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Abstract

Generative adversarial models that capture salient low-level features which convey
visual information in correlation with the human visual system (HVS) still suffer from
perceptible image degradations. The inability to convey such highly informative features
can be attributed to mode collapse, convergence failure and vanishing gradients. In this
paper, we improve image quality adversarially by introducing a novel quality map fusion
technique that harnesses image features similar to the HVS and the perceptual prop-
erties of a deep convolutional neural network (DCNN). We extend the widely adopted
l2 Wasserstein distance metric to other preferable quality norms derived from Banach
spaces that capture richer image properties like structure, luminance, contrast and the
naturalness of images. We also show that incorporating a perceptual attention mecha-
nism (PAM) that extracts global feature embeddings from the network bottleneck with
aggregated perceptual maps derived from standard image quality metrics translate to a
better image quality. We also demonstrate impressive performance over other methods.

1 Introduction
A representation of the human visual system (HVS) is necessary to establish a robust image
quality metric which is needed for computer vision applications [6, 27]. Classical approaches
considered hand-crafted strategies to mimic the properties of the HVS [42, 44, 46, 51] by
implementing a stream of computational functions that are combined to identify the key per-
ceptual properties of images. While these techniques played their role effectively, scaling
up these methods have proven to be a daunting task, especially for applications with huge
datasets. However, the introduction of neural networks has helped to improve the aforemen-
tioned task considerably [2, 8, 12, 14, 18, 30, 32]. These deep networks consist of non-linear
filters configured to extract key perceptual features within user-defined constraints from data.

In our work, we focus more on Full-Reference Image Quality Assessment (FR-IQA)
models [23, 52], these models are mostly used to represent the HVS with the aim of deriv-
ing a quality measure for images by comparing the perceptual similarity between distorted
images and their respective reference image. A standard FR-IQA model seeks to imitate the
HVS by exploiting photographic computational algorithms that represent contrast sensitiv-
ity, visual masking, luminance, etc. A number of FR-IQA metrics have since being derived
which include the Structure Similarity Index Measure (SSIM) [44], Multi Scale Structure
Similarity Index Measure (MS-SSIM) [33], Visual Information Fidelity (VIF) [10], Feature
Similarity Index Measure (FSIM) [51], Mean Deviation Similarity Index (MDSI) [31], etc.

In this paper, we present a novel approach for improving the quality of GAN-synthesised
images by combining the benefits of established FR-IQA metrics and the features of a deep
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convolutional neural network (DCNN). We extend the performance of popular GAN-based
baseline approaches by introducing a novel image quality map fusion network that computes
the perceptual properties of images and fuse them with a perceptual attention mechanism, as
shown in Figure 1. We also introduce novel quality loss functions derived via Banach spaces
to boost image quality. Our technique shows impressive results as compared to state-of-the-
art. Our key contributions are as follows:

• We introduced a new perceptual quality map fusion network that harnesses the per-
ceptual qualities of computationally derived quality assessment metrics.

• We propose a new norm implemented via Banach Wasserstein GAN (BWGAN) in-
stead of the popular l2 norm computed using the Wasserstein metric.

• We also propose a perceptual attention mechanism (PAM) that augments image fea-
tures to boost the overall visual appeal of the synthesised images.

2 Related Work
The FR-IQA model tries to simulate the HVS characteristics with good performance mea-
sures [35, 36, 48, 53]. Two main reasons for the success of FR-IQA can be attributed to the
deep learning based perceptual properties of the reference image and the hand-crafted fea-
tures derived from statistical metrics which are similar to the HVS. Hence, it becomes easier
to build a system that minimises the difference between these two corresponding features. In
order to effectively model the properties of the HVS, a couple of related systems have been
proposed. Zhang et al. [51] proposed a similarity index metric which calculated the phase
congruence and gradient magnitude to represent the HVS system, while [46] implemented an
efficient standard deviation pooling strategy which demonstrated that the gradient magnitude
of an image still holds true as a technique for representing the HVS. [31] adopted a novel
deviation pooling technique to compute the quality score from the gradient and chromaticity
similarities as a measure for local structural distortions.

