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Abstract

In real-world video surveillance applications, person re-identification (ReID) suffers
from the effects of occlusions and detection errors. Despite recent advances, occlusions
continue to corrupt the features extracted by state-of-art CNN backbones and thereby
deteriorate the accuracy of ReID systems. To address this issue, methods in the liter-
ature rely on an additional costly process, such as pose estimation, where pose maps
provide supervision to focus on visible parts of occluded regions. In contrast, we in-
troduce a Holistic Guidance (HG) method that relies on holistic (or non-occluded) data
and its distribution in the dissimilarity space to train the CNN backbone on an occluded
dataset. This method is motivated by our empirical study, where the distribution of pair-
wise between-class and within-class matching distances (Distribution of Class Distances
or DCDs) between images has considerable overlap in occluded datasets compared to
holistic datasets. Hence, our HG method employs this discrepancy in DCDs of both
datasets for joint learning of a student-teacher model to produce an attention map that
focuses primarily on visible regions of the occluded images. In particular, features ex-
tracted from both datasets are jointly learned using the student model to produce an
attention map that allows dissociating visible regions from occluded ones. Additionally,
a joint generative-discriminative CNN backbone is trained using a denoising autoencoder
such that the system can self-recover from occlusions. Extensive experiments on several
challenging public datasets indicate that the proposed approach can outperform state-of-
the-art methods on both occluded and holistic datasets. Our code is available1.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1https://github.com/madhukiranets/HolisitcGuidanceOccReID2
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Figure 1: (a) An illustration of approaches to address occlusion in person ReID during train-
ing. Top: State-of-the-art models require additional supervision and occluded datasets. Bot-
tom: Our proposed HG method requires no additional supervision but relies only on an ad-
ditional holistic dataset for reference to non-corrupted features. (b) Examples of Class Dis-
tance Distributions of Duke-MTMC (left) and Occluded-Duke-MTMC (right) datasets mea-
sured in the distance space. The blue DCD shows the within-class distribution, while the
orange DCD shows the between-class distribution. For Occluded-Duke-MTMC, within-

class distances are relatively high and overlap with between-class distances.

1 Introduction
Person Re-Identification (ReID) systems seek to associate individuals captured over a dis-
tributed set of non-overlapping camera viewpoints. This key visual recognition task has
recently drawn significant attention due to its wide range of applications, e.g., autonomous
driving, pedestrian tracking, sports analytics, and video surveillance [11, 28, 29, 40]. De-
spite the recent progress with deep learning (DL), person ReID remains a challenging task
in real-world applications due to the non-rigid structure of the human body, variability of
capture conditions (e.g., illumination, scale, motion blur), in addition to person detection
issues like miss-alignment, background clutter, and occlusion [16, 26, 52].

This paper focuses on the occlusion issue for person ReID, a challenge that has attracted
much attention [12, 15, 16, 26, 34, 36]. When bounding boxes or regions of interest (ROI)
are occluded, the CNN backbone extracts noisy features, leading to pairwise matching errors
between query and reference ROIs and poor ReID accuracy for the occluded class. Since
occlusions are diverse in color, shape, and size, extracting features from the entire ROI can
potentially corrupt the global representation.

Several authors have attempted to address occluded person ReID by using pedestrian
detectors that can additionally refine person ROIs [41]. Other methods follow an intu-
itive solution of masking occluded regions, extracting occlusion aware features, or applying
weights and masks to occluded regions, applying body masks based on pose estimation, etc.
[2, 12, 26]. With these state-of-the-art methods, the external mechanism for mask generation
add a considerable time complexity during run-time. Unlike these methods, we propose a
new method that only requires person identity labels as supervision and does not rely on ad-
ditional supervision such as pose estimation. This provides robustness to occlusion in person
ReID, yet lower complexity during inference.

Our method is motivated by the fact that the distribution of features learned from oc-
cluded and holistic2 ReID datasets are different. The dissimilarity space can be regarded as

2In the person ReID, the term "holistic" refers to image data that contains the full body of a person in both query
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Figure 2: Our proposed HG method where a teacher model uses a holistic data distance
distribution to train the student network(trained on artificially occluded or real occluded
samples) such that it can accurately recognize persons appearing in occluded images.

space defined by dissimilarity coordinates, and CNN features are transformed into that space
by computing pairwise matching distances for within-class and between-class samples in a
given batch. It has been shown to successfully learn to separate feature representations for
data that is noisy and overlapping [8, 18]. Occluded person ReID is a good example of a
problem with class overlap. Inspired by [7, 9, 10, 18], we consider the dissimilarity space to
capture the discrepancy between images in occluded and holistic datasets.

