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Abstract

Recent work indicates that, besides being a challenge in producing perceptually
pleasing images, low light proves more difficult for machine cognition than previously
thought. In our work, we take a closer look at object detection in low light. First, to
support the development and evaluation of new methods in this domain, we present a
high-quality large-scale Night Object Detection (NOD) dataset showing dynamic scenes
captured on the streets at night. Next, we directly link the lighting conditions to per-
ceptual difficulty and identify what makes low light problematic for machine cognition.
Accordingly, we provide instance-level annotation for a subset of the dataset for an in-
depth evaluation of future methods. We also present an analysis of the baseline model
performance to highlight opportunities for future research and show that low light is a
non-trivial problem that requires special attention from the researchers. Further, to ad-
dress the issues caused by low light, we propose to incorporate an image enhancement
module into the object detection framework and two novel data augmentation techniques.
Our image enhancement module is trained under the guidance of the object detector to
learn image representation optimal for machine cognition rather than for the human vi-
sual system. Finally, experimental results confirm that the proposed method shows con-
sistent improvement of the performance on low-light datasets.

1 Introduction
In recent years, deep learning-based methods for object detection have achieved great suc-
cess. Although the performance of current object detectors under normal conditions can be
impressive, recent work [10, 14] shows that machine perception under low-light conditions
turns out to be a complex problem that requires special attention from the researchers.

Fundamentally, difficulties in perception in low light stem from imaging problems caused
by low photon count. Techniques in photography to address this are to: 1) gather more light
by increasing the aperture size or extending the exposure time, and 2) increase the sensitivity
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Figure 1: (a) Precision-Recall curves of the pre-trained baseline model (PT Baseline) and
the baseline model fine-tuned on our dataset (Baseline) under extreme and non-extreme low-
light conditions. Although training on an appropriate low-light dataset helps reducing the
gap between extreme and non-extreme conditions, the gap is not entirely eliminated. This
suggests that new methods targeting extreme low-light conditions specifically are required.
(b) Image input to our proposed detection-with-enhancement model (left) and enhanced in-
termediate representation (right).

by setting higher ISO values. However, these solutions lead to out-of-focus blur, motion
blur, and amplification of noise, which prove difficult for machine perception.

An appropriate approach for learning-based frameworks is to increase the number of data
presenting low-light conditions. Still, the issue of low-light is far from being solved, given
that: 1) high-quality large-scale datasets containing a high proportion of low-light data are
sparse and difficult to label, 2) [14] showed that even when trained on equal amounts of
low-light and bright data ConvNets do not learn to normalize deep features with respect to
the lighting conditions, i.e., low-light and bright features form two separate clusters of data,
and thus require separate modeling.

We address these issues in three dimensions by: 1) releasing a novel dataset that can be
used to study and develop models targeting images in low-light conditions, 2) analyzing the
limitations of the baseline model on our dataset and gaining insight as to what exactly is dif-
ficult for machine cognition in low light, 3) developing a learning-based image enhancement
module and novel augmentation techniques targeting low-light conditions.

Our first contribution is the Night Object Detection (NOD) dataset1: a high-quality large-
scale dataset captured in the wild under challenging low-light conditions, annotated with
instances of people, bicycles and cars. For a subset of the dataset, we provide instance-
level annotations of lighting conditions in novel terms of extreme and non-extreme low-light
conditions, for meaningful evaluation and benchmarking of the future object detection and
image enhancement methods targeting low-light conditions.

Our second contribution is an analysis of how low-light conditions impact the perfor-
mance of the baseline, where we show that the problem cannot be entirely solved by training
on low-light data. We further link the lighting conditions to perceptual difficulty, and iden-
tify that there are non-extreme low-light conditions that are moderately difficult for current
object detectors, and extreme low-light conditions that are very difficult for machine percep-
tion. Specifically, we define extreme low-light as a condition where most object edges and
keypoints are not visible due to low illumination only, e.g., not due to occlusion. As we
show, training on an appropriate low-light dataset does not remove the performance gap be-

1Our dataset is publicly available at https://github.com/igor-morawski/NOD.
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tween these two conditions (Fig. 1 (a)). Thus, new methods that target low-light conditions
particularly are required.

