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Abstract

The detection of cluster distributed targets in remotely sensed satellite images is a
challenging task, as cluster is a common behavior of targets and adhesions between dense
distributed targets often exist, which affect the accuracy of object detection seriously.
However, the distinct distribution pattern of such cluster distributed targets in frequen-
cy domain has never been studied. In this paper, a refinement of FFT-based heatmap
with multi-branches network for the detection of cluster distributed targets in the satel-
lite images (termed as HeatNet) is proposed. More specifically, a refining method of the
FFT-based heatmaps for different features in frequency domain and an attention-based
feature extractor in frequency channel are proposed, to focus the attention and refine the
salient regions for the cluster distributed targets. Additionally, as one complete system,
a keypoint-based detection is adopted as the basic workflow to tackle with the adhesion,
a scale-aware center area is conducted to tackle with the variation of scale, and an orien-
tation discrimination is also utilized to eliminate the specificity of different targets. The
effectiveness of our proposed method is validated on two public datasets, and the compar-
ative experimental results with different state-of-the-arts object detection methods have
demonstrated the superiority of this proposed method.

1 Introduction
The detection of cluster distributed targets in remotely sensed satellite images is a challeng-
ing task, because cluster is a common behavior of targets, and adhesions between dense
distributed targets often exist in the satellite images. However, the distinct distribution pat-
tern of such cluster distributed targets in frequency domain has never been studied deeply.
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Figure 1: Relation between the combination index Ψi and the accuracy of object detection.

To show the above problem more clearly, 10 most representative detection methods from
the Object Detection in Aerial Images (ODAI) challenge [11] have been analyzed, to esti-
mate the influence of cluster distribution to the accuracy of object detection. Fig.1 depicts the
relationship between the common impact factors of remote sensing object detection (includ-
ing target size ρ , target number µ and aspect ratio ν) and the accuracy of object detection, in
which each method is denoted by a different colored mark respectively. It is acknowledged
that, for the learning based object detection, the detection accuracy increase with the increase
of the combination index Ψi of these common impact factors, which can be formulated as
Eq.(1), in accordance with the x-axis of Fig.1.

Ψi = log(ρi)× (µi)
0.5/ f (νi), i = 1, . . . ,N (1)

f (νi) =

{
|νi−1/N×Σνi|, |νi−1/N×Σνi| ≤ |νi−1/(1/N×Σνi)|
(νi−1/(1/N×Σνi))

2, otherwise
(2)

However, the last two columns marked with red boxes indicate this argument is not always
true, which means that there is other impact factor influences the accuracy of object detec-
tion, except for the existing impact factors.

The reason why the accuracy of object detection reduces at certain points, can be ex-
plained by the cluster distribution and the adhesion between dense distributed targets, which
is particularly prominent for the common targets like ship and small-vehicle corresponding
to the last two columns with red boxes in Fig.1. In the adhesion regions, borders of different
targets overlapped with each other, and the salient regions being connected in the feature
maps, which make it difficult to be focused and detected separately with the traditional ob-
ject detection methods as shown in Fig.2. We can also see that, adhesion not only exists
among the dense distributed targets, but also exists among dense distributed categories such
as ship category and harbor category, and adhesion not only exists in the original images but
also exists in the different feature maps, when a down-sampling operation is applied to the
network convolution.

In addition, as pointed in [26], CNN models are more sensitive to low-frequency channel
for general targets than high-frequency channel for dense distributed targets, and this can be
analyzed from the frequency perspective which is very similar to the human visual system.
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Figure 2: An example of adhesion phenomenon for the dense distributed ship targets in
harbor. In which, blue boxes denote the detected ships, deep red boxes denote the detected
harbors, and red circles denote the undetected ships.

