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Abstract

3D human recovery from a single RGB image is a promising topic in computer vi-
sion, virtual reality, and image processing. It focuses on estimating 3D pose and shape
of human from a 2D image. Due to the lack of depth and local information, the task
remains challenging. Targeting to solve these problems, this work proposes a LAMNet
with three branches that learning attention map from depth and parsing features for 3D
human recovery. The first branch explicitly leverages the depth and pose cues to learn
an adjusted depth map, which alleviates the recovery error between 3D space and 2D
plane. The second branch explicitly leverages human parsing to provide local informa-
tion, which supplements the shape or edge details of 3D recovery. The last branch is the
main branch which is responsible for learning 2D global features to estimate 3D pose
and shape of human. Inspired by attention mechanism, an attention aware fusion is de-
signed to integrating three branches. It can achieve an attention map containing depth
and local cues, which effectively improves the precision of 3D recovery, especially in
details and different perspectives. Extensive experimental results demonstrate that our
proposed approach significantly outperforms most state-of-the-art methods on the popu-
lar Human3.6m, UP-3D, and 3DPW datasets.

1 Introduction

Recovering a 3D human body from monocular images is an appealing and challenging
task [4, 7, 42]. Early traditional 3D human recovery works rely on manual annotations,
which require a lot of time and cost. With the rapid development of deep learning [18], deep
learning is widely used in the field of computer vision. 3D recovery algorithm based on deep
learning has become the focus of research, therefore, and greatly fostered the development
of 3D human recovery. Such methods can be divided into two categories. Some do not
require any prior information and statistical models to estimate the geometric shape of the
body, which are called a model-free method [4, 16, 40]. The others which utilize parametric
body model to realize 3D human recovery are called model-based method [14, 15, 30].
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Figure 1: An illustration of all the inputs and outputs involved in LAMNet. For the two ex-
amples, these images shown from left to right are the raw image, human parsing, depth map,
2D keypoints, depth with adjusted keypoints, recovery result of LAMNet, and groundtruth,
respectively. The green box denotes original input, the yellow box indicates auxiliary input
generated from original input, and the red box marks the output of LAMNet.

In these existing methods, some representative works are worthy of analysis and discus-
sion. For instance, HS-Nets [5] leveraging silhouette and NBF [22] using body semantic
segmentation. Both of them considered introducing additional information as input to en-
hance feature learning for 3D recovery. Meanwhile, the weak perspective camera model
is used into 3D recovery [15], which can improve the pose accuracy of recovery model by
estimating camera parameters. However, they are easy to obtain unpredictable errors in the
observation perspective different from the inputs. And when the image resolution is too low
or the image content is incomplete, the camera position is difficult to be estimated, which will
bring serious projection deviation to 3D recovery. It can be seen from these problems that
2D information has obvious limitations. Therefore, the cue that can provide 3D spatial in-
formation began to be considered. Shotton et al. [28] directly exploited depth maps to make
up for the lack of three-dimensional information. They greatly promoted the development of
3D human recovery. However, due to the lack of effective complementary combination of
2D and 3D information, there are still errors in the shape and pose of 3D recovery model.

Targeting to solve the problem mentioned above, we propose a multi-branch network
named LAMNet as shown in Figure 1. The raw image displayed in the first column is an
indispensable input for recovering 3D shape and pose of human model. Based on it, human
parsing is introduced as an auxiliary input. It can provide shape and local information to
LAMNet, which helps to reduce the interference of fuzzy edges between the foreground and
the background. If only considering parsing which can provide 2D information in network,
however, the reconstructed body model are prone to pose distortion or keypoint deviation.
Therefore, a novel depth with adjusted keypoints, which can provide 3D spatial information,
is designed as another auxiliary input for LAMNet. It combines the keypoint position and
body depth in a complementary way, which guides the key learning in the region of inter-
est. Facing different inputs, LAMNet adopts three branches with different blocks to learn
features. To fully integrate the features from depth, parsing and the raw image, an attention
aware fusion module is proposed. Extensive experimental results demonstrate that LAMNet
achieves significantly improvement on multiple popular datasets [12, 17, 35]. As shown in
Figure 1, our final outputs very close to groundtruth.

