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Abstract

Sign Language Production (SLP) aims to translate spoken language expressions into
sign language expressions such as a sequence of sign poses or a sign video. Previous SLP
works have used an autoregressive approach to learn the relationship between spoken
words and sign poses. However, since the approaches work autoregressively, the decoder
unintentionally regresses to the mean and even suffers from error propagation. In this
work, we propose Non-Autoregressive Sign Language Production with Gaussian space
(NSLP-G), a novel SLP model that uses non-autoregressive decoding to generate sign
poses. To avoid direct regression, NSLP-G makes use of two phases. The first phase is
to build a pose generator capable of generating various sign poses in a continuous sign
pose space. At the second phase, we use a non-autoregressive Transformer to map from
the source sentence to the target distribution. To validate the results of our model, we
assess the quality of produced sign poses using Fréchet Gesture Distance, Mean Absolute
Error of Joint coordination and back-translation evaluation. Experimental results show
that NSLP-G outperforms the state-of-the-art model on the RWTH-PHOENIX-Weather
2014T dataset.

1 Introduction

Sign language is the primary language of the Deaf community. Unlike spoken language,
sign language conveys the meaning through manual and non-manual elements, which may
invoke a communication gap between the Deaf and hearing individuals. To lessen the gap,
sign language interpreters have provided translated information interactively, which is still
insufficient to meet the high demand for interpretation. As an alternative, sign language re-
searchers have proposed vision-based sign language translation to reduce the dependency on
sign language interpreters. Sign Language Production (SLP) translates spoken language ex-
pressions into actual sign language expressions such as sign pose sequences, sign animations,
or videos. In this work, we aim to generate realistic and continuous sign pose sequences with
varying lengths from a sequence of spoken words or sign glosses.
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Figure 1: An overview of the proposed SLP model, which consists of two phases to generate
sign poses on a given source sentence (spoken language or sign gloss). Phase I: we use
VAE to employ as GPG (see (a) and (d)). The encoder outputs y and o and then uses a
reparameterization trick to sample z following A (0,1). The decoder reconstructs § using z.
Phase II: To generate a sequence of z, we employ a Transformer equipped GPG from (a) to
produce a sequence of z (see (b) and (c)). To achieve non-autoregressiveness, autoregressive
connections are removed from the decoder and only positional encodings (PE) are used as
inputs (see (c)).

The main challenge of SLP is to generate a sequence of meaningful and perceptually re-
alistic sign poses. Previous SLP models [26, 34] have taken an autoregressive approach, but
typically suffer from the regression to the mean and error propagation problems. To address
these limitations, Saunders er al. [25, 27] have applied adversarial learning and Gaussian
Mixture Density network to their previous work, respectively. Although these efforts have
mitigated these problems to some extent, they have not yet been fully resolved.

To address these problems from a more fundamental perspective, we propose a novel
SLP model, Non-Autoregressive Sign Language Production with Gaussian space (NSLP-
G), which has a completely different approach from the existing SLP models. It makes use
of two different phases: building a pose generator and mapping from a source sentence to
target sign pose distributions. More specifically, at Phase I, we use Variational Autoencoder
(VAE) to perform self-supervised learning on the sign poses. After the learning process, the
decoder can generate a sign pose in Gaussian space, which is now employed as Gaussian
Pose Generator (GPG). At Phase II, we use non-autoregressive Transformer as Gaussian
Seeker (GS) to translate the source sentence to the target sign pose distributions based on
GPG. The key novelty of our model is to provide the decoder with positional encoding and
output the entire sign pose sequence at once. To the best of our knowledge, there is no
such SLP model that produces sign poses in a non-autoregressive manner. We find that a
non-autoregressive SLP model produces sign poses accurately given a well-constructed sign
pose space. It also mitigates regression to the mean and error propagation in decoding. An
overview of our approach is shown in Figure 1.

In previous SLP studies, a back-translation approach [26] evaluates the quality of gen-
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erated sign poses. However, the back-translation evaluation could be problematic. When
comparing the original and back translation produced by an SLT model, discrepancies may
arise due to errors in the actual translation, but they can also be due to errors in the back
translation [4]. Here, we use Fréchet Gesture Distance (FGD) and Mean Absolute Error of
Joint coordination (MAEJ) proposed for a gesture generation task [32] as evaluation metrics
to assess the quality of produced sign poses directly.

