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Abstract

Recent domain adaptation methods have demonstrated impressive improvement on
unsupervised domain adaptation problems. However, in the semi-supervised domain
adaptation (SSDA) setting where the target domain has a few labeled instances avail-
able, these methods can fail to improve performance. Inspired by the effectiveness of
pseudo-labels in domain adaptation, we propose a reinforcement learning based selec-
tive pseudo-labeling method for SSDA. It is difficult for conventional pseudo-labeling
methods to balance the correctness and representativeness of pseudo-labeled data. To
address this limitation, we develop a deep Q-learning model to select both accurate and
representative pseudo-labeled instances. Moreover, motivated by large margin loss’s ca-
pacity on learning discriminative features with little data, we further propose a novel
target margin loss for our base model training to improve its discriminability. Our pro-
posed method is evaluated on several benchmark datasets for SSDA, and demonstrates
superior performance to all the comparison methods.

1 Introduction
Deep convolutional neural networks (CNNs) [7, 19] have achieved remarkable success in
image classification tasks. When trained on large-scale labeled data, deep networks can
learn discriminative representations and present great performance. However, it is difficult
to collect and annotate datasets for many domains. A good option is to use the labeled
data available in other domains for training models, which however often presents a domain
shift challenge between the two domains and degrades the test performance. To address this
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problem, many unsupervised domain adaptation (UDA) methods [4, 11, 17, 23] have been
proposed. UDA aims to improve the generalization performance on unlabeled target do-
mains. However, in reality a few labeled target instances can be available in target domains,
and this semi-supervised domain adaptation (SSDA) setting is more common. According
to [18], UDA methods often fail to improve performance compared with just training on the
unified data of labeled source and target samples in the SSDA setting.

The purpose for domain adaptation is to improve the generalization performance in the
target domain. In the SSDA setting, we have a few labeled target samples, but the number of
them is too small to represent the distribution of target unlabeled data. To increase the num-
ber of labels in the target domain without incurring annotation cost, one intuitive strategy is
to exploit pseudo-labels produced by a current prediction model. However, the pseudo-labels
can often be very noisy and contain many wrong labels, while training with the mislabeled
samples can negatively impact the original model. This motivates the straightforward se-
lective pseudo-labeling strategy which selects the most confident pseudo-labels to increase
their probability of correctness [1]. This simple strategy can select more accurate samples
but non-necessary the most useful samples for the prediction model. For example, the more
confident samples may be closer to the labeled data and fail to represent the distribution of
the unlabeled data. It is more reasonable but difficult to perform selective pseudo-labeling
by balancing the accuracy and the representativeness of the selected samples. To address this
challenge, in this paper we propose a reinforcement learning based selective pseudo-labeling
method. Our strategy is to use deep Q-learning to learn appropriate selection policies with
reward functions that reflect both factors of label correctness and data representativeness.

In addition, due to the lack of labeled data in the target domain, the training methods
typically have limited capacity in learning discriminative decision boundaries for the target
domain. Inspired by the observation that large margin loss functions [2, 10, 21] can help learn
discriminative features, we propose a contrastive target margin loss function over the labeled
data from the source and target domains. As illustrated in Fig. 1, the decision boundary is
mainly depending on source domain with the traditional softmax loss and the target margin
loss can make the labeled target data play a bigger role in learning the decision boundary.

Labeled Source
Labeled Target

Unlabeled Target

Distribution of Target Domain
Decision Boundary

Margin

Softmax Loss Target Margin Loss

Figure 1: An illustration of the proposed target margin loss.

Overall, the contribution of this paper can be summarized as follows: (1) We propose a
novel reinforcement learning framework for selective pseudo-labeling for semi-supervised
domain adaptation. (2) We propose a contrastive target margin loss for SSDA that takes
both generalization and discrimination into consideration. (3) Extensive experiments are
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conducted on DomainNet [14], Office-31 [16] and Office-Home [20]. The results show
that our proposed method achieves the state-of-the-art semi-supervised domain adaptation
performance.