In summary, this paper’s contributions are threefold:

1) Propose a multi-branch LAMNet with attention aware fusion module to estimate 3D
pose and shape of human, which explicitly utilizes depth and parsing cues to improve 3D
human recovery.

2) Design a depth map with adjusted keypoints as auxiliary input, which can provided
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meaningful attention guidance by learning the effect of depth on 3D pose and shape. Its
introduction effectively reduces the 3D recovery error from different perspectives.

3) The proposed LAMNet achieves the state-of-the-art performance on popular Hu-
man3.6M, UP-3D, and 3DPW datasets.

2 Related Work

Traditional 3D human recovery tasks rely on manual data annotation. For example, [9, 29]
uses annotated human silhouette to make the SCAPE [31] closer to the ground truth in the
generation process. Since the emergence of the human body frame SMPL [19] model, Bogo
et al. [2] designed an optimization method SMPLIify on the basis of SMPL, and first auto-
matically fitted the SMPL model to the keypoints of the 2D human body. Now 3D human
recovery methods are divided into two categories. One is to use a model similar to the SMPL
to estimate the human pose and shape, which is called a model-based method. The other
method does not use statistical models and other methods to directly estimate the geometric
body shape from 2D images, which is called a model-free method.

Model-free method. The commonly used methods for model-free are voxels, 3D mesh
fitting, and so on. For example, BodyNet [34] shared Voxel-CNN to estimate the volumet-
ric representation of the human body, which represents the occupancy rate of the 3D human
shape on the voxel grid. Other recent work has shared many effective methods for estimating
the geometric shape of the human body. Densebody [39] divides the human body into 24
pieces, and uses the UV position map to store the human 3D coordinate information. Zeng
et al. [40] designed a new UV location map based on the dense map, which contains more
accurate body texture locations. Moon et al. [4] designed the Pose2Mesh convolutional net-
work, in which PoseNet uses the [3, 20] network structure to convert the standardized 2D
input pose to the 3D output pose. Input the PoseNet result into MeshNet to estimate the
3D mesh. HMD [44] divides the grid structure into a three-layer structure of joint handles,
anchor handles, and vertex handles, and continuously refines the human body surface infor-
mation from coarse to fine. The model-free method focuses on global information and pays
attention to the human surface, which leads to high storage and computing costs. And it is
easy to lose detailed or local information.

Model-based method. From the early SCAPE model to the popular SMPL model, the
parametric body model based methods have become the essential research direction. The
classic HMR [14] model is proposed to achieve end-to-end 3D human recovery. On this ba-
sis, SPIN [15] with keypoint inputs is proposed. It added a 2D pose constraint by introducing
the weak perspective camera model. To further enhance the 2D constraints, Rhodin ez al. [25]
introduced body contour to estimate the human pose and shape. Some other works tried to
exploit 2D keypoint heatmaps [23], silhouette [30]. These supplementary information effec-
tively improve 3D human recovery by providing the 2D edges and location constraints. Only
considering 2D constraints is insufficient for current 3D human recovery. In recent years,
many works have tried to introduce UV texture maps [42], depth maps [8] to provide esti-
mated 3D spatial information. For example, Wang et al. [36] estimated depth and silhouette
from a raw image to provide high dimensional spatial details, and then used the MANO [26]
model to recovery 3D hand. Compared with the model-free methods mentioned above, these
model-based methods generally have higher efficiency and better accuracy. However, the
combination of 2D and 3D information that can further improve 3D human recovery is still
worth exploring, which is the focus of this paper.
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Figure 2: Outline of the proposed LAMNet. (a) is the depth branch, which is responsible
for encodering depth feature map. Its input is the depth map with adjust keypoints. (b)
illustrates the parsing branch with human parsing as input, which is responsible for learning
the parsing feature map to provide shape and local cues. (¢) demonstrates the main branch
with the raw image as input. It combines the features from three branches through attention
aware fusion module, and then recovery the shape and pose of 3D human model.

