (x,y) specifies the joint coordinates and σ denotes a pre-fixed spatial variance hyper-
parameter.

The previous distillation function is designed for single-label-based softmax cross-entropy
loss [39], which ignores spatial relation among joints. The confidence heatmap is calculated
with a Gaussian distribution, which provides a non-linear estimation of the spatial relation.
Then, according to the confidence heatmap of each edge, we propose a spatial knowledge
distillation (SKD) loss as follows:

LSKD =
1

N2

N

∑
i=1

N

∑
j=1
||mmmS

ei j
−mmmT

ei j
||22 +

1
N

N

∑
i=1
||mmmS

vi
−mmmT

vi
||22 (9)

where mmmS
ei j

specifies the confidence heatmap for the edge ei j in the student model, and mmmT
ei j

specifies that in the pre-trained teacher model in the final stage. mmmS
vi

and mmmT
vi

are the corre-
sponding confidence heatmaps of joint i obatined from teacher and student models. To distill
the spatial knowledge, we formulate the overall loss function as follows:

LDDSR = LLOC +LSKD. (10)

where LLOC is used to allow the student model learning from the hard label, while LSKD
is used to constraint the student model to match the spatial relation heatmap of the teacher
model. As the large resolution increases the computational cost in the convolutional layer,
we reduce the resolution in the student network. In the model, the joint heatmap and edge
obtained from the teacher network have to be downsampled to the same resolution of the
student network.

4 Experiment

4.1 Dataset and Implementation
Dataset. COCO. The COCO dataset contains more than 200K images and 250K individual
instances, where each instance is marked with 17 key points. We train the model on the
COCO train2017 (including 57K images and 150K person instances) and evaluate it on the
validation and test-dev set (containing 5K and 20K images, respectively). The evaluation
metric uses mAP across the 10 OKS threshold. MPII. The MPII Human Pose dataset con-
sists of around 25K images with full-body pose annotations, where there are 12K subjects for
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Table 1: Ablation study- anchor selection.

Threshold Params GFLOPs AP AR
τ = 0.30 32.0M 7.64 73.8 78.8
τ = 0.45 31.3M 7.55 74.4 79.6
τ = 0.60 30.7M 7.49 74.7 80.3
τ = 0.75 30.3M 7.43 75.1 80.4
τ = 0.90 29.2M 7.27 74.0 79.8

Table 2: Ablation study- multi-stage.

Stage Params GFLOPs AP AR
2 32.1M 7.73 75.1 80.4
3 34.3M 8.06 75.5 80.6
4 37.8M 8.62 76.1 81.0
5 41.7M 9.22 76.1 81.2
6 45.0M 9.71 76.2 81.0

testing and the remaining subjects for the training set. We use the PCKh (head-normalized
probability of correct keypoint) score as the standard metric.

Training and testing. We upload the pre-trained parameter of HRNet [28] on the COCO
dataset to extract the heatmap first and then fine-tune the HRNet part and train the DSR part.
The data augmentation follows the HRNet scheme, including the augmentation operations
of random scale ([0.65,1.35]), random rotation ([−45◦, 45◦]), flipping, and sampling half
body. The anchor threshold τ is an empirical parameter fixed in each stage. We discuss it in
the following Sec. 4.2. The spatial convolution � is set with Kaiming initialization [13], the
kernel parameter 7×7, and is shared in each stage. The spatial variance parameter σ in Eq. 8
for loss estimation is set to 2. At last, the batch size is set to 32. The base learning rate is set
to 5e−4, which is dropped to 5e−5 and 5e−6 at the 80th and 160th epochs respectively.

4.2 Ablation Study

To prove the effectiveness of our method, we experiment it over the backbone of HRNet-
w32-256×192 [28], and list the results on COCO test-dev set in Tables 1∼5.

Anchor Selection. Table 1 shows the results with various thresholds for anchor selection.
It turns out that to avoid faulty message propagation, τ = 0.75 is the best setting. Neither too
small nor too large is not appropriate. We choose 0.75 as the anchor selection threshold in
the following experiments.