Fig. 1 shows the distribution of within-class and between-class distances (DCDs) among
pairs of samples extracted from occluded and holistic datasets. We note two aspects: (1)
Within-class DCDs: In an occluded dataset, this distance tends to be greater, with high vari-
ance, compared to holistic or non-occluded cases. Such distances are normally expected to
be lower due to the similarity among samples within the same class. (2) Overlap within-
and between-class DCDs: Large within-class DCDs are caused by samples being pushed
away from the same class, allowing for substantial overlap with samples from other classes.
The overlap between samples of different classes is more likely to impede discrimination
among classes, leading to poor recognition. Note that both datasets used to generate Fig.1
– Duke-MTMC (Holistic) [29] and Occluded-Duke [26] – are from the same domain, but
occlusions still cause such discrepancies. Based on these observations of DCDs, and consid-
ering the poor performance of models over occluded datasets, we hypothesize that occlusion
is a potential source of corruption for feature representations in person ReID tasks.

This paper proposes a Holistic Guidance (HG) student-teacher network that relies on the
distribution of holistic data in the dissimilarity space to train a student (CNN backbone) on
an occluded dataset. The discrepancy of within- and between-class DCDs across datasets al-
lows the network to extract features on occluded samples while simultaneously maintaining
a good between-and within-class separation. Models trained on occluded data tend to overfit
due to class overlap, so we advocate for using guidance from non-corrupted features of a
larger holistic data in the dissimilarity space to mitigate this issue. Although both datasets
can have different identities, transforming the samples to the dissimilarity space translates
into a binary classification problem [7, 18]. In practice, such learning scenarios could be

and gallery sets. Holistic (or non-occluded) datasets have fewer occluded samples w.r.t. the overall dataset size.
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achieved by using a single holistic dataset, and by building an artificially (augmented) oc-
cluded dataset. A second alternative involves using a training set consisting of real occluded
samples. Our method performs HG since it relies on features with properties learned from
holistic data to guide the CNN backbone in learning features of an occluded dataset.

Our method (shown in Fig.2) is also comprised of a shared generative model (i.e., a de-
noising auto-encoder) that is trained simultaneously on both datasets to enable self-recovery
from occlusion. The student model has an additional embedding for producing an attention
map, allowing the partial or local features to re-focus attention only on visible body-part
features while ignoring the occluded regions that cause distribution discrepancy. Several au-
thors have proposed generative models for person ReID [38, 48], mainly for GAN based data
augmentation. In contrast, we introduce a denoising auto-encoder as the CNN backbone for
our HG student-teacher network, allowing to self-recover in cases of occlusion.
Main contributions: (1) A novel HG student-teacher network that relies on the distribution
of holistic data in the dissimilarity space to train a CNN backbone on the occluded dataset.
(2) To motivate our HG method, we show that within-class DCDs of Occluded-ReID datasets
overlap with between-class DCDs by a larger margin than holistic ReID datasets, even in
cases where the occluded dataset is a subset of a holistic one. (3) Extensive experiments
were performed on challenging Occluded [26, 51], Partial [46, 47], and Holistic [29, 44]
ReID datasets show that our HG method can outperform many SOTA methods.

2 Related Work in Person-ReID
Image-Based Methods: Siamese Networks have first been used in [39] that employs three
Siamese sub-networks for deep feature learning. Most of the further work based on deep-
architecture ReID [1, 4, 5, 25, 35] approaches introduce an end-to-end ReID framework,
where both feature embedding and metric learning have been investigated. A few attention-
based approaches for deep ReID [21, 31, 43] address misalignment challenges by incorpo-
rating a regional attention sub-network into a base re-ID model. With part-based methods,
local features are extracted from different regions to enhance the discriminative power of the
features. Suh et al. [32] extracted parts from the feature map and trained each part with sep-
arate classifiers. [20] used parts method to extract local features. In addition to this, other
methods such as [33, 43] have used part pooling with attention for a refined partial feature.
Occluded Person ReID: Occluded person ReID is different from person ReID or holistic
person ReID because during test time, the probe images are often occluded as in real-world
applications. Hence [51] have proposed to use a binary classifier to classify the images as
occluded or not to distinguish occluded ones from holistic images. [26] considered using
pose guided feature alignment to align part features or local features. Similar to [26], other
works align local or part features by pose estimation like [37, 45]. Similar to this, [36]
use pose estimator to help predict key-points on body parts and use graph-based methods.
The main disadvantage of pose-aligned methods is that they suffer from requiring additional
supervision like the pose estimation step, which is error prone [42]. Recently, [12] use a
method where, in the first step, they obtain discriminative features by using pose guided at-
tention and then mine for visible parts. [16] have used foreground-background mask instead
of the pose. Recently, [23] used only identity information to learn occluded ReID with part
aware transformers. Note that they add additional complexity with the transformers used for
attention. [19] is an other approach using only identity information, where Occluded ReID
is considered as a set matching task to make invariant to occlusion of different parts.