2 Related Work

Domain Adaptation. Domain adaptation [4, 23] aims to generalize models across differ-
ent domains of different distributions. Most recent methods are focusing on unsupervised
domain adaptation (UDA) which has a label-rich source domain and an unlabeled target
domain. [4] proposes a domain-adversarial neural network (DANN) by adding a domain
discriminator to minimize the distance between the feature distributions in source and target
domain. [11] proposes Conditional Domain Adversarial Network (CDAN) by combining the
discriminative information conveyed in the classifier predictions into the adversarial adap-
tation. In fact, semi-supervised domain adaptation (SSDA) is a more common setting in
real-world datasets where a few labeled instances can be available. However, it has not been
studied extensively, especially in the field of deep learning. A little conventional work [3, 25]
has concentrated on this important task. As for deep learning based methods, [18] proposes
a Minimax Entropy (MME) method by alternately maximizing the conditional entropy of
unlabeled target data and minimizing it to optimize the classifier and the feature extractor
respectively. Meanwhile, it shows that UDA methods can rarely improve accuracy in SSDA.

Pseudo-Labeling. Pseudo-labeling is an effective way to extend label set when the number
of labels is limited. As for SSDA, pseudo-labeling can be used for target domain which
has little labeled data. There are two strategies for pseudo-labeling without selection, hard
labeling [22, 28] and soft labeling [13]. The hard labeling strategy assigns a pseudo-label
with only one class predicted by the classifier to each unlabeled instance, which will be
combined with original labeled data to train an improved model. However, due to the weak
classifier in the initial stage of training, many samples will be mis-labeled. Using these
mis-labeled data for supervised training can cause serious harm to the model. Thus, soft
labeling has been employed by assigning the predicted conditional probability of all classes
to the unlabeled data. As for selective pseudo-labeling [1, 24], a subset of unlabeled samples
which are most confident in the prediction are selected to be pseudo-labeled. This sample
selection strategy can make the pseudo-labels more accurate while it also has a limitation
that the selected samples cannot represent the distribution of unlabeled data well.

Reinforcement Learning. Reinforcement learning (RL) is a technique which trains an
agent to learn policies based on trial and error in a dynamic environment. The training
strategy is to maximize the accumulated reward from the environment. RL has made great
progress in many vision tasks. [26] designs an agent to label noisy web data so that right
examples can be labeled to train a classifier. [27] proposes to choose sufficient data pairs
for multi-shot person re-identification by training an agent. [9] introduces a policy network
for adjusting a margin parameter in the loss function to learn more discriminative features
from imbalanced face datasets. In this work, we train an agent with deep Q-learning to select
more representative and accurate pseudo-labeled data.
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Figure 2: An overview of our method. We use target margin loss for the base model training
and train an agent (deep Q-network) to select appropriate pseudo-labeled samples.

3 Method

For semi-supervised domain adaptation, we have a sufficient labeled dataset from the source
domain, Ds = {(xs

i ,y
s
i )}

Ns
i=1. In the target domain, we only have a limited number of labeled

instances Dt = {(xt
i,y

t
i)}

Nt
i=1, but a large set of unlabeled instances Du = {(xu

i )}
Nu
i=1. The goal

is to train a good prediction model on all these available data Ds, Dt and Du and evaluate it
on Du with the hidden true labels, as described in [18]. In this section, we present a novel
selective pseudo-labeling method for SSDA. The method is based on a deep Q-learning
framework and a target margin loss. The framework of the proposed method is depicted in
Fig. 2. First, we use the proposed target margin loss to train a CNN consisting of a feature
extractor F and a classifier C for a K-class classification problem. Then, we generate pseudo-
labels for the unlabeled samples in the target domain based on the trained CNN classifier.
Finally, we alternately train an agent with deep Q-learning and use the agent to select pseudo-
labeled samples for the CNN training.

3.1 Target Margin Loss

Large margin loss functions [2, 10, 21] (based on traditional softmax loss function) effec-
tively make CNN features more discriminative. For SSDA, there is a gap in feature distribu-
tions between domains and the number of labeled samples in target domain is much smaller
than source domain. Therefore, we propose to add a margin to the loss on the target labeled
data, by contrast to the loss on the source labeled data. This can be considered as making
the decision boundaries more separated for the little target labeled data and representing the
target distribution better. Then the proposed target margin loss can be formulated as follows:

Citation
Citation
{Saito, Kim, Sclaroff, Darrell, and Saenko} 2019

Citation
Citation
{Deng, Guo, Xue, and Zafeiriou} 2019

Citation
Citation
{Liu, Wen, Yu, Li, Raj, and Song} 2017

Citation
Citation
{Wang, Wang, Zhou, Ji, Gong, Zhou, Li, and Liu} 2018{}



LIU, GUO, YE, DENG: SELECTIVE PSEUDO-LABELING WITH RL FOR SSDA 5
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where W j denotes the j-th class weight of the last fully connected layer. m is the margin
parameter and r is a re-scaling constant.