According to the above discussions, a refinement of the FFT-based heatmap for the de-
tection of cluster distributed targets in the satellite images (termed as HeatNet) is proposed in
this paper, try to realize the detection of cluster distributed targets in the frequency domain.
In detail, a refining of the FFT-based heatmaps for different features in frequency domain
and an attention-based feature extractor in frequency channel is proposed, to focus the at-
tention and refine the salient regions for the cluster distributed targets. Additionally, as one
complete system, a keypoint-based detection is adopted as the basic workflow to tackle with
the adhesion, a scale-aware center area is conducted to tackle with the variation of scale, and
an orientation discrimination is also utilized to eliminate the specificity of different targets.
The main novelties and contributions of our proposed HeatNet method are as follows:

(1) This is the first time that a new combination index of the common impact factors
for the object detection has been formulated quantitatively, and the phenomenon of adhesion
is explored explicitly according to the relationship between the combination index and the
accuracy of object detection in satellite images.

(2) To our best knowledge, this is the first time that the distribution pattern of cluster
distributed targets in the frequency domain has been studied for the object detection, and the
FFT is introduced to refine the heatmaps rather than to accelerate CNN calculation.

(3) The framework of HeatNet consisting of scale-aware center area, orientation dis-
crimination, refining FFT-based heatmaps in frequency domain and attention-based feature
extractor in frequency channel, is an effective solution for the object detection in satellite
images, especially for the dense distributed targets.

2 Related works

2.1 Object detection in satellite images
The methods for object detection in satellite images can be divided into two categories,
anchor based detection and keypoint based detection. The early anchor based detection
methods generally refer to the two-stage detection methods, which decompose the detection
into region proposals generation and candidate boxes classification, such as R2CNN [14],
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R2PN [36], ICN [1], FFA [9], RoI Transformer [6], Gliding Vertex [31], CenterMap [27]
and ReDet [12] method. Then, anchor mechanism has also been extensively utilized in one-
stage detection methods, to improve the accuracy of object detection, such as RetinaNet [18],
SCRDet [33] and R3Det [32] method. But, due to the adhesion, object in the satellite images
is easy to be missed by the non-maximum suppression (NMS) of anchors. In addition, the
accuracy of anchor based methods depend on the anchor setting, which is inappropriate to
tackle with the large aspect ratio targets.

The keypoint-based detection methods transform the object detection into predicting and
grouping of the keypoints, such as CornerNet [15], CenterNet [37] and ExtremeNet [38]
method. Although, the variant scale of targets has also been considered in BBAvector [34]
and the arbitrary orientation of targets has been considered in O2-DNet [28], the cluster
distribution of targets in the satellite images has never been studied in such kind of methods.

2.2 Fourier Transforms in deep learning
Fourier Transforms, especially the Fast Fourier Transform (FFT), has been firstly used in
neural networks to identify the electrocardiogram signals of the heart [23] [10] [24]. In deep
learning, FFT has been applied to speed up the computation of CNNs as in [8], [22] and [25].
In addition, FFT has also been applied to Recurrent Neural Networks (RNNs) to stabilize
training, and to reduce the gradients exploding and vanishing problems [35]. Recently, FFT
has been utilized in Transformer, to linearize the complexity of self-attention mechanism
by leveraging random Fourier features [4], and the FNet [16] to replace the self-attention
sublayer. But, the FFT hasn’t been introduced for the task of object detection itself rather
than the acceleration of CNNs.

2.3 Frequency domain learning
In recent years, frequency analysis has emerged in the deep learning. The frequency analysis
has been introduced firstly into CNN for the JPEG transform [7]. In [30], DCT analysis has
been utilized to identify and remove the trivial frequency components without decreasing
the accuracy. In addition, frequency domain learning has also applied to model compression
[3] and model pruning [19]. However, frequency domain has never emerged in the object
detection of satellite images. Whereas, in this paper, we will focus on the distinct distribution
pattern of cluster distributed targets in frequency domain, and take the keypoint based object
detection method [34] as the basic workflow.

3 Method
The overall architecture of our proposed HeatNet method can be described as Fig.3. In
which, the HeatNet method is consist of 3 parts, attention-based feature extractor, refinement
of FFT-based heatmaps, orientation discrimination and bounding box determination. As the
data flow, for a given input image with a dimension of w×h, it will be sent to the attention-
based feature extractor in frequency channel. Then, the outputs of feature extractor will be
sent into the 4 branches in parallel, including the refinement of FFT-based heatmaps BH ∈
RH/s×W/s×CH , the offset of center points BO ∈ RH/s×W/s×2, the orientation discrimination
BD ∈ RH/s×W/s×1 and the bounding box determination BB ∈ RH/s×W/s×10.