The main contributions of this work are as follows:

* We introduce a novel Gaussian space-based SLP model, NSLP-G, which produces
sign poses in a non-autoregressive manner.

* To enable a more direct comparison, we introduce new evaluation metrics for SLP
models.

¢ Our proposed model achieves the state-of-the-art performance based on the proposed
metrics and the back-translation evaluation.

The rest of our paper is organized as follows. Section 2 reviews the existing literature on
SLP and non-autoregressive models. Section 3 introduces the details of NSLP-G. Section 4
provides details of the experimental setup, results, and analysis. Finally, Section 5 concludes
the paper and proposes future research directions.

2 Related Work

2.1 Sign Language Production

Previous work on SLP can be divided into four categories: avatar, statistics, neural network,
and motion graph based models. The avatar-based models can produce human-like signs, but
rely on phrase lookups and pre-defined gesture sequences [11, 16, 23], or require expensive
motion capture or pre-recorded phrases [3, 18, 22, 35].

With recent advances in deep learning, Stoll ef al. [28] propose the first SLP model
based on neural machine translation and generative adversarial network. They divide the
SLP task into two different phases: translating from natural utterances to sign glosses and
mapping the glosses to corresponding sign skeleton poses. Zelinka and Kanis [34] propose
a first end-to-end learning method from text to sign poses with a fixed length and ordering.
They also introduce an iterative backpropagation method that interpolates missing skeleton
joints from the extracted skeleton poses. Along with the interpolation method, Saunders et
al. [26] propose a transformer-based SLP model that allows a dynamic length of output sign
poses, and introduce a counter encoding scheme for learning the start and end of the pose
sequences. Although the model performs in a relatively stable manner, the outputs are still
under-expressed due to the regression to the mean problem. To address the problem, they
adopt an adversarial training method consisting of a generator and a discriminator into the
model [25], with slightly better results compared to the previous work.

2.2 Non-Autoregressive Translation

Autoregressive approach has achieved a great success in machine translation [29, 30, 31].
Despite its success, autoregressive approach has two main drawbacks: 1) the autoregressive
decoder highly relies on its previous target outputs, resulting in the error propagation from
previous predictions [19]. 2) In case of predicting human poses, autoregressive models are
prone to converging to a mean pose, which hinders the prediction of realistic poses [20].
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Recent studies resolve such problems in a non-autoregressive manner, where Gu et
al. [13] propose a non-autoregressive decoder, generating a target sequence given a source
sentence and a sequence of fertility values. Guo ef al. [14] enhance the decoder input by
directly leveraging a phrase table and adversarial learning. In human motion prediction, Li
et al. [19] remove autoregressive connections in the decoder, generating each target pose
independently given context features from the encoder and positional information.

In our work, we formulate the SLP problem in a non-autoregressive manner, injecting
positional information to the decoder in NSLP-G to generate sign poses in parallel. Although
Gu et al. [13] point out that performance degradation occurs when omitting inputs to the
decoder or using only positional encoding, we resolve this problem by equipping a pretrained
pose generator to NSLP-G, which guides the model to generate a sequence of sign poses.

3 Non-Autoregressive Sign Language Production with
Gaussian Space

3.1 Problem Definition

Suppose that the source sentence of length U is denoted as W = (wy,ws,...,wy), and that
the target sequence of produced sign poses of length T is denoted as S = (s1,s2,...,57). The
previous SLP works [25, 26, 27, 34] maximize the conditional probability P(S|W).

However, due to the curse of dimensionality [33] and the drastic difference in length
between W and S, an autoregressive approach does not work well. To address this problem,
we avoid direct regression and instead map words W to sign pose distributions Z, where
Z = (z1,22,..,zr) generates sign pose S using a generator g(-). This can be formulated as:

To maximize P(Z|W) and g(S|Z), we use Transformer and VAE, respectively. We will
cover each method in detail in Subsections 3.2 and 3.3.