Multi-stage. Table 2 indicates that the performance of our method grows along with the
increase of the stage number of DSRs. The performance decreases when the stage is less
than 4. And it tends to saturate once it exceeds 4.

Spatial Relation. We test different spatial relations for messages passing along the edges
in the graph. As shown in Table 3, “Random" sets the edge weights with random initializa-
tion, “Distance" uses the relative distance between joints as edge weight, and “Location
distribution" uses the statistical metrics of relative location distribution, i.e., DDD and PPP in our
graph. The results show that the performance of “Location distribution" increases by 1.2 AP
compared with “Distance".

Message Propagation. Here, we compare our dynamic message propagation with the
message propagation in local and global perspectives. Table 4 shows that local propagation
considers only neighbor joints in the skeleton graph and gets worse performance than global
propagation. The global propagation alleviates the noisy messages slightly. When discarding
unreliable joints (anchors), our dynamic propagation increases by 1.4 AP compared with the
global propagation.

Citation
Citation
{Sun, Xiao, Liu, and Wang} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Sun, Xiao, Liu, and Wang} 2019



8 WU, WANG, XIE, GUO: DISTILLING DYNAMIC SPATIAL RELATION NETWORK

Table 3: Ablation study- spatial relation.

Graph Generation AP AP50 AP75 AR
Random 74.5 90.6 82.6 80.4
Distance 74.9 90.7 82.7 80.3

Location distribution 76.1 90.9 83.2 81.0

Table 4: Ablation study- propagation.

Propagation AP AP50 AP75 AR
Local 74.3 89.8 82.5 80.0
Global 74.7 90.1 82.7 80.3

Dynamic 76.1 90.9 83.2 81.0

Figure 3: Visualization of hard label (a),
soft label (b), HRNet prediction (c), and
our DDSR prediction (d) of an pose in-
stance.

Table 5: Evaluating the generality of spa-
tial knowledge distillation (SKD).

SKD Student Net AP
× 4-stage Hourglass 66.2
X 4-stage Hourglass 69.3
× SimpleBaseline-R50 59.3
X SimpleBaseline-R50 62.9
× HRNet-w32 66.9
X HRNet-w32 70.3

Spatial Knowledge Distillation. As our DSR×4 improves the performance while bring-
ing a heavy calculation burden. To decrease computation, we use knowledge distillation with
the teacher network DSR×4 with the input size of 384×288 to train the student net with the
input size of 128×96. Table 5 shows that, based on different backbone networks, the soft la-
bel from the teacher network gives 3.1%, 3.6%, 3.4% AP gain compared with three original
networks without the spatial knowledge distillation.

Besides, we visualize the hard label and soft label in Fig.3(a) and Fig.3(b). This indicates
that soft label can provide potentially locations that are not provided in the hard label. We
find that when the joint exists in the marginal areas of the image, its prediction decoded
from the heatmap is obscure and indefinite in Fig.3(c). When we use spatial knowledge
distillation, the joint predicted in Fig.3(d) is consistently to the soft label.

4.3 Results on COCO Dataset

In this section, we test the teacher model DSRx4 with the anchor selection threshold of 0.75.
Result on the COCO validation set. As shown in Table 6, the AP of DDSR and DSR×4

increase compared with the backbone of HRNet-w48, robustly on the resolution of 256×192
and 384×288. Results show that the larger resolution boosts up the performance. This
indicates that high resolution preserves spatial and structural clues, and benefits accurate
spatial relation for message propagation.

Result on the COCO test-dev set. In Table 7, DDSR achieves AP of 76.5, which is 2.8
and 1 higher than SimpleBaseline [34] and HRNet-w48 [28]. Graph-PCNN [31] gets a high
performance as it excels at a regression model to relocate the true joint in the candidates.
Unlike the Graph-PCNN, our DSR focuses on embedding spatial relations into the GCN op-
eration and modeling the dynamic edge propagation. Furthermore, the teacher model DSRx4
benefits from multi-stage training and high-resolution soft label with the best performance.
The teacher model DSR×4 achieves 77.0 AP and 73.6 APM , which shows our model detects
the poses more effectively.
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Table 6: Comparison with HRNet on COCO validation set.