Citation
Citation
{Zhang, Guo, Zhu, and Yu} 2018{}

Citation
Citation
{Azimi, Vig, Bahmanyar, K{ö}rner, and Reinartz} 2018

Citation
Citation
{Fu, Chang, Zhang, Xu, Zhang, and Sun} 2020

Citation
Citation
{Ding, Xue, Long, Xia, and Lu} 2019

Citation
Citation
{Xu, Fu, Wang, Wang, Chen, Xia, and Bai} 2020{}

Citation
Citation
{Wang, Yang, Li, Zhang, and Xia} 2020

Citation
Citation
{Han, Ding, Xue, and Xia} 2021

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017

Citation
Citation
{Yang, Yang, Yan, Zhang, Zhang, Guo, Sun, and Fu} 2019{}

Citation
Citation
{Yang, Liu, Yan, Li, Zhang, and Yu} 2019{}

Citation
Citation
{Law and Deng} 2018

Citation
Citation
{Zhou, Wang, and Kr{ä}henb{ü}hl} 2019{}

Citation
Citation
{Zhou, Zhuo, and Krahenbuhl} 2019{}

Citation
Citation
{Yi, Wu, Liu, Huang, Qu, and Metaxas} 2021

Citation
Citation
{Wei, Zhang, Chang, Li, Wang, and Sun} 2020

Citation
Citation
{Minami, Nakajima, and Toyoshima} 1999

Citation
Citation
{Gothwal, Kedawat, Kumar, etprotect unhbox voidb@x penalty @M  {}al.} 2011

Citation
Citation
{Mironovova and B{í}la} 2015

Citation
Citation
{El-Bakry and Zhao} 2004

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Pratt, Williams, Coenen, and Zheng} 2017

Citation
Citation
{Zhang, Lin, Song, and Dhillon} 2018{}

Citation
Citation
{Choromanski, Likhosherstov, Dohan, Song, Gane, Sarlos, Hawkins, Davis, Belanger, Colwell, etprotect unhbox voidb@x penalty @M  {}al.} 2020

Citation
Citation
{Lee-Thorp, Ainslie, Eckstein, and Ontanon} 2021

Citation
Citation
{Ehrlich and Davis} 2019

Citation
Citation
{Xu, Qin, Sun, Wang, Chen, and Ren} 2020{}

Citation
Citation
{Chen, Wilson, Tyree, Weinberger, and Chen} 2016

Citation
Citation
{Liu, Xu, Peng, and Xiong} 2018

Citation
Citation
{Yi, Wu, Liu, Huang, Qu, and Metaxas} 2021



ZHANG, et al.: REFINING FFT-BASED HEATMAP FOR THE DETECTION OF CLUSTER DISTRIBUTED TARGETS IN SATELLITE IMAGES 5

Figure 3: The architecture of our proposed HeatNet method, which is consist of 3 parts,
attention-based feature extractor, refinement of FFT-based heatmaps, orientation discrimina-
tion and bounding box determination.

3.1 Attention-based feature extractor in frequency channel
As pointed in [30], CNN models are more sensitive to general low-frequency targets than
high-frequency targets with dense distribution. To refine the feature extractor from the fre-
quency perspective for the cluster distributed targets, an attention-based feature extractor in
frequency channel is introduced as the following:

ΨAtt = sigmoid( f c(F(M))) (3)

In existing attention methods, especially in the channel attention methods, the gener-
al preprocessing of global average pooling (GAP) may lead to the information inadequacy
problem. As GAP is the lowest frequency component of discrete cosine transforms (DC-
T) [26], in this method, more frequency components, (F =