The Banach Wasserstein GAN (BWGAN) is a framework that makes use of arbitrary
norms other than the popularly used l2 norm as the underlying metric of choice in adversarial
training. Adler et al. in [1] translated the WGAN-GP model to Banach spaces which have
the capacity to utilize norms that capture desired image features like edges, texture, etc.

3 Our Approach
We present a single GAN model capable of implementing image-to-image synthesis. We
combine the benefits of established FR-IQA metrics [31, 33, 51] and the low-level salient
features of a deep convolutional neural network (DCNN) to aid adversarial image synthesis
aimed at producing perceptually appealing images. In our model, we introduced an attention
schema that exploits the salient perceptual features in a channel-wise fashion and the spatial
map representation embeddings of standard FR-IQA metrics (SSIM, MDSI and FSIM). Our
framework consists of five main components; a quality-aware generator network G : (g1,g2),
where g1 and g2 represent the encoder and decoder section, respectively. g1 and g2 are cou-
pled with a perceptual attentive mechanism (PAM) for quality encoding and a perceptual
quality map fusion network MF at the latent space as shown in Figure 1. The discriminative
networks D : (d1,d2) critics images generated by G : (g1,g2) in an adversarial manner with-
out compromising image quality and the perceptual consistency with the reference image.
The perceptual quality map generator combines the core quality metric functions that cap-
ture the sensitive perceptual features of a given image, while the score regression network
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Figure 1: The quality encoding architecture. The structure shows the generator G : (g1,g2)
configuration coupled with a quality Map Fusion network MF . The domain discriminator d1
(lower-right) extracts features where True/False predictions are made per pixel and attribute
classification is executed to ensure multi-domain adaptation, d2 critics the perceptual map to
maintain consistency in an adversarial manner.

pools the images synthesized by G : (g1,g2) to estimate reference quality scores s. Our over-
all objective consists of a Wasserstein Gradient Penalty, Structural Similarity Index Gradient
Penalty (SSIM-GP) and a Natural Image Quality Estimator (NIQE) as defined in section 4.

3.1 Perceptual Attention Mechanism (PAM)
The attention mechanism augments perceptual features from a prior generator encoder net-
work g1(·) computed over input images Xi. The aim is to establish a convex combination
of quality-enhanced condensed representations of the input image for real time training.
We begin by describing the channel attention in PAM, which is based on the CBAM mod-
ule [45]. PAM involves two steps: first, per-channel “summary statistics” Fglobal obtained
from a 2-layer residual block RB1, is calculated to yield the global feature attention vec-
tor U ∈ R1×1×C. Secondly, a multi-head network headi = Attention(AwA

i ,BwB
i ) applies a

non-linear multi-head attention transformation which allows the model to jointly attend to
information A and B from different representation sub-spaces wA

i and wB
i of the bottleneck

[41]. The channel-based attention output given as h = softmax (headi⊙U) is multiplied with
the encoder output E ∈ RH×W×C from g1 and processed by residual block RB2 to produce
channel-based attention embeddings, denoted as Z = RB2(E ⊙h) where Z ∈ RH×W×C.

3.2 Perceptual Map Generator
We selected the FSIM [51], MS-SSIM [33], and MDSI [31] image quality metrics to generate
similarity maps because the trio collectively capture key image characteristics that are similar
to the HVS [3, 31, 33, 44, 51] as shown in Figure 2. The FSIM metric captures the luminance,
contrast and structural information. For the MS-SSIM metric, we considered multiple scales
of the synthesised image and its reference for contrast and structure while the MDSI map is
derived by extracting the gradient and chromaticity of the pair of synthesised and reference
images, respectively. We use an intensity coefficient; 0.3 ≤ α ≤ 1 to specify the intensity
of the maps. The map fusion network MF is divided into three stages. First, we extract
the feature similarity representations between the reference image Xre f and the generated
images X̂i per iteration given as p(Xre f , X̂i) for the aforementioned similarity metrics, where
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Figure 2: A spectrum of quality maps obtained at different intensities.