Finally, we propose a method targeting low-light object detection that consists of an
image enhancement module for intermediate image enhancement (Fig. 1 (b)) and two data
augmentation methods. Accordingly, we present experimental results that show a consistent
improvement over the baseline, including improvement under extreme low-light conditions.

2 Related Work
Low-light image enhancement. Learning-based solutions have been applied to numerous
low-level vision tasks such as denoising, super-resolution, image enhancement, including
low-light image enhancement. Many works are inspired by Retinex theory that decomposes
images into illumination and reflectance [23, 25, 27, 28]. However, Image Signal Processing
(ISP) pipeline, used to produce JPEG images from raw data, breaks down under extreme
low-light conditions, and thus, another line of work focuses on developing learning-based
ISP pipelines [1, 2, 18, 21]. Deep learning-based methods most often required paired training
data and because of that most datasets are limited to static scenes [1] or synthetic data [11,
15, 23]. In contrast with these methods, we focus not on improving perceptual quality, but
on improving image representation for machine cognition in high-level tasks.

Low light in high-level vision tasks. The closest to our work are [10, 14] and [26]. Be-
sides contributing a dataset of low-light images for image recognition and object detection,
based on extensive investigation, [14] concluded that: 1) increasing amount of low-light data
is necessary for improving low-light image cognition, 2) learned features extracted from the
same object under good and poor lighting conditions belong to different data clusters. In our
work, we continue investigation into machine cognition under low-light conditions, but we
link the lighting conditions directly to perceptual difficulty rather than, e.g., light source as
[14]. In comparison with their dataset, our dataset contains, on average, more annotated in-
stances per object category, and the resolution of the images is higher. Another dataset under
low-light conditions, DarkFace, a large-scale dataset for face detection under was released
by [26]. In contrast with the DarkFace [26] dataset, when an object was occluded in our
dataset, we still annotated around the most probable boundary rather than around the visible
part only. This is especially important in situations where a part of the object is not visible
due to imaging difficulties. Finally, [10] proposed a detection-with-enhancement framework
for low-light face detection based on the generation of multi-exposure images from a single
image. Similarly, we propose to incorporate an image enhancement module. However, our
image enhancement module produces single-exposure enhanced image representation.

3 NOD: Night Object Detection Dataset
Dataset Camera # classes

# annotated
images # instances

# unannotated
images

High-
Res.

Sony Sony RX100 VII 3 3.2k 18.7k 0.9k X
Nikon Nikon D750 3 4.0k 28.0k 0 X

NOD (ours) Sony & Nikon 3 7.2k 46.7k 0.9k X
ExDark [14] 12 7.3k 23.7k 0 7

Table 1: Basic statistics in the Night Object Detection (NOD) dataset. We provide high-
quality bounding box annotation for people, bicycles and cars.

We present a high-quality large-scale dataset of outdoor images targeting low-light ob-
ject detection. The dataset contains more than 7K images and 46K annotated objects (with
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u n 6 t s

(a) (b)
Figure 2: t-SNE embeddings of the features extracted by the baseline model pre-trained on
the COCO [12] dataset. Rather than classifying by the lighting source, we directly link low-
light conditions to perceptual difficulty. We define extreme low-light conditions as conditions
where most of the object edges are not visible due to poor illumination. To illustrate, u and n

belong to the same data cluster despite a large apparent difference, i.e., u is well-illuminated
and n is backlit. At the same time, t belongs to the extreme conditions cluster, even though
a part of the object (legs) is relatively well-illuminated and clearly visible.

bounding boxes) that belong to classes: person, bicycle, and car. The photos were taken on
the streets at evening hours, and thus all images present low-light conditions to a varying
degree of severity. We used two DSLR cameras to capture the scenes: Sony RX100 VII and
Nikon D750, and throughout the paper, we refer to the sets collected by these cameras as
Sony and Nikon (data)set. We show the statistics of our dataset in Tab. 1.

All photos were shot handheld, and most of them were shot in Full Auto mode. Some
of them shot in Shutter Priority mode, especially when there were fast moving objects (e.g.
cars) involved. Thus, the images in our dataset show all common culprits of low-light pho-
tography: motion blur, out-of-focus blur, and severe noise. To ensure the high quality of
annotation under challenging conditions, we outsourced data labeling to a company that an-
notated instances on images enhanced by MBLLEN [16] in their original resolution.