3 Methodology

In this section, a novel 3D human recovery algorithm named LAMNet is presented. As
shown in Figure 2, the proposed LAMNet is a multi-branch framework. It consists of depth
branch (in green), parsing branch (in yellow), and main branch (in blue). For any raw input,
its depth, pose and parsing are first estimated to provide two auxiliary inputs. The depth
branch adopts depth with adjusted keypoints as input, which learns the effect of keypoint area
with different depth on 3D human recovery. The parsing branch directly learns the effect of
different body part on 3D recovery from the human parsing. The two effects together form
a valuable attention map, which guides LAMNet to realize the complementary combination
of 2D and 3D cues. The main branch subtly blend the achieve attention map with global
feature map by attention aware fusion, and then recover the shape and pose of 3D human
model. More implementation details are explained below.

3.1 Depth Branch with Dilated Convolution

The task of this branch is to use the depth with adjusted pose (ad-pose) to learns the effect
of keypoint area with different depth on 3D human recovery. To achieve this goal, we first
use the work [13] to generate depth maps. But the depth map alone cannot accurately mark
the coordinate depth of the keypoints. Therefore, an novel depth with ad-pose is designed as
auxiliary input. It is synthesized by the keypoint heatmap and the depth map. The abstract
illustration is shown in Figure 3. During synthesis, the depth map is responsible for adjusting
the radius r; of each keypoint confidence region. The calculation refer to Eq. 1. The keypoint
heatmap is responsible for providing the normalized heat value C; in keypoint confidence
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region according to Eq. 2.

H; — Hyn )
ri=dlexpl ]l — ——m—F—— 1
' r\/ P ( Hyax — Hyin M

where H; represents the gray value of the i-th keypoints, and Hyy and Hyax represent
the minimum and maximum gray values, respectively. 7; represents the radius of the i-th
keypoints region, and d, is initialized to 10. According to the calculated radius and the
estimated keypoint positions, 14 confidence regions can be determined. In these regions
of the adjusted map, the original depth and normalized heat value will be superimposed
according to min{H;+C;, 255}.

0 (xj,y;) not in region
G N (s v, in regi @
! (i) 4255 (xj,;) in region

In Eq.2, M; represents the confidence of the heatmap at the j-th pixel position. Myax
and Myy represent the maximum and minimum heatmap confidence in all heatmaps, re-
spectively. (x;, y;) represents the coordinate of the j-th pixel position in heatmap. If (x;,
y;) not in any keypoint confidence region, the C; is directly set to 0. If (x;, y;) in one re-
gion, the C; is normalized N(-) and multiplied by 255 for unified expression. Through the
above calculations, the depth with ad-pose can be obtained and highlight the relative spatial
relationship between keypoints with different depths.

Figure 3: The depth with ad-pose is synthesized by the keypoint heatmap and the depth map.

The achieved depth with ad-pose contains sparse features. It is easy to lose the neigh-
boring position relationship in the normal convolutions. To alleviate this problem, we use an
encoder with dilated convolution. The purpose is to increase the receptive field and retain
adjacent position information. Meanwhile, the dilated convolution can obtain multi-scale in-
formation. In addition, we add a self-attention block [6] at the end of down-sampling under
this branch, which can enhance the feature perception for the keypoint confidence region.
That is, for any adjusted depth map, a conventional feature map A will be extracted from
down-sampling module (D-Sampling). And feed A into the three convolutional layers in the
attention module to generate three feature maps X, Y and Z. We perform matrix multipli-
cation of X and Y according to Eq. 3, and apply the softmax layer to calculate the feature
map s. Then the matrix multiplication of Z and s is performed again and superimposed on
the feature map A to obtain the depth feature Fp displayed in Figure 2. This calculation is
defined in Eq. 4.

sji = softmax (X; - Y;) (3)
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Foj=aY, (siZ)+A; 4)
where s j; represents the impact of the i-th position on the j-th position. Fp_; denotes the j-th
value in Fp. « is automatically changed during continuous learning, and is initially set to 0.
According to Eq. 4, the Fp can be inferred and each position can represent the weighted sum
of the features across all positions and original features.