p(·) is an arbitrary function used to calculate similarity index maps; MS-SSIM, FSIM and
MDSI. Secondly, the generated maps, (m1,m2, and m3) are concatenated and pre-processed
by two-layer MLP networks f (·) to form a spatial-based perceptual map representation M ∈
RH×W×1. At the last stage, the predicted future states I is then computed as the expectation
of spatial features M and the channel-based features Z ∈ RH×W×C. I is then summed with
the output of the encoder E given as V = I +E. The resulting output V ∈ RH×W×C which is
fed to decoder g2 represents latent features that are optimized for better image quality.

4 Banach space gradient penalty
Quality assessment metrics for the distance between images has been limited to cost func-
tions that take the form of l1 or l2 norms. However, issues like non-convexity and complica-
tions in gradient computations (vanishing gradients, exploding gradients, etc) are some of the
struggles experienced in formulating optimization problems. To mitigate the aforementioned
computational shortcomings, the Wasserstein distance was introduced in [4].

However, a wide variety of untapped metrics [33, 44] exist that can be used to compare
and emphasize key features of interest. In this regard, we extended the Wasserstein distance
beyond the popular WGAN with the gradient penalty (WGAN-GP), which is constrained
to l2 norms and rather adapted a more complete space called the Banach space [1]. Our
technique, similar to [1, 4, 14] shows that the characterisation of γ-lipschitz functions via
the norm of the differential can be extended from the l2 setting to arbitrary Banach spaces by
considering the gradient as an element in the dual of B. Such a loss function is given as:

LB = λEY

(
1
γ
∥∂D(Y )∥∗B −1

)2

, (1)

where λ ,γ ∈ R, are regularization parameters. These Banach space norms give room for
specific image features such as texture, structure, contrast and luminance which highlight
the perceptual appeal of a human observer, as described in section 4.1 and 4.2.

4.1 Structural Similarity (SSIM) index
The SSIM index measures the perceptual difference between two similar images. The local
mean, variance and structure are computed to find an local quality score [44]. The SSIM
index computes changes to local mean, local variance and local structure between two images
X and X̂ . The local scores are then averaged across the image to find the image quality score.

L(X(i, j), X̂(i, j) =
2µx(i, j)µx̂(i, j)+C1

µ2
x (i, j)+µ2

x̂ (i, j)+C1
, CS(X(i, j), X̂(i, j) =

2σxx̂(i, j)+C2

σx2(i, j)+σx̂2(i, j)+C2
, (2)

db(X(i, j), X̂(i, j) =
√

2−L((X(i, j), X̂(i, j))−CS(X(i, j), X̂(i, j)), (3)
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Figure 3: A sample of synthesised images representing different datasets.

where X and X̂ refer to the input and synthesised images, the subscript (i, j) is the pixel
index, µ(i, j) and σ(i, j) are the local mean and standard deviation, respectively. L(X(i, j), X̂(i, j)),
C(X(i, j), X̂(i, j)) and S(X(i, j), X̂(i, j)) are the local luminance, contrast and structure scores at
pixel (i, j), respectively. Furthermore, since db(X , X̂) is bounded, the lipschitz constant can
be imposed directly by introducing a gradient penalty regularization term given as:

SSIMGP = EX∼PX ,X̂∼PX̂

[(
|D(X)−D(X̂)|

db(X , X̂)

)
−1

]2

. (4)

This makes the SSIM a good candidate for quality awareness which is beneficial for regular-
izing GANs. The complete mathematical properties are described in [5].