We target applications that focus on machine perception and end-task performance rather
than applications such as enhancing perceptual quality. Therefore, in our dataset, we cap-
tured dynamic scenes in an uncontrolled environment that represent significant problems in
photography under poor lighting. Over all, all images in our dataset present low-light con-
ditions. However, the degree of severity of these conditions varies, and for more detailed
evaluation, we provide instance-level annotation of lighting conditions for the test subset of
the Sony set. We define extreme low-light as a condition where most object edges and key-
points are not visible due to low illumination only, e.g., not due to occlusion. Out of 1827
instances in this set, we manually labeled 810 as presenting extreme low-light conditions.
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Figure 3: (a) Precision-Recall curves of an off-the-shelf object detector on our dataset. Mis-
detections due to extreme low-light conditions constitute a large part of errors in the baseline
model. (b) PR curves of an object detector fine-tuned on our dataset. Although training
the performance is significantly improved, errors due to extreme low-light conditions still
make up a substantial part of errors. C50 and C75 are PR curves at IoU = 0.5 and 0.75,
respectively. Extreme Low-Light is the PR curve after eliminating all misdetections that can
be attributed to extreme low-light conditions. Other is the PR curve after eliminating all
misdetections that cannot be attributed to extreme low-light conditions.

Moreover, for this set, we also indicate if the object is truncated or strongly occluded.
More details about the dataset, setup and annotation procedure as well as sample images

and bounding box annotations can be found in the supplementary material.

4 Dataset and Baseline Analysis
To investigate whether differentiating between the extreme and non-extreme low-light condi-
tions in this way is meaningful, we visualized t-SNE embedding of the features extracted by
the backbone pre-trained on the COCO dataset [12] with less than 0.23% of images present-
ing low-light conditions [14]. We show the result colored using two mappings: by object
class and by lighting conditions, in Fig. 2 (a) and (b), respectively. Indeed, the features
extracted from regions presenting extreme and non-extreme low-light conditions belong to
different data clusters. The observation that ConvNets do not normalize lighting conditions
is in line with the observation made by [14] for image recognition networks. However, our
classification of lighting types is by perceptual difficulty rather than by, e.g., the light source
as in [14]. Moreover, we observe that there is no sharp boundary between these conditions,
which seems to follow the intuition that lighting conditions are a spectrum from bright (easy
for perception) through low-light (moderately difficult for perception) to extreme low-light
(difficult for perception). Similarly, we visualized t-SNE embeddings for all the models in
our paper and found out that these findings hold for all of them.

Next, we analyzed the performance of an off-the-shelf detector on challenging low-light
data. To this end, similarly as for visualizing t-SNE feature embeddings, we used the baseline
model trained on the COCO dataset [12]. We evaluated the performance on the test set of
Sony, and used the lighting conditions annotations to investigate the impact of extreme low-
lighting conditions on the detector. We show the results in Fig. 3 (a), where we observe that
errors due to extreme low-light conditions constitute a large part of errors of the off-the-shelf
detector. Similarly, we analyzed the performance of the same model fine-tuned on our low-
light dataset, shown in Fig. 3 (b). Although the detector trained on low-light data performs
much better under low-light conditions, the proportion of errors due to extreme low-light
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Figure 4: The proposed method consists of an image enhancement module trained under the
guidance of the object detector that produces enhanced intermediate representation optimal
for machine cognition.

remains significant, and there is a large room for improvements in this aspect.
In order to verify that the performance gap between the pre-trained and fine-tuned base-

line model is, indeed, due to the lack of low-light data rather than the distribution mismatch
only, we compared the Precision-Recall curves separately under extreme and non-extreme
low-light conditions. The results are shown in Fig. 1 (a). In comparison with the baseline
fine-tuned on our dataset, the performance of the pre-trained baseline model under extreme
low-light conditions is disproportionately lower with respect to the performance under non-
extreme low-light conditions. In other words, training on an appropriate low-light dataset,
helps to reduce the gap between the performance under extreme and non-extreme lighting
conditions. However, despite the large amounts of extreme low-light data in training, the gap
is not entirely reduced, which suggests that special attention from the researchers is required
to solve the problem of low-light conditions in high-level tasks.