In addition, the suitable class separation can benefit from taking the unlabeled target data
into account. To this end, we adopt the entropy loss to cluster the target unlabeled features
into the corresponding decision regions, which is written as:

Lent =−
1

Nu

Nu

∑
i=1

K

∑
j=1

p(y = j|xu
i ) log p(y = j|xu

i ) (2)

where p(y = j|xu
i ) represents the probability of categorizing xu

i to class j. Note that the
samples should be clustered around the representative centers of the corresponding classes
to decrease the entropy, resulting in the desired discriminative features.

Combining Eq. (1) and Eq. (2) provides the following formulation of our final semi-
supervised loss function:

L= Ltml +αLent (3)

where α is a hyper-parameter that balances the target margin loss and the entropy loss.

3.2 Selective Pseudo-Labeling by RL
Pseudo-labeling can generate mis-labeled samples which can cause serious harm to the sub-
sequent learning process. To address this, selective pseudo-labeling is used in many works,
which selects the most confident pseudo-labeled samples. This strategy however leads to
the problem that the selected samples are generally easy ones or belong to easy classes. As
a result, they cannot represent the target distribution well. Therefore, we propose to use
reinforcement learning to select both representative and accurate pseudo-labeled samples.

We formulate the problem of selecting pseudo-labeled samples as a Markov Decision
Process (MDP), described by states, actions and rewards, and train an agent to select pseudo-
labeled samples. We define a candidate set Dc which contains pseudo-labeled samples to be
selected and is initially randomly sampled fromDu with pseudo-labels, and a positive setDp
which contains the selected pseudo-labeled samples and initialized to be empty. During our
CNN training, a series of reinforcement learning samples will be generated, which can be
represented as {(si,ai,ri,s′i)}. Here, si is the state and ri is the reward. ai is the action taken
by the agent at state si, which equals to selecting a pseudo-labeled sample from the candidate
set Dc and moving it to the positive set Dp. s′i represents the next state which the agent turns
to through the action ai. Then, we alternately train the agent by using the reinforcement
learning samples and use the agent to select pseudo-labeled samples for our CNN training.

States. We consider that the representative ability and accuracy of a pseudo-labeled
target instance can be related to three parts, which are itself, the data with labels in Dt and
Dp, and the unlabeled data in Du. Note that pseudo-labeled instances are selected to make
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the current distribution of labeled data close to the distribution of unlabeled data. Therefore,
we formulate the state as a concatenation of three vectors, dependent on Dc, Dt ∪Dp and
Du, respectively. For the first part, given the candidate set Dc = {(xc

i , ŷ
c
i )}

Nc
i=1, we use a

vector
[
F(xc

i )
T ,C(xc

i )
T
]
∈ Rd+K to represent each instance, where F(xc

i ) denotes the d-
dimensional feature vector of instance xc

i extracted by the feature extractor F , C(xc
i ) denotes

the softmax output of the classifier C. Then we concatenate all the instances in Dc together.
In addition, after moving an instance from Dc to Dp, we replace the selected instance with

a zero-valued vector. For the second part, we use a vector
[
F(xt p

i )
T
,C(xt p

i )
T
]
∈ Rd+K to

represent each instance in Dt ∪Dp. Due to the available labels, we calculate the average in
each class and then concatenate them together. The last part is represented by the instances in
Du with the same operation as the second part. Finally, the state si is a flattened concatenation
of these three parts.

Actions. For each state si, the agent takes an action ai to select the ai-th instance in Dc
and move it to Dp. The number of actions is equivalent to the number of instances in Dc.