3.2 Human Parsing Branch

This branch uses ResNet18 [11] as the backbone network, extracts 2D planar features, and
obtains the parsing feature map Fp. The human parsing isolates the background and the
body, provides certain 2D shape information. Meanwhile, it uses different colors to represent
different body parts, which can provide further sufficient local details for 3D human recovery.

We use the CorrPM model [43] to generate the human parsing, but there is a problem
of incomplete body parts in the parsing image, which directly reduces the feature extraction
ability. In response to this problem, we analyze the relationship between the pixel dimensions
of each part and propose a parsing prior constraint using parsing pixels statistics. We set the
color type c>3, count the number of pixels k. of each color, and arrange them in descending
order to ensure that the number of pixels of the third color k.>400. If the parsing of a image
does not satisfy the parsing prior constraint, the image is considered to be unable to provide
effective 2D shape and local part cues. It will be filtered out and thus can not participate in
any training. Parsing that meets the parsing prior constraint will become an auxiliary input,
which is encoded into Fp by ResNetl18. Fp can reflect the effects of different body part on
3D human recovery, and can provide relatively accurate 2D shape and local details. This will
effectively help improve 3D human recovery.

3.3 Main Branch with Attention Aware Fusion

The main branch is modified with reference to the single branch in Rong et al. [27] to es-
timate the pose and shape of the human body. It uses down-sampling resnet50 network for
feature extraction to obtain 2D feature map F7.

Then we designed an attention aware fusion module so that the main branch concentrates
the features from different branches. The calculation of attention aware fusion is defined in
Eq. 5. According to it, Fp from the parsing branch and Fp from the depth branch can be
integrated in a complementary way. As shown in Figure 2, the parsing branch extracts the
parsing feature map Fp, and the depth map branch passes through the self-attention module
to obtain the depth feature map Fp. Multiply Fp and Fp, and then pass through the softmax
layer to get attention map Fyejgnreq- The attention map contains detailed information about
the local details of human joints, as well as the spatial depth information between different
keypoints. Finally, multiply it with the 2D feature map F; of the main branch to obtain the
final fusion map fusion map Frysion.

Frusion :softmax(FDQFP)QFI 4)

where (© is element-wise product. Fpyg,, refers to the final feature map of multi-branch
network fusion.

The specific network structure is shown in Table 1. The main branch and the parsing
branch use residual networks of different depths, and the depth map branch lists the main
down-sampling and up-sampling structures.
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Main Branch | Parsing Branch Depth Branch ‘
K3-52-C64-D2
D-Sampling | (K3-S1-C64)x3
Resnet50 Resnet18 (K3-S2-C128)x4

K3-S2-C256-D2
U-Sampling | K3-S2-C128-D2
K3-S2-C64-D2

Table 1: Configurations of The Multi-branch Estimatior. K’ = kernel size, ’S’ = stride, *C’
= channel, D’ = dilation rate.

3.4 Loss Function

The main branch generates a global feature vector from FFryq.,, and obtains 3D pose 6 and
shape 3 from this vector. In order to reduce the 3D pose error in the training process, we
design 3D pose loss L3p_pose between depth branch and main branch. It is defined in Eq. 7,
which consists of one 3D rotation matrix (from Rodrigues formula) error and three 2D pose
projection errors. Take xoy in Cartesian coordinate system as an example, we first need to
calculate the projection P(6) of 3D pose vector 8 on 2D plane through Eq. 6. Similarly, the
projection of the other two planes is also calculated in the same way. The 3D pose loss can
then be obtained using Eq. 7.