⊕
([F0,F1, ,Fn−1]),F ∈ RC,

⊕
denotes concate), are introduced into channel attention to solve the problem of information
inadequacy. These frequency components are transformed by Fi = DCT u,v(Mi), where Mi is
the split parts of feature map M along the channel dimension, i.e. M = [M0,M1, . . . ,Mn−1],
Mi ∈ RH×W×c′ , i ∈ 0,1, . . . ,n−1, c′ =C/n. Then, DCT can be formulated by the weighted
sum as following:

Fi = DCT u,v(Mi) = Σ
H−1
h=0 Σ

W−1
w=0 Mi

:,h,wω
u,v
h,w (4)

In which, the frequency component ω represents the 2D DCT:

ω
u,v
h,w = cos(πh/H(u+1/2))cos(πw/W (v+1/2)) (5)

After acquiring the massive frequency components, the influence of each frequency
component on attention can be acquired separately, the top k frequency components, F =⊕
([F0,F1, . . . ,Fk]),F ∈ RC will be selected and reserved as in [26]. The above attention-

based feature extractor in frequency channel can focus and refine the feature maps from the
frequency perspective for the cluster distributed targets.

3.2 Refinement of FFT-based heatmaps in frequency domain
The outputs of feature extractor will be sent into the 4 branches in parallel, among which the
first branch predicts the heatmaps BH ∈ RH/s×W/s×CH , here, s denotes the stride, and channel
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(a)Original image (b)Ground truth heatmap (c)Original heatmap

(d)Low frequency heatmap (e)High frequency heatmap (f)Refined FFT-based heatmap

Figure 4: The refinement of FFT-based heatmaps.

CH denotes the number of categories. The heatmap of each channel BH
i , i = 1,2, . . . ,CH , is

passed through a sigmoid function, to acquire the predicted center points ci = (cx,cy),ci ∈
[0,1](H/s×W/s), which are taken as the targets confidence.

Due to the adhesion not only exists among dense distributed targets but also exists among
dense distributed categories in the satellite images, in the adhesion regions, the borders of
different targets may be overlapped to a certain degree, so the salient regions will be con-
nected in the feature maps and heatmaps, which will be further aggravated in the following
down sampling operations. To reduce the adhesion of the cluster distributed targets, here, a
refinement of the FFT-based heatmaps in frequency domain is proposed. In detail, we deploy
the 2D FFT on each heatmap to acquire the spectrum in frequency domain SH

i = FFT (BH
i ),

i = 1,2, . . . ,CH . Then, corresponding Gaussian filters with a kernel radius of 12 are conduct-
ed to divide the spectrum into the spectrum of low frequency SHl

i = F(SH
i ) and the spectrum

of high frequency SHh
i = F(SH

i ) followed by the IFFT of both spectrums. As can be observed
with Fig.4, for the cluster distributed targets, the heatmap of high frequency spectrum in
Fig.4(e), i.e. BHh

i = IFFT (SHh
i ), is less adhesive compared with the original heatmap, while

the heatmap of low frequency spectrum in Fig.4(d), i.e. BHl
i = IFFT (SHl

i ), is more adhe-
sive. Therefore, the original BH

i is replaced with a weighted BHh
i ,BHl

i , as the final refined
FFT-based heatmap shown in Fig.4(f), to separate the salient regions from each other more
efficiently:

B
′H
i = αoBH

i +αhBHh
i −αlB

Hl
i , i = 1,2, . . . ,CH (6)

In addition, the ground-truth heatmap BH
GT ∈ RH/s×W/s×CH is calculated with the Gaus-

sian distribution. As claimed in [21], encoding more training samples from annotated boxes
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is similar to increasing the batch size, which contributes to improving the detection accuracy
and speeding up the convergence. And, the box size-adaptive standard deviation δ , is uti-
lized to modify the center area as in [15] [37]. It worth mentioned that, the scale aware center
area is friendly for the detection of cluster distributed small targets. Furthermore, to solve
the imbalance between the limited positive center points and numerous negative points, the
focal loss is utilized to train the heatmap as in [37].