5 Proposed Method
Inspired by the observation that ISP pipelines are not designed to work under extreme low-
light conditions, we introduce an image enhancement module that will compensate for the
errors of the ISP pipeline as shown in Fig. 4. The image enhancement module is to compen-
sate for extreme low-light conditions and is trained jointly with the object detector to learn
image representation optimal for machine cognition rather than for the human visual system.

In our exploratory study, we have experimented with image-to-image fully-convolutional
networks and image-to-parameter networks. In the end, we have selected U-Net [20] as
an effective architecture for this task. In contrast with image-to-parameters networks, such
architecture is capable of both performing intensity adjustment as well as denoising. We have
also found out that training U-Net from scratch jointly with the object detector initialized
from a pre-trained checkpoint leads to suboptimal results. Therefore, we propose a simple
but effective pre-training procedure that takes advantage of large amounts of bright images
easily available for training.

5.1 Pre-Training Image Enhancement Module
We propose a pseudo-supervised pre-training procedure that leverages the abundant amount
of data collected under normal conditions. Two observations inspired our approach: under
extreme low-light conditions, 1) low SNR is one of the critical factors limiting image quality,
and 2) because of the relatively low bit-depth of JPEG data, naively applying brightness and
contrast adjustment leads to visual artifacts that are similar to the posterization effect.

We formulate the pre-training as an image restoration task, with original bright images
as target images. We extract random patches from images and corrupt well-lit data by first
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(a) (b)
Figure 5: Proposed augmentation methods: (a) patch-wise light augmentation to reduce the
spatial redundancy, (b) block shuffle augmentation to encourage the detector to look at the
object’s context. Best viewed on display.

reducing the number of gray levels to k (i.e., we use k levels to represent 256 gray levels,
using e.g. uniform color quantization), and then adding shot noise on top of posterized image
patches. The number of gray levels and noise parameters can be used to control the severity
of image corruption. Examples of the corrupted images can be found in the supplementary
material.

We train the image enhancement module from scratch, and measure the distance between
the original image I and the reconstructed image Î using pixel-wise MSE and the Structure
Similarity (SSIM) index [24]. Moreover, we use VGG loss [9], to encourage the network
to focus on high-level image features rather than low-level statistics, crucial to the object
detection task. The total loss is formulated as below:

L = MSE(I, Î)+λ1SSIM(I, Î)+λ2V GG(I, Î) (1)
where λ1, λ2 are hyper-parameters.

5.2 Patch-Wise Light Augmentation
In night scenes, local illumination changes are common due to the presence of local light
sources and shadows cast by objects. Under- and over-exposed regions are another exam-
ple of local lighting variations common in low-light photography. Ideally, a good image
enhancement module should learn to remove these variations. To facilitate the learning of
compensating these local variations, we propose to remove the spatial redundancy in the im-
ages by randomly adjusting brightness and contrast in every patch of the input image. We
adjust brightness and contrast using the formula:

I′(x,y) = α(x,y)(I(x,y)+δ (x,y)), (2)
where I(x,y) is the original intensity, α controls contrast adjustment, and δ controls bright-
ness adjustment. For each patch, α and δ are sampled randomly from a range of possible
values. An example of patch-wise light augmentation is shown in Fig. 5 (a).

5.3 Block Shuffle Augmentation
Under extreme low-light conditions, object features are severely affected by lighting varia-
tions, e.g., edges or object keypoints are not visible. In such a case, humans may approach
the problem by paying closer attention to the object’s context rather than only the object
itself. In order to encourage the object detector to do the same, we propose to destroy the
spatial correlation of the features by "scrambling" each object region. For each object region,
if it’s selected for augmentation with probability p, we divide the region into blocks sized
B×B and randomly permute them. An example of this augmentation is shown in Fig. 5 (b).
In this way, the detector is forced to look outside the scrambled region to look for more clues
about the object. We hypothesize that this augmentation might also boost object detection
performance by augmenting features outside their normal context.
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6 Experimental Results and Discussion
Implementation Details. We implement all models with Open MMLab Detection Toolbox
[3] on 2 Tesla-V100 32GB GPUs with SyncBN. We use SGD optimizer, apply a batch size
of 8, and set the learning rate to 1e−4. As for the U-Net [20], we replace ReLU activata-
tions with Mish [17] and add Batch Norm layers before every activation layer. We extract
random patches from the COCO dataset [12], and corrupt them by applying posterization,
by reducing from 256 to k ∈ [2,8] gray levels, and adding shot noise. We reduced gray levels
by uniform color quantization, i.e., we divided each axis of the color space into equal sized
segments. We use Adam [8], apply a batch size of 64, aset the learning rate to 1e−4, and
train using two Teslas K80 12GB. As for the patch-wise augmentation, we set α , δ limits to
[−0.3,0.3], and vary patch size from 4% to 20% of the image size during training. As for
the block shuffle augmentation we set block size to 16× 16. More details can be found in
the supplementary material.