9,' *Uxoy —
Px()y (91) =0,— )Zuxoy (6)
(med]

L3p_pose :ZiO=1 (||R(9,-) *R(GHJ)HzJFHPxny(ei) *P(QH_I‘)Hz
+|Peoz (6:) = P (614 ||, ][ Proz (6:) — P (811_1)] )

where 0; in Eq. 6 represents the i-th joint vectors of the 3D pose. L?,,; is the normal vector
of the plane. R(-) means rodrigues formula calculation method. In Eq. 7, O is the number
of SMPL parameters. 0y ; represents the human 3D pose estimated from the depth branch.
The first term in the formula calculates the 3D rotation matrix loss, and the last three terms
calculate the 2D pose projection errors. They can enhance the pose consistency between 3D
recovery results and estimated pose, which are conducive to improving final human model.

The 3D human body is restored by SMPL model E(8, ), the method is the same as [24].
In order to ensure that the generated 3D model more closely fits the human pose of the image
I, the SMPL mesh loss constraint Lgyspy, mesn 18 added to the main branch.

)

Lsyipr, mesh = Zil (HR(GI‘) —R (éi) Hz+ HBi_Bin) ®)

where 6; represents ground truth pose. B,- represents ground truth shape.
Overall, the full loss function of LAMNet is defined in Eq. 9.

Liotar = Afl (LSD _joints + LSMPLJnesh) + A«2L3D_pose + A3LZD_ Jjoints )

where L3p_joints and Lop_jeines calculate the loss functions of 3D keypoints and 2D keypoints,
respectively. Their mathematical definitions are the same as the existing work [41]. A1, A5
and A3 are set to 1, 1, 0.5, respectively.
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4 Experiments

4.1 Implementation Details and Datasets

Due to the huge results of the multi-branch network and the large amount of training data
each time, we set the image resize to 224%224. Set the batch size to decrease from 128 to
32, and increase the training epoch from 20 to about 100. In addition, set the initial learning
rate le-5. The update strategy adopts the Adam with 0.5.

In the experiment, we train and test on multiple datasets. The main datasets used are
Human3.6M [12], UP-3D [17], and 3DPW [35] datasets. Human3.6M is a large indoor
human body dataset. The human body is unobstructed and contains rich actions. It is one
of the commonly used datasets in 3D human recovery.UP-3D is a collection of existing
2D human pose datasets, including LSP, LSP-Extended, MPII HumanPose and FashionPose
datasets. 3DPW is a type of outdoor dataset. The dataset contains 61 video sequences mainly
shot under outdoor conditions. The evaluation indicators mainly use the average per-vertex
error (PVE), the vertex rigidity is transformed into the vertex error in the *T” pose (T-PVE),
mean keypoints error (MPJPE) and MPJPE-PA. MPJPE-PA means that the output is rigidly
transformed to ground truth alignment and then MPJPE is calculated.

4.2 Ablation Study

To evaluate the effectiveness of the key components proposed in our method, we conduct ab-
lation experiments on 3DPW under various settings. The baseline comes from the advanced
work [27]. For a convincing and clear comparative experiment, we remove its branches re-
lated to UV and dense correspondence. Only keep the single branch with the raw image as
input. For this branch, we perform a retraining and achieve better MPJPE results than their
published results. Therefore, the retraining baseline is used in the ablation study. We add
improved parts in turn on the baseline to evaluate their effectiveness.

As shown in Table 2, the parsing, ad-pose, Lsypr, mesh and L3p_pose can improve the
indicators of 3D human recovery. When all of them are added to the baseline to form our
proposed method, the best result can be achieved. This significant promotion is largely due
to four reasons: (1) the human parsing can provide more detailed 2D shape information for
3D human recovery; (2) the ad-pose can provide more accurate relative depth and spatial
relationship of keypoints than the single depth or pose auxiliary input; (3) Lgypr_mesn and
L3p_pose can enhance 3D spatial constraints and reduce the position deviation of 3D model
in different perspectives; (4) the designed attention aware fusion can give full play to the role
of these auxiliary inputs and loss functions in 3D human recovery.

| Baseline | Parsing [ Pose | Depth | Ad-pose | Lsupr,_mesh | L3p_pose | PVE [ MPIPE | T-PVE]

v 154.7] 1344 | 683
v v 122.8] 1054 | 30.2
v VoV 116.7| 100.3 | 30.1
Vv Vv Vv 116.0] 99.5 | 30.6
v v v 111.5| 957 | 294
v v v v 106.9| 91.1 | 283
v v v v v |101.3| 86.2 | 24.9

Table 2: Ablation experiments on the 3DPW dataset.
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4.3 Effectiveness of Our Approach

In this section, we will compare our method with other advanced methods. Use different
evaluation indicators to compare in different datesets.