During the center point prediction, the integer center points c down-scaled from the input
images to the output heatmaps, will generate the floating center points ĉ. Therefore, the
offset BO ∈ RH/s×W/s×2 between c and ĉ is predicted on the second branch to recover the
discretization error and optimized by the smooth L1 loss.

3.3 Orientation discrimination and bounding box determination

There is specificity of different objects in the satellite images in shape and orientation, such
as the oil tank and the bridge. The former is asymmetric, the orientation of which is hard to
be determined. As for the latter, a fractional orientation change can lead to a large divergence
on the detection accuracy, for the sensitivity of Intersection-over-Union (IoU) between the
predicted bounding box and the ground-truth bounding box. To eliminate the specificity of
different objects, here, an orientation discrimination is utilized, i.e. the bounding box (BB)
of objects are firstly discriminated into horizontal bounding box (HBB) or oriented bounding
box (OBB) as a divide-and-conquer strategy, which can be formulated as BD ∈ RH/s×W/s×1.
The ground-truth orientation BD

GT is calculated by the IoU between the BB and the HBB, and
the orientation discrimination is optimized by binary cross-entropy loss as in [34].

BD
GT =

{
0 (HBBs), IoU(BB,HBB)≥ 0.95
1 (OBBs), otherwise

(7)

After the discrimination of horizontal and oriented targets, the bounding box is utilized
to describe the target regions, BB ∈ RH/s×W/s×10, which includes the top points t = (tx, ty),
the bottom points b = (bx,by), the left points l = (lx, ly), the right points r = (rx,ry), and
the parameters of external horizontal bounding box we and he [34]. The smooth L1 loss is
utilized to regress the box parameters BB

i = [t,r,b, l;we,he] at the center points as in Fig.3.
The top-left (tl), top-right (tr), bottom-right (br) and bottom-left (bl) points of the bound-

ing boxes (BB) are taken as decoded points from the BB
i = [t,r,b, l;we,he]. In particular, for

a center point c, the decoded HBB points can be acquired by:

tl = (cx−we/2,cy−he/2), tr = (cx +we/2,cy−he/2) (8)

bl = (cx−we/2,cy +he/2), br = (cx +we/2,cy +he/2)

And the decoded OBB points can be acquired by:

tl = (t + l)+ c, tr = (t + r)+ c, bl = (b+ l)+ c, br = (b+ r)+ c (9)

4 Experiments
In this section, the datasets used in the following experiments and the implement of our
proposed HeatNet method will be introduced firstly. Then, comparative experimental results
between our proposed method and the relative state-of-the-art methods will be given.
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Table 1: Comparative experimental results on DOTA dataset between different methods.

mAP PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC
FR-O[29] 40.7 58.9 59.2 15.8 36.4 23.9 21.1 28.2 69.0 61.3 50.3 33.0 46.1 37.1 41.3 29.0

RetinaNet[18] 47.6 80.0 53.8 31.8 46.7 46.1 39.4 51.8 90.5 59.6 50.2 26.9 54.7 27.9 27.2 27.5
R2CNN[14] 60.7 88.5 71.2 31.7 59.3 51.9 56.2 57.3 90.8 72.8 67.4 56.7 52.8 53.1 51.9 53.6
RRPN[36] 61.0 80.9 65.8 35.3 67.4 59.9 50.9 55.8 90.7 66.9 72.4 55.1 52.2 55.1 53.4 48.2
LR-O[17] 62.0 81.1 77.1 32.3 72.6 48.5 49.4 50.5 89.9 72.6 73.7 61.4 58.7 54.8 59.0 48.7
DCN[5] 65.0 80.8 77.7 37.2 75.8 58.8 51.1 63.5 88.2 75.5 78.0 57.8 64.0 57.9 59.5 49.7
RT[6] 67.3 81.3 77.5 41.2 72.2 67.9 63.1 72.9 90.8 71.4 76.5 61.4 57.2 66.2 59.1 51.3