4.2 Natural Image Quality Estimator (NIQE)
The NIQE [26] is an NR-IQA metric of perceptually relevant spatial domain Natural Scene
Statistics (NSS) features extracted from local image patches that capture the essential low-
order statistics of natural images. The equation is given as:

Î(i, j) =
I(i, j)−µ(i, j)

σ(i, j)+1
, (5)

where I(i, j) is the pixel index and µ(i, j) and σ(i, j) are the local mean and standard deviation.
The NIQE captures the naturalness of a pristine reference image by modelling a generalized
gaussian distribution (GGD) [37], and models the products of neighbouring pixel coefficients
using an Asymmetric GGD (AGGD). The parameters of both the GGD and AGGD are then
modelled using a Multivariate Gaussian Model (MVG) distribution [28]. The quality of the
test image is measured in terms of the “distance” of its MVG parameters µt and σt from
the pristine MVG parameters obtained. Finally, discriminator gradients computed for both
pristine reference and synthesised images are used to compute the distance between the pair.
The expression is given as:

∥(µX ,ΣX )∥NIQE :=

√
(µX −µX̂ )

T

(
ΣX +ΣX̂

2

)−1

(µX −µX̂ ),
(6)

where µX , µX̂ , ΣX and ΣX̂ are the mean and covariance of the reference X and synthesised
X̂ images, respectively. In addition to the SSIM and NIQE metrics, we also used a 1-GP
regularizer [9] designed to force the local statistics of the discriminator gradient to be as
close to those of real images. Our claim is that such a regularization strategy results in
improving visual quality of the generated images especially for attributes like hair, age, skin
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(a) Entropy (b) Contrast (c) Homogeneity

Figure 4: Statistical feature IQA metric values.

(a) FairFace Dataset (b) CelebA Dataset
Figure 5: Superman’s rank correlation values at different layers of the network

colour etc. We worked in the WGAN-GP framework to demonstrate our method. The overall
discriminator cost function includes the NIQE function regularizer, the SSIM and the 1-GP
regularizer defined as:

LBP = λ1Ex̂∼Px̂(
∥∥∇x̂D(X̂)|µP,ΣP

∥∥
NIQE)+λ2Ex∼Px,x̂∼Px̂

[(
|D(X)−D(X̂)|

db(X , X̂)

)
−1

]2

SSIM

+λ3Ex∼Px̂(
∥∥∇x̂D(X̂)|

∥∥
1−GP),

(7)The full objective is given as:

LGAN(G,D,X , X̂) = E[logD(X))+E[log(1−D(G(X̂))− s)]+LBP, (8)

where s is the generated score from the regression network minimised over the groudtruth
scores of the images. we use λ1,λ2 and λ3 as a means of tuning the objective functions to
achieve better results.

5 Training Strategy
We trained our model using the Adam optimizer, with momentum values set at β1 = 0.5
and β2 = 0.99, we used a batch size of 8 for most experiments on CelebA [24], Celeba-HQ
[22] and FairFAce [16], respectively. A learning rate of 0.0001 for the first 10 epochs which
linearly decayed to 0 over the corresponding epochs. We trained the entire model on three
NVIDIA Titan X GPUs.

5.1 Datasets
We evaluated the efficacy of our proposed technique on the following datasets: The Celeb-
Faces Attributes (CelebA) [24] of 202,599 celebrity face images. We cropped the initial
images to 178x178, then resized them to 64x64. The CIFAR-10 [21] dataset consists of
60,000 32x32 colour images in 10 classes, with 6,000 images per class. The Fair-Face [17]
image dataset contains 108,501 images, with an emphasis of balanced race composition in
the dataset comprising 7 race groups: White, African, Indian, East Asian, Southeast Asian,
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(a) (b)
Figure 6: HOG similarity metrics (left) and synthesised image results for FairFace Dataset.

(a) (b) (c)
Figure 7: Randomly sampled images generated using a combination of our model base line
(BL) and different losses for W-GAN and BWGAN (SSIM and NIQE) of the CIFAR-10
dataset. 7 (a) Shows images synthesised using BL and just the WGAN with gradient penalty
loss. 7 (b) performs better when the SSIM loss function is added (BL+WGAN+SSIM). 7 (c)
shows the best results when all loss functions are included (BL+WGAN +SSIM+NIQE).