Rewards. The rewards should reflect whether the actions taken by the agent are ap-
propriate or not. In other words, selecting more representative and accurate pseudo-labeled
instances should lead to positive rewards, and vice versa. We first define a metric function to
measure the representative ability and accuracy, which can be formulated as follows:

ϕ(xi, ŷi) = log pc(y = ŷi|xi)+β log p f (y = ŷi|xi)+λ∆e (4)

where β and λ are hyper-parameters. pc(y = ŷi|xi) is the probability of the pseudo class
ŷi predicted by the classifier, which indicates the confidence of the prediction. We define
p f (y = ŷi|xi) as:

p f (y = ŷi|xi) =
escos

〈
F(xi),z

t p
ŷi

〉

∑
K
j=1 escos

〈
F(xi),z

t p
j

〉 (5)

where zt p
j denotes the feature center of the j-th class in target labeled and current positive set

Dt ∪Dp, which can be calculated by:

zt p
j =

∑
Nt
i=1 F(xi)I(yi = j)+∑

Np
i=1 F(xi)I(ŷp

i = j)

∑
Nt
i=1 I(yi = j)+∑

Np
i=1 I(ŷ

p
i = j)

(6)

I is the indicator function. Therefore, p f (y = ŷi|xi) is the softmax output of the cosine
distance between xi and the feature center of its pseudo class ŷi in Dt ∪Dp.

The first two terms in Eq. (4) reflect the confidence of the pseudo-label prediction
through two aspects, i.e., the output of the classifier and the similarity with the target feature
center of the pseudo class. Since the classifier is more dependent on the source domain,
we add the second term to take the distribution of the target domain into consideration. We
also add a third term ∆e = H−H ′, which denotes the decrease of the entropy of the target
unlabeled data. H and H ′ represent the entropy at state si and the next state s′i respectively
and can be calculated in the same way as Eq. (2). In other words, we first calculate H at state
si and then add a pseudo-labeled sample according to the action ai for one-epoch training.
After the training, we calculate H ′ and derive ∆e. In order to make the entropy not affected
by Lent , we only use Ltml in Eq. (1) to optimize the model during the one-epoch training.
Note that the more representative the selected sample is, the more the entropy will decrease.
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Algorithm 1 Selective pseudo-labeling by deep Q-learning
Input: Ds, Dt and Du Output: F , C and Q

1: Pre-train F and C with Ds, Dt and Du by using Eq. (3);
2: Initialize the positive set Dp = /0, the experience pool M = /0;
3: while not converge do
4: Assign pseudo-labels to Du by F and C and copy the parameters of F , C to F ′, C′;
5: Initialize Dc with random pseudo-labeled samples from Du and generate the state s0;
6: while Dc 6= /0 and rt > 0 do
7: Get an output action at using Eq. (9) and update Dc and Dp by taking the action;
8: Update F ′ and C′ with Ds, Dt and Dp by optimizing the loss in Eq. (1);
9: Generate the next state s′t and calculate the reward rt by Eq. (7) with F ′ and C′;

10: Insert the recording (st ,at ,rt ,s′t) into M;
11: Sample a batch of recordings {(si,ai,ri,s′i)} from M to update Q by Eq. (8);
12: end while
13: Update F and C with Ds, Dt , Du and Dp by optimizing the loss in Eq. (3).
14: end while

Therefore, larger ∆e means stronger representative ability, and vice versa. In addition, we
perform a log operation on the first two terms to keep these three terms at the same scale.

Directly using the metric function as reward can result in very small differences between
the good and bad actions. Hence, we define the final reward function as follows:

ri =

{
+1, ϕ(xi, ŷi)> τ

−1, ϕ(xi, ŷi)≤ τ
(7)

where τ is a threshold. We use this binary reward to provide the agent more explicit guidance.
Deep Q-learning. We apply deep Q-learning [12] to learn policies for selecting pseudo-

labeled instances. For each state and action (si,ai), the output of the deep Q-network Q(si,ai)
can represent the discounted accumulated rewards. Given a reinforcement learning training
sample (si,ai,ri,s′i), the target value of Q(si,ai) can be calculated by Vi = ri+γ max

a′i
Q(s′i,a

′
i),

where γ is a discount factor to decide the importance of future accumulated reward compared
with the current reward. During the training, we iteratively update the Q-network by:

Ω←Ω−η ∑
i

dQ(si,ai)

dΩ
(Q(si,ai)−Vi) (8)

where Ω represents the parameters of the Q-network. As for the entire model training, we
alternately train the classification network and the Q-network. The details of our training
strategy are summarized in Algorithm 1. When the agent (i.e., the Q-network) is called to
select a pseudo-labeled instance at state st , it will output an action at by a policy as follows:

at = argmax
a

Q(st ,a) (9)