3.2 Gaussian Pose Generator with VAE

At Phase I, as shown in Figure 1 (a), we employ VAE, which is widely used for generative
tasks [5, 9, 10, 15, 21] to obtain GPG. We train the VAE to generate a sign pose § as close as
possible to the ground truth sign pose s. It has a simple architecture consisting of sign pose
encoder enc,, and decoder dec;), similar to Autoencoder (AE) [2]. The encoder takes a sign
pose s and encodes it into latent space zs,. The decoder reconstructs a sign pose from the
latent space zs,. The encoder and decoder can be denoted as follows:

encxp(s) = qA\*p(pr|s)7 deC.\'p(ZA‘p) = psp(5|zsp)7 @)

where g, (z5p|s) and py,(s|zp) are the posterior distributions for the encoder and decoder,
respectively.

VAE uses a reparameterization trick to sample the latent vector z,, from the encoder’s
output to project the sign pose s into Gaussian space. The reparameterization trick can be
formulated as follows:

Zp = Usp+O5p €, where €€ N(0,]), 3)


Citation
Citation
{Gu, Bradbury, Xiong, Li, and Socher} 2017

Citation
Citation
{Guo, Tan, He, Qin, Xu, and Liu} 2019

Citation
Citation
{Li, Tian, Zhang, Feng, and Li} 2021

Citation
Citation
{Gu, Bradbury, Xiong, Li, and Socher} 2017

Citation
Citation
{Saunders, Camg{ö}z, and Bowden} 2020{}

Citation
Citation
{Saunders, Camg{ö}z, and Bowden} 2020{}

Citation
Citation
{Saunders, Camg{ö}z, and Bowden} 2021

Citation
Citation
{Zelinka and Kanis} 2020

Citation
Citation
{Yunus, Clavel, and Pelachaud} 2020

Citation
Citation
{Bowman, Vilnis, Vinyals, Dai, Jozefowicz, and Bengio} 2016

Citation
Citation
{Cheng, Xu, Wang, Chu, Huang, Chen, and Hu} 2019

Citation
Citation
{Fang, Zeng, Liu, Bo, Dong, and Chen} 2021

Citation
Citation
{Jiang, Xia, Carlton, Anderson, and Miyakawa} 2020

Citation
Citation
{Lin, Winata, Xu, Liu, and Fung} 2020

Citation
Citation
{Baldi} 2012


HWANG ET AL.: NON-AUTOREGRESSIVE SLP WITH GAUSSIAN SPACE 5

Feed Forward !
N x A Linear Projection
1 1

T
Self Attention J H

N N | 1 |

1 \ Feed Forward

1 1
+ + .
A 5 Encoder—Decoder N x
! ! Attention

Embedding

[+ 7]

Self Attention

Figure 2: An overview of Transformer based Gaussian Seeker. It consists of a transformer
encoder and a non-autoregressive decoder. The encoder takes source sentence wy,...,wy
with U words and the decoder takes PE with T length as an input and generate a sequence
of latent vector Z following a Gaussian distribution.

where L, and oy, are the mean and variance of the sign pose distribution, respectively; € is
an auxiliary independent random variable; and ® is element-wise multiplication.
The loss function of VAE is formulated as:

Lyge(s) = —E s (z5pls) (log psp (slzsp)] + BKL(gsp (zsp| )| Psp(zsp)), “4)

where p(z;,) = N(0,1) is the prior distribution and KL(-||-) is the Kullback-Leibler (KL)
divergence. The first term allows the model to encode the sign pose s into the latent space
zsp € N(0,1) for reconstruction. We use Mean Squared Error (MSE) loss to let the decoder
assume Gaussian distribution. The second term pushes posterior distribution g (zsp|s) to
be close to the prior distribution py,(zs,). We add a variable weight B defined by KL cost
annealing [5]. After the learning process, the trained decoder decxp(~) is defined as GPG (see
Figure 1 (d)).

3.3 Gaussian Seeker with Non-Autoregressive Transformer

At Phase II, as shown in Figure 2, we build a Transformer in a non-autoregressive manner
and employ it as GS.