Middle East, and Hispanic. For evaluations, we used the LIVE [39] which consists of 982
distorted images with 5 different distortions. The TID2008 dataset [36] that contains 25 ref-
erence images and a total of 1,700 distorted images. We also used Edges-to-shoes 50,000
training images from UT Zappos50K dataset [49] and Edges-to-Handbag 137,000 Amazon
Handbag images from [55], trained for 15 epochs and batch size 8.

5.2 Evaluation
To evaluate the performance of the synthesized images as shown in Figure 3, two key evalu-
ation criteria were adopted in our paper; the Spearman’s Rank Order Correlation Coefficient
(SROCC) and the Linear Correlation Coefficient (LCC) [7]. SROCC is a measure of the
monotonic relationship between the ground-truth and model prediction, while the LCC is a
measure of the linear correlation between the ground-truth and model prediction. Table 1
and 2 shows the SROCC and LCC performance of the competing IQA methods for different
distortion types, respectively. In general, our model performs competitively among most dis-
tortion types. Compared with BPSQM, our model shows more performance of about 4.5%
overall in dealing with the distortion of AGN, SCN, HFN, JPEG and MN, respectively as
indicated in Table 1. For comparison with previous models, we computed three quantitative
measures: Inception Score (IS), Frechet Inception Distance (FID) and the Feature Similarity
(FSIM) index. IS measures the sample quality and diversity by finding the entropy of the
predicted labels. FID score measures the similarity between real and fake samples by fitting
a multivariate Gaussian (MVG) model to the intermediate representation. The FSIM index
computes quality estimates based on phase congruency as the primary feature, and incor-
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(a) (b) (c)
Figure 8: Randomly sampled images generated using different models for FairFace dataset.
8 (a) Shows images synthesised using DCGAN. 8 (b) performs better due to the gradient
penalty approach of WGAN. However, 8 (c) shows that our model performs even better
when Banach losses are included.

Table 1: SROCC comparison on individual distortion types on the TID2008 databases.
SROCC TID2008

AGN ANMC SCN MN HFN IMN QN GB DEN JPEG JP2K JGTE J2TE
GMSD [46] 0.911 0.888 0.914 0.747 0.919 0.683 0.857 0.911 0.966 0.954 0.983 0.852 0.873
FSIMc [51] 0.910 0.864 0.890 0.863 0.921 0.736 0.865 0.949 0.964 0.945 0.977 0.878 0.884

BLIINDSII [47] 0.779 0.807 0.887 0.691 0.917 0.908 0.851 0.952 0.908 0.928 0.940 0.865 0.855
DIIVINE [29] 0.812 0.844 0.854 0.713 0.922 0.915 0.874 0.943 0.912 0.930 0.938 0.873 0.852
BRISQUE [25] 0.853 0.861 0.885 0.810 0.931 0.927 0.881 0.933 0.924 0.934 0.944 0.891 0.836

NIQE [26] 0.786 0.832 0.903 0.835 0.931 0.913 0.893 0.953 0.917 0.943 0.956 0.862 0.827
BPSQM [34] 0.881 0.801 0.935 0.786 0.938 0.933 0.920 0.937 0.914 0.943 0.967 0.829 0.644

Ours 0.936 0.878 0.961 0.939 0.948 0.892 0.915 0.898 0.878 0.955 0.987 0.836 0.779