6.1 Experiments & Discussion
We first present the ablation study to show the impact of the proposed improvements on the
performance. The effectiveness of the proposed pre-training method is shown in Tab. 2, the
ablation study of the enhancement module is shown in Tab. 3, and the effectiveness of the
proposed image enhancement module and augmentation methods are shown in Tab. 4. We
also present images enhanced by the proposed image enhancement module in Fig. 1 (b) and
in the supplementary materials.

Pre-training AP50 AP75 AP
7 64.9% 41.2% 40.3%
X 74.0% 48.0% 47.1%

Table 2: Effectiveness of our pre-training
method.

Test Enh.
dataset module AP50 AP75 AP

Sony 7 72.8 % 47.6 % 45.9%
Nikon 73.3% 47.8% 46.3%

Table 3: Ablation study. We train the en-
hancement module on the Nikon subset,
freeze the weights, and append it to the
detector trained on the Sony subset.

Augmentation Sony Nikon
Backbone Light Shuffle AP50 AP75 AP AP50 AP75 AP

R(esNet)50 72.8% 47.6% 45.9% 69.7% 43.7% 44.0%
U-Net + R50 74.0% 48.0% 47.1% 70.8% 43.3% 44.4%
U-Net + R50 X 73.9% 48.8% 46.9% 70.9% 45.0% 44.9%
U-Net + R50 X 74.3% 49.0% 47.5% 71.2% 44.7% 44.8%
U-Net + R50 X X 74.1% 49.1% 47.5% 71.6% 44.9% 45.4%

Table 4: Ablation study of the proposed method. We use RetinaNet [13] as the object detec-
tion framework and extend it by an image enhancement module if indicated by U-Net.

We observe that the proposed image enhancement module improves the overall average
precision, although it is more effective for the Sony dataset than for Nikon. We also observe
that the augmentation methods have different impact on the performance depending on the
dataset. For the Sony dataset, block shuffle augmentation is more effective, and for the
Nikon dataset patch-wise light augmentation is more effective. Overall, the proposed method
is effective in improving performance under low-light conditions. Next, we collected the
overall results of the proposed method in Tab. 5. The proposed method shows a consistent
improvement over the baseline model on our dataset as well as the ExDark dataset [14].

However, as we showed in Subsection 4, low light is a spectrum from non-extreme con-
ditions that are relatively easy for human and machine perception to extreme conditions that
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Dataset Proposed Method AP50 AP75 AP

Sony 7 72.8% 47.6% 45.9%
X 74.1% 49.1% 47.5%

Nikon 7 69.7% 43.7% 44.0%
X 71.6% 44.9% 45.4%

NOD (Sony+Nikon) 7 73.1% 47.0% 46.3%
X 74.4% 48.3% 47.6%

ExDark [14] 7 78.3% 52.9% 48.7%
X 79.1% 53.6% 49.4%

Table 5: Results of the proposed method, including proposed augmentation methods, on
subsets of our dataset (Sony, Nikon), our dataset (Sony+Nikon) and ExDark [14]. In all
experiments, we use RetinaNet [13] as the object detection framework.

are difficult for perception. To validate that the proposed method eliminates errors due to ex-
treme low-light conditions rather than eliminating some other unrelated error, we evaluated
the model on the instances in the Sony dataset presenting extreme low-light conditions only.
The resulting Precision-Recall curves are shown in Fig. 6. Our method has higher APs at
IoU = 0.5 and 0.75, and generally shows a higher precision at the same recall level.
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Figure 6: Precision-Recall curves under extreme low-light conditions, evaluated at (a)
IoU = 0.5 and (b) IoU = 0.75. Under extreme-low light conditions, our method leads to
more precise detection at the same recall level. Strongly occluded and truncated annotations
were excluded from this evaluation.