Encoder. We use the same Transformer encoder, which consists of a stack of N identi-
cal layers with Multi Head Attention (MHA) and Feed Forward layers. The inputs are first
embedded into n—dimensional space and the positions are added to the embedded repre-
sentation of each input. MHA performs scaled dot product attention to generate a weighted
contextual representation of the given inputs. Scaled dot product attention can be formulated

as follows:
Attention(Q,K,V) = softmax(—; 1% 5)
b b / lk )
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Models DEV TEST
FGD/ MAEJ* | FGD/ MAEJ* |
Real 1.59i0430 2.95i0405 1.69i0‘30 3. 19i0.01
Gloss to Pose (G2P)
Saunders ef al. [26] 2.43+0.04 3.76+0-01 3.23+051 3.79%0.03
Ours 2.10:&0406 3.45:&0401 2.83i0'06 3.52j:0.02
Text to Pose (T2P)
Saunders et al. [26] 2.48+0.08 3.89F0.04 3.33+0.19 4.01%005
Ours (T2P) 2.36+0-05 3.64+0:02 3.02+0-07 3.76+0:02
Ours (T2PG) 2.33+0.06 3.63+0-03 3.12+0.02 3.75+0:02
Ours (T2P+finetuning) 2.45+0.03 3.61+0:02 3.23+001 3.71+001
Ours (T2PG+finetuning) | 2.44+007 3.60+0-02 3.15%0.17 3.70+001

Table 1: A comparison of the performance of our models with state-of-the-art models. The +
shows 95% confidence intervals over tasks and the | indicates that a lower number is better.
MAEJ* is scaled 100x for better readability.

where Q, K and V denote query, key and value, respectively. This allows the model to
learn the relationship between each input in the sequence and how they relate to each other.
Finally, MHA can be formulated as:

MHA(Q,K,V) = Concat (head;, ..., head,, )W, 6)
head; = Attention(QW/, KWy, VW), (7

where Wp, Wp, Wk and Wy are weights related to each input.

Decoder. We remove the autoregressive mask so that the decoder works in a non-autoregressive
manner. The P(Z|W) in Equation 1 can be represented as follows:

T
Pva(ZIW) =[] pes(zlwiv), (®)
t=1

where Z and W are a target sequence of sign poses and a source sentence, respectively.

These distributions can be computed in parallel at inference time. However, as can be
seen from Equation 8, there is no conditional probability to predict the length of the target
distribution sequence Z. Our model generates a fixed sequence of sign poses, but at the
same time, utilizes a masked MSE loss that enables the model to learn sign poses of variable
length. With the loss calculation, our model converges to an idle state when inference is
complete.

Specifically, our decoder takes PE as a query and the encoder’s output as a key and value.
The decoder has the same number of layers as the Encoder does, and each layer contains
MHA self-attention (Equation 6), encoder-decoder attention, and feed-forward sub-layers.
Finally, the decoder outputs a target sequence Z through a linear projection layer.

4 Experiments

4.1 Experimental Settings

Dataset. We evaluate our proposed models on the publicly available RWTH-PHOENIX-
Weather 2014T dataset [6]. The corpus contains 8,257 pairs of German and German Sign
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Models DEV TEST
BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE | BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE
Real 11.44 14.49 20.12 32.26 33.30 11.30 14.27 19.96 32.37 32.63
Gloss to Pose (G2P)
Saunders et al. [26] 7.18 9.19 13.21 24.33 25.81 6.24 8.17 12.05 22.78 24.55
Ours 10.28 13.04 18.13 29.83 31.38 9.39 12.12 17.30 28.98 30.38
Text to Pose (T2P)
Saunders e al. [26] 8.13 10.45 14.88 26.37 27.53 7.60 9.87 14.20 25.27 27.35
Ours (T2P) 10.70 13.46 18.39 29.62 31.37 10.95 14.07 19.49 31.23 32.25
Ours (T2PG) 10.98 13.74 18.67 30.40 31.97 10.94 13.84 19.08 30.42 31.92
Ours (T2P+finetuning) 11.15 13.97 18.94 30.45 32.09 11.07 14.06 19.57 31.68 32.63
Ours (T2PG+finetuning) 11.00 13.81 18.84 30.40 32.13 10.88 13.79 18.94 30.06 31.32

Table 2: A comparison of the back-translation evaluation [26] of our model with state-of-the-
art models. Note that due to differences in implementation (i.e., lifted sign pose data, number
of epochs used) the metrics for the baselines differ from those reported in their paper. The
performance improvement with our NSLP-G shows a clear gap from the baselines.