Method Backbone Size Params GFLOPs AP AP50 AP75 APM APL AR

HRNet HRNet-48 256×192 63.6M 14.6 75.1 90.6 82.2 71.5 81.8 80.4
DDSR HRNet-48 256×192 66.3M 15.8 76.7 91.5 83.7 72.8 82.1 80.7
HRNet HRNet-48 384×288 63.6M 32.9 76.3 90.8 82.9 72.3 83.4 81.2
DDSR HRNet-48 384×288 67.5M 34.7 77.5 92.5 84.5 73.3 83.5 81.3
DSR×4 HRNet-48 384×288 79.2M 40.1 78.2 93.1 85.3 74.4 84.1 81.4

Table 7: Comparison with the state-of-the-art methods on COCO test-dev set.

Method Backbone Size Params GFLOPs AP AP50 AP75 APM APL AR

Macro–Micro [45] Hourglass 256×192 27.1M 23.5 73.7 91.9 81.7 70.6 79.3 79.1
RMPE [11] PyraNet 256×256 45.0M 11.0 67.8 88.2 74.8 63.9 74.0 -
HRNet [28] HRNet-w32 384×288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1
DDSR HRNet-w32 384×288 30.3M 17.2 75.5 92.5 83.0 72.4 81.9 81.0
HRNet [28] HRNet-w48 384×288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5
DARK [40] HRNet-w48 384×288 63.6M 32.9 76.2 92.5 83.6 72.5 82.4 81.1
UDP [15] HRNet-w48 384×288 63.8M 33.0 76.1 92.5 83.5 72.8 82 81.3
Simple Baseline [34] ResNet-152 384×288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0
TNet-D3W96 [43] D3W96 384×288 - - 75.8 92.6 83.6 72.7 81.4 81.1
G-PCNN [31] HRNet-w48 384×288 - - 76.8 92.6 84.3 73.3 82.7 81.6
DDSR HRNet-w48 384×288 67.5M 34.7 76.5 93.3 83.9 73.3 82.2 81.5
DSR×4 HRNet-w48 384×288 79.2M 40.1 77.0 93.8 84.4 73.6 82.5 81.6

4.4 Results on the MPII test set.
Table 8 shows that DDSR achieves 92.5 PKCh@0.5, and outperforms the stacked hourglass
[22] and HRNet [28]. The teacher model DSR×4 increases PKCh@0.5 by 0.4 compared
with HRNet-w32, and the student model DDSR still has a slight increase. The reason might
be that the MPII dataset has simple pose graphs, the joint connections are easier to learn with
only appearance feature.

Table 8: Comparisons with the state-of-the-art methods on MPII test set (PCKh@0.5).

Method Hea Sho Elb Wri Hip Kne Ank Total
CPM [33] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Hourglass[22] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Simple Baseline [34] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
GAN-pose[7] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Adversarial PoseNet [4] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Structure-aware Network [17] 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1
Compositional Model [29] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
HRNet-w32 [28] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Macro–Micro [45] 98.5 97.0 92.8 88.9 91.5 89.9 86.4 92.5
DDSR 98.8 96.8 92.7 89.3 91.6 89.3 86.2 92.5
DSR×4 98.8 96.8 93.0 89.6 91.7 89.5 86.6 92.7
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5 Conclusion
In this paper, we propose a Distilling Dynamic Spatial Relation network (DDSR) for single-
person pose estimation, which models spatial relation learning based on dynamic message
passing and knowledge distillation. The proposed DDSR achieves state-of-the-art perfor-
mance on both COCO dataset and MPII dataset. The visualization results further show that
the pose prediction is more accurate with effective spatial relation inference.
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