4 Experiments

4.1 Datasets and Baselines
Datasets. We perform our experiments on three datasets, DomainNet [14], Office-31 [16]
and Office-Home [20]. Due to some noisy domains and categories in DomainNet, we pick
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4 domains and 126 categories for DomainNet experiments. Following [18], we form 7
adaptation scenarios for testing with the 4 domains, Real (R), Clipart (C), Painting (P) and
Sketch (S). As for Office-31, we construct 2 scenarios with Amazon (A) as the target domain
since Webcam (W) and DSLR (D) do not have enough samples for effective evaluation.
Office-Home is more difficult than Office-31 and contains four domains: Artistic (A), Clipart
(C), Product (P) and Real-World (R). We randomly select three labeled samples per class as
the labeled training target samples to form a three-shot SSDA setting.

Baselines. S+T baseline directly trains a model using the labeled source data and labeled
target data without unlabeled target data. For the UDA methods (DANN [4], ADR [17],
CDAN [11]) as baselines, we modify their training strategies following [18] so that the mod-
els can be trained with all the labeled source set, labeled target set and unlabeled target set.
ENT [6] is a baseline method using standard entropy minimization for unlabeled target data.
MME is the method proposed in [18]. We also design a baseline TML_SPL with a selec-
tive pseudo-labeling strategy to compare with our reinforcement learning based selective
pseudo-labeling method. TML_SPL uses the target margin loss and selects the most confi-
dent pseudo-labeled samples with a threshold of 0.9 to assist to train an improved model.

4.2 Implementation Details

We use ResNet-34 [7] for experiments on DomainNet and VGG-16 [19] for experiments on
Office-31 and Office-Home, finetuned from ImageNet pre-trained models [15]. We adopt
mini-batch SGD with momentum of 0.9 and the learning rate adjusting schedule as [5]. The
weight decay is set at 0.0005. As for r and m in Eq. (1), a very small r or a very large m
can make the model difficult to converge while a very large r or a very small m can make the
margin ignored during training. Therefore, we choose an appropriate pair of values 30 and
0.5 for r and m respectively following previous large margin works [2]. As for the trade-off
parameters, we set α in Eq. (3) at 0.1 to keep the two losses at a similar scale so that neither
of them will be ignored during the training. β and λ balance the second and the third terms
in Eq. (4). The first two terms in Eq. (4) are both logarithmic forms and the third term
is the decrease of the entropy. Thus, we set β and λ at 1 and 0.1 to keep the three terms
at a similar scale so that all the terms can make sense. For the deep Q-learning, we apply
the ε-greedy strategy [12] and the experience replay strategy [8]. The ε-greedy strategy is
used for the reason that the output by the deep Q-network at early stage cannot reflect the
reward and the deep Q-network needs more diverse training samples. The experience replay
strategy can make the deep Q-network learn from both current and past information. Our
deep Q-network is composed of three fully connected layers, with two hidden layers of 1024
and 512 units respectively. The discount factor γ is set to 0.9.

4.3 Validation Experiments

In order to show the effectiveness of our method, we design several validation experiments
on the 7 scenarios in DomainNet.

Extending Margin to Source Domain. We extend the margin parameter to source domain
to form a complete margin loss (CML) for comparison, which has a similar formulation to
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Method R to C R to P P to C C to S S to P R to S P to R Mean
CML 66.3 63.8 67.2 58.8 61.0 57.2 71.7 63.7

TML (Ours) 72.5 71.6 72.9 61.0 67.7 62.8 79.2 69.8
Table 1: Comparisons with the complete margin loss.
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Figure 3: Accuracy vs the number of target labeled samples per class.

the original margin loss and can be written as:

Lcml =
1

Ns+t

Ns+t

∑
i=1

log
er cos(〈F(xi),Wyi〉+m)

er cos(〈F(xi),Wyi〉+m) +∑
K
j=1, j 6=yi

er cos〈F(xi),W j〉
(10)

where s+ t means labeled source set and labeled target set. The CML method replaces the
Ltml in Eq. (3) with Lcml . As shown in Table 1, our TML performs much better than CML
though the difference between the two methods is quite small. The reason can be that if
both the labeled source data and the labeled target data is constrained by the margin then the
decision boundary will still be more dependent on the source domain with much more data.