porates the gradient magnitude as the complementary feature for the real and fake samples,
respectively. Table 3 shows the quantitative comparison of the GAN-metric performance for
BPGAN [43], CAGAN [50], CGAN [56] , WAGAN [4], QAGAN [14] and ours for CelebA
dataset. We also carried out pixel variation analysis on the synthesised images by using
the second order features of the synthesized images, which are based on the gray level co-
occurrence matrix (GLCM) [11]. We used the aforementioned technique to determine the
Entropy, Homogeneity and Correlation of the synthesised images in comparison with state-
of-the-art methods as shown in Figure 4. Entropy is useful for assessing sharpness while
Homogeneity and Correlation are useful for evaluating the Contrast of an image. Entropy
and Correlation increase in image quality, whereas Homogeneity energy values decrease
with increase in image quality. From the Entropy plot in 5(a), our model performs decently
well by over 3.5% compared to the QAGAN and WAGAN. The Contrast level improves
drastically for our approach as compared to the other methods that are closely matched at
a tolerance of about 2%. We also observed that most models possess similar homogeneity
values except our model and QAGAN which reflect significant performance values.

5.3 Ablation Study
Ablation studies on our loss functions was implemented to test model robustness in general
for the CIFAR-10, FairFace and CelebA datasets, respectively. The Lagrange coefficients λ1
and λ2 of the SSIM and NIQE losses were also changed empirically within (0.001 ≥ λ1 and
λ21 ≤ 1.000) range, to check the effect on the perceptual appeal of the synthesised images. It
was inferred that reducing the coefficients towards the lower limit weakens the discriminative
power which in turn reduces the quality of the synthesised images from the generator. We
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Table 2: LCC evaluation on LIVE database.
LCC LIVE

JP2K JPEG WN BLUR FF ALL
BRISQUE [25] 0.923 0.973 0.985 0.951 0.903 0.942
CORNIA [48] 0.951 0.965 0.987 0.968 0.917 0.935

CNN [15] 0.953 0.981 0.984 0.953 0.933 0.953
SOM [54] 0.952 0.961 0.991 0.974 0.954 0.962

BIECON [20] 0.965 0.987 0.970 0.945 0.931 0.962
Ours 0.975 0.986 0.994 0.988 0.960 0.982

Table 3: GAN-metric performance.
Model CelebA

FID ↓ FSIM ↑ IS ↑
BPGAN [43] 86.10 69.13 0.87
CGAN [56] 43.21 71.10 0.89

CAGAN [50] 36.16 71.33 0.90
WGAN [4] 33.24 72.60 0.91

QAGAN [14] 18.23 82.69 0.96
Ours 18.39 83.40 0.97

Table 4: Ablation study on CelebA and CIFAR-10 datasets on our model baseline "BL" with
a combination of the quality modules "PAM" and "MF " and losses "SSIM" and "NIQE".

CIFAR-10 CelebA
BL PAM MF NIQE SSIM FID↓ IS ↑ FID↓ IS ↑
✓ 38.10 ± 0.12 8.20 ± 0.03 29.80 ± 0.10 0.86 ± 0.03
✓ ✓ ✓ 19.01 ± 0.10 8.01 ± 0.13 13.16 ± 0.02 0.88 ± 0.19
✓ ✓ ✓ 16.31 ± 0.21 8.00 ± 0.35 11.86 ± 0.07 0.89 ± 0.11
✓ ✓ ✓ 15.00 ± 0.20 7.46 ± 0.21 10.76 ± 0.43 0.90 ± 0.10
✓ ✓ ✓ 13.21 ± 0.10 7.80 ± 0.10 6.38 ± 0.39 0.96 ± 0.10
✓ ✓ ✓ ✓ ✓ 8.06 ± 0.22 7.48 ± 0.62 6.40 ± 0.71 0.97 ± 0.16

also conducted a Histogram of Oriented Gradient (HOG) similarity performance with the
Inception v3 model [40] for the input and synthesised images on the FairFace dataset, in
order to obtain the model layer-wise performance at specific iterations of the baseline of
our model. Figure 6 (a) shows the HOG similarity performance at different iterations while
training for our model compared to other quality metric techniques.