ICN[1] 68.2 81.4 74.3 47.7 70.3 64.9 67.8 70.0 90.8 79.1 78.2 53.6 62.9 67.0 64.2 50.2
Mask RCNN[13] 70.3 89.2 76.3 50.8 66.2 78.2 75.9 86.1 90.2 81.0 81.9 45.9 57.4 64.8 63.0 47.7
BBAvector[34] 70.9 89.3 81.2 42.3 63.1 75.9 68.3 87.6 90.9 85.9 83.6 49.6 62.5 66.3 70.0 48.0

HTC[2] 71.3 89.3 77.0 52.2 66.0 77.9 75.6 86.9 90.5 80.6 80.5 48.7 57.2 69.5 64.6 52.5
R3Det[32] 71.7 89.5 82.0 48.5 62.5 70.5 74.3 77.5 90.8 81.4 83.5 62.0 59.8 65.4 67.5 60.1

FFA[9] 75.7 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7
ReDet[12] 76.3 88.8 82.6 54.0 74.0 78.1 84.1 88.0 90.9 87.8 85.8 61.8 60.4 76.0 68.1 63.6
HeatNet 76.8 88.7 77.6 55.3 77.2 78.0 82.8 87.5 90.8 87.3 85.4 66.0 63.7 77.4 71.6 62.1

4.1 Experimental datasets
DOTA dataset [29], is designed for the task of object detection in remotely sensed images,
which is collected from variant sensors and platforms, and consists of 2,806 satellite and
aerial images with variant scale, aspect ratio and arbitrary orientation, ranging from 800×
800 to 4000×4000. There are 15 categories and 188,282 instances in this dataset. We crop
the images into 600×600 patches with a stride of 100 and scales of 0.5 and 1 as in [34].

HRSC2016 dataset [20], is designed for the task of ship detection in remotely sensed
satellite images, which is collected from Google Earth, and consists of 1,061 images ranging
from 300× 300 to 1500× 900. This dataset contains 436 training images, 181 validation
images, and 444 test images.

4.2 Implement of our proposed HeatNet method
The basic feature extractor is modified by the attention in the frequency channel and followed
by 4 prediction branches. The input images are with a dimension of 608×608 and the output
heatmaps are 152×152. To extract the center points on a heatmap, NMS is applied through
a 3×3 max-pooling layer, top 500 center points being selected from the heatmap. The offset
BO, orientation discrimination BD and bounding box determination BB are generated from
the center points c2, which are modified by the offsets c1 = c+BO and scaled by the stride
c2 = sc1,s = 4.

Adam with an initial learning rate of 1.25×10−5 is selected to optimize the overall loss
function L = LBH +LBO +LBD +LBB . We train the network for about 60 epochs on the DOTA
dataset and 150 epochs on the HRSC2016 dataset, as usual.

4.3 Compare with other detection methods
To demonstrate the effectiveness of our proposed HeatNet method, 14 representative object
detection methods of Object Detection in Aerial Images (ODAI) challenge [11] are compared
on the DOTA dataset, the comparative experimental results are shown in Table 1, in which
the abbreviation for each category is the same with [34]. From Table 1, we can see that,
the object detection accuracy of our proposed HeatNet method surpasses both the anchor
based methods and the keypoint based methods, including the latest ReDet method, which
has demonstrated the superior of this proposed method.
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Table 2: Comparative results on
HRSC2016 dataset.

mAP
CP[20] 55.7
BL2[20] 69.6
RC2[20] 75.7
RT[6] 80.1
BBAvector[34] 82.8
HeatNet 84.7

Table 3: The effectiveness of each part of our pro-
posed HeatNet method.

Combination att-F re-F mAP 4%
Baseline(BS) 84.4 —-
BS + att-F

√
85.0 0.6%↑

BS + re-F
√

85.5 1.1%↑
BS + HeatNet

√ √
85.9 1.5%↑

We also compare our proposed HeatNet method with other keypoint based detection
methods, including the most powerful BBAvector method [34], on the HRSC2016 dataset,
the comparative experimental results are shown in Table 2. From Table 2, we can see that,
on the HRSC2016 dataset, the detection accuracy of our proposed HeatNet method even
surpasses the BBAvector method by 1.9%.