Models DEV TEST

FGDJ MAEJ* | FGD/ MAEJ* |
Real 1.59+030 2.95T005 1.69+0-30 3.19F00T
G2P, latent size = 16 2151005 3.62+0:00 3.10H0-15 3.72+0.02
G2P, latent size = 32 2.10+0-06 3.45+001 2.83+0.06 3.52+0.02
G2P, latent size = 64 2.11+0.03 3.62+0.01 2.84+0.09 3.71%0:02
G2P, latent size = 128 2.11%0.01 3.61%0:02 3.30+0-60 3.79+0.00

Table 3: Effect of Gaussian latent size

Language (DGS) videos with word-level annotations, collected from weather forecasts of
PHOENIX TV station. Specifically, the corpus covers 2,887 different German words and
1,066 different DGS glosses. Note that our models are trained to generate skeletal joint
coordinate values of sign poses. We use OpenPose [8] to extract 2D manual features of each
video and then lift them into 3D using a skeletal correction model [34]. For non-manual
features, we also use OpenPose to extract 70 face landmarks represented in 2D coordinates.
The landmarks are then scaled to a consistent size and centered to the neck joint.

Evaluation metrics. The back-translation evaluation is limited in measuring the perfor-
mance of the generated sign poses. This is because it relies heavily on the performance of
the SLT model [7], and the translation performance is not yet stable enough to warrant the
SLP models (BLEU-4 score of 9.94). To the best of our knowledge, the back-translation
evaluation model is not publicly available, making it harder for an exact comparison.

For the sake of reproducibility and fair comparison, we use Fréchet Gesture Distance
(FGD) and Mean Absolute Error of Joint coordination (MAEJ) [32] as evaluation met-
rics to assess the quality of produced sign poses. FGD between the Gaussian mean and
covariance of the latent features of real sign poses S and those of the latent features of the
produced sign poses S can be represented as follows:

FGD(S,8) = ||ty — e |* + Tr(E + 2, — 2(5,5,)?), 9)

where (1, and X, are the first and second moments of the latent feature distribution Z, of
real sign poses S, respectively, and p, and X, are the first and second moments of the latent
feature distribution Z, of produced sign poses S, respectively.

FGD measures the diversity of produced sign poses, whereas MAEJ independently mea-
sures the distance between the produced sign pose and real sign pose (no aspect of temporal
distance). As the metrics require features from sign poses, we use Transformer AE as a
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Models DEV TEST
FGD/ MAEJ* | FGD/ MAEJ* |
Real 1 .59:&0430 295:&0403 1,69i0'30 3'19i0.03
G2P (w/ GPG) 2.10F0:00 3.45F001 2.83F0.06 3.52F002
G2P (w/o GPG) 18.90005 22 71%0.02 | 9 53+£0.12  »5 ¢7+0.01
Table 4: Effect of GPG
Models DEV TEST
FGDJ MAEJ* | FGDJ MAEJ* |
Real 1.59i0430 2.95i0403 1.69i0‘30 3. 19i0.03
G2P (non-autoregressive) | 2.10=0-00 3.45+001 2.83+0.06 3.52+002
G2P (autoregressive) 8.05+1.70 4.39+0.23 9.10+2:10 4.60%0-32

Table 5: Non-Autoregressive vs. Autoregressive settings

feature extractor. Further details are provided in the supplementary material.

Model settings. For all experiments except the ablation study in Subsection 4.2, GPG has 2
linear layers with ReLU [1]. For GS, we set the embedding dimension to 512, the number of
layers to 4, the dropout rate to 0.1, the number of heads to 4, the dimension of the feedforward
network to 1024, and the gloss supervision rate to 107>, All parts of our network are trained
with Xavier initialization [12] and Adam optimization [17], with learning rate of 10~4. Our
models are implemented using PyTorch [24].

Model types. We employ three different types of models: Gloss to Pose (G2P), Text to
Pose (T2P), and Text to Pose with Gloss supervision (T2PG). G2P translates a sequence of
DGS sign glosses into a sequence of DGS sign poses, whereas 72P translates a German
sentence. 72PG is similar to 72P but has an additional decoder that guides its representation
to gloss representation.