Our results show that our approach is closest to MDSI [31], as compared to RVSIM [48],
GSMD [46], SRSIM [52], FSIMc [51] that perform slightly below our model. An SRCC
plot representation in Figure 5 depicts the rank correlation performance for both FairFace
and CelebA dataset. The values confirm that our model performs favourably over other
aforementioned techniques. At different iteration values, we also observed decent image
quality improvements at about 20k - 30k iterations as shown in Figure 6(b) for the FairFace
dataset. Figures 7 and 8 show further results obtained from a combination of different loss
functions and other competitive models, respectively.

We computed the FID and IS scores of synthesised images for ClebeA and CIFAR-10
datasets with resolutions of 64 x 64 and 32 x 32, respectively. Table 4 shows the performance
of our model baseline (BL) for different combinations of attention schemes (PAM and MF )
and the IQA losses (NIQE and SSIM). By observation, we see from Table 4 that including
the MF module significantly boost image quality, this is a confirmation that perceptual spatial
salient maps are crucial in GAN models for better image quality [13, 38, 47].

Furthermore, we applied the PAM and MF attention modules to the StleGAN2 [19] ar-
chitecture. We also added the proposed Banach space norms (SSIM NIQE) to compare the
overall model performance with our model. In Table 5, we show the trade-offs of the QA-
GAN [14], StyleGAN2 [19] and our model baseline (BL). We used different combinations
of the standard IQA metrics as discussed in section 4.1 and 4.2. Our findings confirm that
our approach is competitive with state-of-the-art. Most importantly, we see improved perfor-
mance of our model at lower resolutions (32 x 32), this improvement can be attributed to the
attention schema employed. In Figure 9, we showcase the performance of QAGAN [14] and
our model on image synthesis for CelebA dataset. Our results show that our model performs
significantly well overall, Table 5 gives a clearer representation of the performance levels.
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(a) (b) (c)
Figure 9: Randomly sampled images for QAGAN [14] (Top row) and our model (Bottom

row) with different losses (SSIM and NIQE) of the CelebA dataset. 10 (a) Shows images
synthesised using the baseline of both models. 9 (b) The SSIM loss function is added for
both cases. We observe similar performance levels. 9 (c) Our model performs better overall
with the best results when all loss functions are included (SSIM+NIQE).

Table 5: FID on CelebA and CIFAR-10 dataset.
CIFAR-10 (32 x 32) CelebA (64 x 64)

Model FID↓ FID ↓
QAGAN [14] 41.20 ± 0.25 10.03 ± 0.35

QAGAN (SSIM) [14] 14.13 ± 0.32 6.44 ± 0.43
QAGAN (NIQE) [14] 12.57 ± 0.11 6.40 ± 0.23

QAGAN (SSIM + NIQE) [14] 10.01 ± 0.13 6.16 ± 0.05
StyleGAN2 [19] 37.11 ± 0.15 9.03 ± 0.25

StyleGAN2 (SSIM) [19] 13.14 ± 0.02 5.84 ± 0.13
StyleGAN2 (NIQE) [19] 11.17 ± 0.31 6.10 ± 011

StyleGAN2 (SSIM + NIQE) [19] 10.81 ± 0.13 6.18 ± 0.05
BL 37.80 ± 0.22 10.06 ± 0.43

BL (SSIM) 12.80 ± 0.12 6.86 ± 0.62
BL (NIQE) 10.20 ± 0.79 6.36 ± 0.44

BL (SSIM + NIQE) 9.76 ± 0.37 6.21 ± 0.36

6 Conclusion
In this paper, we introduced a novel quality encoding protocol that harnesses the image qual-
ity maps mimicking the HVS and the perceptual properties from a deep convolutional neural
network (DCNN) to provide perceptually consistent features that translate to better image
quality. We identified visually sensitive parameters and adapted a quality perceptual atten-
tion scheme that narrows down these features to a localised embedding which incentives
perceptual representations over other features. The aim was to target the most relevant in-
trinsic features responsible for image texture, structural contrast and luminance which we
use to guide the adversarial model towards high quality image synthesis. We also intro-
duced a critic model that monitors perceptual consistency for each image representation. We
demonstrated state-of-the-art or comparable performance over other approaches.
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