Varying Number of Target Labeled Samples. We verify the number of labeled samples
in target domain from 1 to 20 per class to explore the performance of our method in different
settings. As illustrated in Fig. 3, our TML method can outperform MME and ENT in all
the settings while MME gradually performs worse than the simple ENT baseline as the
number increasing. Furthermore, when the target labeled samples are much enough, the
confidence based selective pseudo-labeling method TML_SPL cannot work well and can
even hurt the original model. Our reinforcement learning based selective pseudo-labeling
method TML_DQNPL can always make progress to the base model due to the representative
and accurate selected pseudo-labels.

4.4 Results
The results of our main experiments on the large-scale DomainNet dataset are shown in
Table 2. Compared with the UDA methods and the state-of-the-art SSDA method MME [18],
our method with only target margin loss (TML) can perform better except for only one case
where it performs similarly to MME. On the basis of TML, our final method TML_DQNPL
with deep Q-network for selective pseudo-labeling can outperform the baseline TML_SPL
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Method DomainNet Office-31
R to C R to P P to C C to S S to P R to S P to R Mean W to A D to A Mean

S+T 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0 73.2 73.3 73.3
DANN [4] 59.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7 75.4 74.6 75.0
ADR [17] 60.7 61.9 60.7 54.4 59.9 51.1 74.2 60.4 73.3 74.1 73.7

CDAN [11] 69.0 67.3 68.4 57.8 65.3 59.0 78.5 66.5 74.4 71.4 72.9
ENT [6] 71.0 69.2 71.1 60.0 62.1 61.1 78.6 67.6 75.4 75.1 75.3

MME [18] 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9 76.3 77.6 77.0
TML (Ours) 72.5 71.6 72.9 61.7 67.7 62.8 79.2 69.8 76.6 77.6 77.1
TML_SPL 73.2 72.2 73.3 62.1 68.5 63.4 80.0 70.4 75.7 77.2 76.5

TML_DQNPL (Ours) 75.8 74.5 75.1 64.3 69.7 64.4 82.6 72.3 77.5 78.8 78.2
Table 2: Results on the 7 scenarios in DomainNet and 2 scenarios in Office-31.

Method Office-Home
R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
DANN 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
ADR 49.0 78.1 62.8 73.6 47.8 55.8 69.9 49.3 73.3 69.3 56.3 71.4 63.0

CDAN 50.2 80.9 62.1 70.8 45.1 50.3 74.7 46.0 71.4 65.9 52.9 71.2 61.8
ENT 48.3 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8
MME 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6

TML (Ours) 56.9 83.2 67.0 76.8 54.5 59.9 75.7 54.9 75.9 73.2 61.1 77.5 68.1
TML_SPL 55.4 82.1 67.1 76.5 55.3 60.7 75.5 53.0 75.9 73.4 60.4 77.6 67.7

TML_DQNPL (Ours) 58.4 84.0 69.1 78.5 56.8 61.7 77.0 55.9 77.1 74.5 61.9 78.8 69.5
Table 3: Results on the 12 scenarios in Office-Home.

with selective pseudo-labeling by confidence, which demonstrates that our deep Q-network
can help select more representative and accurate pseudo-labels.

The results on Office-31 and Office-Home are shown in Table 2 and Table 3 respectively.
With these small-scale datasets, our TML method also has better performance than MME
in most cases and can perform the same as MME in other cases. In addition, we observe
that TML_SPL can hurt the performance in some cases while our TML_DQNPL also makes
a progress. The potential reason can be that adding mis-labeled target samples for training
causes more damage to the model when the number of the original training samples is small.
Therefore, these comparisons can further confirm the effectiveness of our method.

5 Conclusions

We propose a novel selective pseudo-labeling method with reinforcement learning for SSDA.
We first design a target margin loss for the base model training, which can make the feature
distribution closer to the target domain and improve the discriminative ability. Then we
apply deep Q-learning to train an agent to select more representative and accurate pseudo-
labeled samples for the improved model training. Our method obtains competitive results on
several domain adaptation benchmarks and outperforms the present state-of-the-art methods.
In addition, the training of the deep Q-network is unrelated to the architecture of base model
and will not change the training strategy so that the proposed pseudo-labeling agent can be
combined with other advanced methods to help train improved models in the SSDA setting.
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