Enhancement Requires Learning- Model Model Extreme Non-Extreme
method bright gt. -based GFLOPS parameters AP50 AP75 AP50 AP75

Ours 7 X 12.1 8.0M 63.7% 35.2% 87.7% 71.2%
KinD++ [28] X X 7.9 8.3M 63.5% 35.3% 88.5% 70.6%
Zero-DCE [5] 7 X 5.2 79K 61.3% 31.1% 87.3% 69.3%

LIME [6] 7 7 - - 60.8% 32.7% 87.4% 69.3%
Hist. equal. 7 7 - - 60.1% 30.2% 86.2% 67.5%

Table 6: Comparison to the related work in low-light image enhancement (training and test-
ing on the Sony subset). The computational complexities are given for an input of size
256× 256× 3. The computational complexity of the baseline model (RetinaNet) is 13.1
GFLOPS. Strongly occluded and truncated annotations were excluded from this evaluation.

We also show a comparison of our proposed enhancement module with other low-light
enhancement modules after fine-tuning the baseline model in Tab. 6. Although the perfor-
mance using KinD++ [28] and our method is comparable, our enhancement model is learned
without low/normal-light image pairs jointly with the object detector using bounding box an-
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notation only, which is potentially a significant advantage, e.g. in dynamic scenes. Finally,
our proposed method can be used with different detectors.

Proposed Enh.
Detector init. Module AP50 AP75 AP

RetinaNet [13] COCO [12] 7 72.8% 47.6% 45.9%
X 74.1% 49.1% 47.5%

PAA [7] COCO [12] 7 71.6% 47.5% 45.4%
X 73.0% 48.5% 46.7%

Faster R-CNN [19] ImageNet [4] 7 61.6% 34.5% 33.3%
X 64.2% 35.8% 35.5%

FCOS [22] random 7 56.2% 22.1% 26.4%
X 58.1% 21.0% 26.7%

Table 7: Results of the proposed method, including proposed augmentation methods, on
subsets of our dataset (Sony, Nikon), our dataset (Sony+Nikon) and ExDark [14]. In all
experiments, we use RetinaNet [13] as the object detection framework. The models were
trained and tested on the Sony subset.

In Tab. 7, we show that our proposed method, in addition to a single-stage anchor-based
detector (RetinaNet [13]), can work for other detection models as well: two-stage Faster
R-CNN [19], anchor-free FCOS [22], and a single-stage detector with an alternative anchor
assignment scheme PAA [7].

7 Conclusion
In this paper, we presented a high-quality large-scale dataset for object detection under low-
light conditions showing outdoor scenes with all common challenges of low light photog-
raphy: motion blur, out-of-focus blur, and noise. Further, we linked perceptual difficulty to
low-light conditions and annotated instances in the Sony test set as extreme and non-extreme,
allowing for more in-depth evaluation of methods targeting low-light conditions in the fu-
ture. We expect that this dataset will be a valuable resource for the researchers in domains
of object detection, low-light image enhancement, and domain adaptation, to name a few.

Moreover, we proposed to incorporate an image enhancement module into the object
detection framework that, paired with the proposed block shuffle and patch-wise light aug-
mentation, led to improvements over the baseline model on low-light datasets. Performance
gains introduced by our method were slight but consistent – in this paper we show that the
perception under extreme low-light conditions is a difficult problem that should be addressed
on its own, rather than merely a substask of object detection.

All in all, in our paper, we highlighted that there exists a significant difficulty for object
detectors under low-light conditions. In particular, we showed that there is a large perfor-
mance gap under extreme and non-extreme low-light conditions that cannot be eliminated by
including large amounts of extreme examples in the training or our proposed enhancement
module. Paired with the observation that ConvNets do not learn to normalize features with
respect to the lighting type, this suggests that machine cognition under low-light conditions
is a non-trivial problem that requires special attention from researchers.
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