4.2 Quantitative Results

Comparison with state-of-the-art models. We assess our models on two tasks: Gloss fo
Pose (G2P) and Text to Pose (T2P). For the G2P task, we use our G2P model, and for the
T2P task, we use our T2P and T2PG models. As Progressive Transformer (PT) [26] is the
only publicly available SLP model that is trained on the RWTH-PHOENIX-Weather 2014T
dataset, we compare the three types of our models with G2P and T2P models of PT. Note
that all models generate the same structure of the sign pose including face, upper body, and
hands. We follow the original implementation of PT models and choose the Gaussian noise
augmented model as a representative model of PT. These models are trained for 300 epochs.
Overall, more epochs may improve performance, but we stop training to keep computational
costs low.

In order to measure FGD and MAEJ, we extract features from all the produced sign poses
and real (ground truth) sign poses. As shown in Table 1, all types of our models, NSLP-G,
outperform the baselines which works in an autoregressive manner. The main advantage of
NSLP-G is that it uses a well-constructed Gaussian space to produce sign poses in parallel.
We further report the performance of the models using the back-translation evaluation intro-
duced in [26]. As shown in Table 2, our models also outperform the autoregressive model.
Since the back-translation model trained for SLP is not publicly available, we train the model
based on the same hyper-parameters provided by [7]. For a fair comparison, we use the same
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Figure 3: Qualitative results of G2P. We compare our G2P model with the state-of-the-art
G2P model [26]. We uniformly selected 8 frames for each case.

lifted sign poses and the number of epochs for the baselines and our models. Therefore, we
have re-assessed the back-translation scores of the baselines, not using the reported scores
in [26].

In the experiments, we find that GPG successfully guides GS, producing more expressive
and articulate sign pose sequences than baselines. Moreover, the fine-tuned model shows bet-
ter performance in both evaluation settings. This is because GPG, which assumes a Gaussian
distribution, forms better distribution while fine-tuning and consequently gives better results.

Ablation study. To understand NSLP-G in detail, we conduct an ablation study to verify
several architectural choices of the model in a controlled setting. Note that the G2P model
is used only in this study. As shown in Table 3, we assess our model with different Gaussian
latent sizes. The best performance is achieved with the latent size of 32, which is empirically
set to an optimal size to contain the necessary information to guide GS.

We also examine the effect of GPG on our model. As shown in Table 4, our G2P model
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with GPG produces more realistic sign poses than that without GPG in terms of both FGD
and MAEJ. We demonstrate that GPG effectively guides GS. To explore the effectiveness of
the non-autoregressive approach in NSLP-G, we also compare the performance between the
non-autogressive and autogressive settings as shown in Table 5. Non-autoregressive setting
results in better performance than autoregressive setting in our model. Further ablations are
available in the supplementary material.

4.3 Qualitative Results

Figure 3 shows two cases of the G2P translation. We compare the sign pose sequences
produced by our model with those done by Saunders et al. [26]. In the first case, our model
successfully translates the gloss sequence (see 1a) to the sign pose sequence (see 1¢) except
fourth and fifth sign poses, which means that the non-autoregressive decoder of our model
successfully produces the next sign pose without propagating errors from the previously
produced sign poses.

The second case shows another effect of our non-autoregressive decoding. Our model
generates more dynamic and accurate sign poses (see 2¢), especially facial expressions, than
the state-of-the-art model (see 2b). This demonstrates that our model resolves the regression
to the mean problem mentioned in the most recent SLP work by Saunders ez al. [27]. Overall,
the results show that our model exploits the nature of non-autoregressive decoding and thus
produces more realistic sign poses.

5 Conclusions

In this paper, we propose NSLP-G, the first Gaussian space-based SLP model, to generate
sign poses in a non-autoregressive manner. To achieve this, we separate the learning pro-
cess into building the sign pose generator and mapping the source sentence to the sign pose
distributions. NSLP-G then takes source sentences and temporal information to generate
sign poses in parallel. Moreover, we introduce FGD and MAEJ to evaluate the produced
sign poses more quantitatively. The extensive experiments demonstrate the superiority of
the proposed model over the existing state-of-the-art SLP model.

As future work, we would like to expand the pose generator to produce spatio-temporal
sign poses using Transformer VAE. Furthermore, we plan to develop a new metric to evaluate
the semantic meaning of the produced sign poses more precisely.
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