4.4 Ablation studies
In this section, we will validate the effectiveness of each part of our proposed HeatNet
method, including the attention-based feature extractor in frequency channel (att-F) and the
refinement of FFT-based heatmaps in frequency domain (re-F), on the detection of ship cat-
egory in the DOTA dataset, and the ablation testing results are as shown in Table 3. From
Table 3, we can be seen that, the att-F improves the accuracy of object detection by 0.6%, the
re-F improves the accuracy of object detection by 1.1% and the combination of att-F, re-F
improves the accuracy of object detection by 1.5%, which has validated the effectiveness of
each part of this proposed HeatNet method.

4.5 Attention-based feature extractor in frequency channel
In this experiment, we aim at investigating the effectiveness of the attention-based feature
extractor in frequency channel (att-F). We select the BBAvector [34] as the baseline detection
method, comparing our proposed method with the baseline on the typical cluster distributed
ship category. And we test the proper setting of top k frequency components, which are
selected and reserved in the attention-based feature extractor. From the comparative experi-
mental results shown in Table 4, we can see that, the top 16 frequency components contribute
most to improving the accuracy of object detection. The reason why the results are uneven
for different k is that, the DCT of att-F interacts with the Gaussian distributed center area,
resulting from the band-pass effect, and the parameters µ and σ of center area remain un-
changed for various k during these experiments.

4.6 Refinement of FFT-based heatmaps in frequency domain
In this experiment, we will verify the effectiveness of refining FFT-based heatmaps in the
frequency domain with changing the settings of Eq.(6). We select the BBAvector [34] as the
baseline detection method and compare our proposed method on the representative cluster
distributed ship category. From the detection results shown in Table 5 and the heatmaps
with and without the FFT-based refinement shown in Fig.4, we can see that, the FFT-based
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Table 4: Comparative results between with and without the attention-based feature extractor.

Combination mAP 4 (%)
Baseline(BS) 84 4 —-
BS + att-F:k=8 78.0 6.4%↓
BS + att-F:k=16 85.0 0.6%↑
BS + att-F:k=32 77.4 7.0%↓

Table 5: Comparative results between using and without using heatmap refinement.

Combination mAP 4 (%)
Baseline(BS) 84.4 —-
BS + re-F:α0 = 1,αh = 0.25,αl = 0.05 85.5 1.1%↑
BS + re-F:α0 = 1,αh = 0.25,αl = 0 85.3 0.9%↑
BS + re-F:α0 = 0.7,αh = 0.5,αl = 0 85.1 0.7%↑
BS + re-F:α0 = 0.5,αh = 0.7,αl = 0 85.0 0.6%↑

refinement can relieve the adhesion of cluster distributed targets effectively and a remarkable
improvement can be achieved with the refining of FFT-based heatmaps in the frequency
domain. In addition, experimental results show that, when the sum of α0, αh and αl is larger
than 1.25, the network will be difficult to converge. Therefore, the varying range of the sum
of α0, αh and αl is limited to less than 1.25. Among these parameters, the most proper
setting of Eq.(6) is α0 = 1,αh = 0.25,αl = 0.05.

5 Conclusion
For the detection of cluster distributed targets in satellite images, a refinement of FFT-based
heatmap with multi-branches network is proposed, which includes the refinement of FFT-
based heatmaps in frequency domain and an attention-based feature extractor in frequency
channel, to focus the attention and refine the salient regions for the cluster distributed targets.
Additionally, a keypoint-based detection is adopted as the basic workflow to tackle with the
adhesion, a scale-aware center area is conducted to tackle with the variation of scale, and an
orientation discrimination is also utilized to eliminate the specificity of different targets. To
our best knowledge, this is the first time that the common impact factors of remote sensing
object detection have been formulated quantitatively. And this is the first time the cluster dis-
tribution of remotely sensed targets has been studied and associated this task in the frequency
domain, and the FFT is utilized to refine heatmap rather than accelerating CNN calculation.
The effectiveness of our proposed method has been validated on two public datasets, and the
comparative experimental results with different state-of-the-art methods have demonstrated
the superior of this proposed method.
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