3DPW Human3.6M

Method MPIPE-PA | MPIPE || 4 PIPE-PA | MPIPE
Pose2Mesh [4] 58.3 88.9 Pose2Mesh [4] 46.2 64.9
I2L-MeshNet [21] 60.8 95.4 HoloPose [10] 46.52 60.2
DSD+SATN [33] 69.5 - CMR [16] - 74.2
RSC-Net [37] 58.9 96.3 DecoMr [40] 422 62.7
ETC-Net [1] 72.2 - ETC-Net [1] 54.3 77.8
Ours 57.6 86.2 Ours 41.2 59.3

Table 3: Quantitative comparison with state- Table 4: Quantitative comparison with

of-the-art methods on the 3DPW dataset. state-of-the-art methods on the Hu-

man3.6M dataset.

UP-3D

Method Accuracy | Fl score
DenseRaC [38] 92.4 0.88
BSG-Net [32] 91.9 0.88
BodyNet [34] 92.8 0.84
HMR [14] 91.7 0.87
DecoMr [40] 92.1 0.88
Ours 93.2 0.89

Table 5: Quantitative comparison with state-of-the-art methods on the UP-3D dataset.

Since other methods use different indicators on different datasets, in order to be fair, we
adjust the test indicators and compare them with different methods. MPJPE and MPJPE-PA
are used for testing on Human3.6M and 3DPW datasets, while Accuracy and F1 score test
indicators are used on UP-3D dataset.

Table 3 is tested on the Human3.6M dataset. Compared with Pose2Mesh [4], MPJPE-
PA increased by 4.0%, and MPJPE increased by 5.6%. It is verified that the recovery effect
of LAMNet is more accurate on the rich indoor human pose dataset. Table 4 verifies that
the recovery ability on the 3DPW dataset is better than the previous method. Compared
with [2L-MeshNet [21], MPJPE-PA increased by 3.2%, and MPJPE increased by 9.2%. We
also investigate human shape estimation accuracy by evaluating the foreground-background
performance on the UP-3D. It can be seen from Table 5 that compared with DecoMr [40],
our Accuracy is improved by 1.1%, reaching the best accuracy. In general, the performance
of our multi-branch network on multiple datasets is better than the current state-of-the-art
methods.

4.4 Visualization Analysis

In addition to quantitative analysis, we perform qualitative visual analysis on different datasets.
We visually compare with SPIN [15] and HMR [14] under the same datasets. As shown in
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Ours HMR[14] SPIN[15] Inputs

GT

Figure 4: Qualitative comparison of recovery results on the Human36m, UP-3D and 3DPW
datasets.

Figure 4, some inaccurate 3D recovery details from different methods are marked in the red
box. Compared with SPIN and HMR, our 3D recovery effect is closer to ground truth. LAM-
Net processes some joints in special positions more finely, which benefits from the learning
of relative depth and human parsing.

5 Conclusion

In this paper, we propose a multi-branch network named LAMNet to realize 3D human
recovery from a single image. The LAMNet consist of depth branch, parsing branch, and
main branch, The depth branch adopts the novel depth with adjusted pose to learn the impact
of different keypoint regions on 3D human recovery. The parsing branch exploits the human
parsing to achieve the shape and local details that are meaningful to recovery the 3D model.
On this basis, the main branch enhances the complementary combination of 2D and 3D
information by attention aware fusion, and thus improves 3D recovery accuracy by valuable
attention map. As a result, LAMNet significantly outperforms the state-of-the-art methods
on three popular datasets. In future work, we will explore more efficient 3D human recovery,
and pay attention to its promising applications.
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