Similar to our method, Zhuo et al. [52] employ a student-teacher model. In the first stage,
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their teacher network learns from a holistic dataset, where both identification and supervised
saliency is learned using a salient object detector. However, it differs from our approach in
that: (1) it does not learn any supervised salient region detection, and (2) it allows recovering
from small occlusions by using a denoising auto-encoder as a CNN backbone.

3 Proposed Approach
A Holistic Guidance (HG) method is introduced for unsupervised learning of attention maps
in Occluded-ReID, without the need for any external guidance such as pose or segmentation
maps. A student-teacher network is proposed, where the teacher network relies on holistic
images or non-occluded images to teach the student network the DCD of holistic features.
This allows the student to learn an attention map such that, when applied to occluded images,
results in uncorrupted features like those of the teacher. More specifically, a joint generative
and discriminative backbone is trained with a denoising autoencoder for the student-teacher
model. It simultaneously learns to match image pairs while reconstructing images.
Problem Formulation: Let IO and IN denote input images from the occluded and holistic
dataset, respectively. N and O denote the components from teacher and student trained from
holistic data and occluded data, respectively. Let yO and yN denote the identity labels of
occluded and holistic datasets. FO and FN represent the global feature maps of occluded
and holistic datasets, which are obtained from the shared encoder E. The local or part-based
features f i

O, f i
N are produced by applying a pooling function on FO and FN . By minimising

the discrepancy between-class distance distribution of f i
O, f i

N , we intend to learn an attention
map Ai that is applied on the f i

O to obtain features fa
i for i = 1, .., p for each part. During

testing, ψ , which is a concatenation of global and local features, allows extracting features
for matching from the gallery and query using a distance function, and to retrieve the identity.
Robust Backbone Model: We propose a joint learning framework of a denoising auto-
encoder along with the classification networks to be robust to occlusions for person ReID.
The input images are augmented by adding small noise using random erasing data augmen-
tation, while the reconstruction loss is obtained using actual images. The encoder E is shared
between denoising auto-encoder and ReID classification layers. In order to obtain robust fea-
tures with both Generative and Discriminative properties, we reconstruct the input images
using a Decoder on the embedding FN and FO. Hence E and D together form a denoising
auto-encoder. We have used a denoising autoencoder in order to exploit the full potential
of the generative capability to take full advantage of the class distributions of the holistic
data-set. Let Îc represent the reconstructed image, and Fc = E(Ic) be the latent feature rep-
resentation of the encoder, where c ∈ {N,O} (holistic and occluded images) and Ic is the
input image. The size of Fc is B×C×w×h, where B is the batch, C is the number of out-
put channels of the encoder E and w,h width and height of the feature map. Fc can also be
referred to as the latent feature representation of the auto-encoder. A part-based pooling is
applied on Fc to obtain p parts of stripes of features. Our part pooling method used is similar
to [33] where a 2D feature map is split into horizontal stripes of p parts. Global average
pooling is then performed on each of the p parts to obtain p feature vectors of size C. Each
feature vector of p parts is assigned to a unique classifier, resulting in p classifiers trained
using identity labels of the corresponding datasets.

The predicted output for each given image Ic from the classifier is ŷi,c, where i = 1, . . . , p
parts. The identity prediction loss function over all the parts is:

LCE,c =
1
K

K

∑
i
− log

 exp
(
WT

yi
xi +byi

)
∑

N
j=1 exp

(
WT

j xi +b j

)
 (1)
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where LCE,c is the cross entropy loss, K is the batch size, class label yi ∈ {1,2, . . . ,N} is
associated with ith training image. W j and b j are the weights and bias of last fully connected
layer for class y. Similarly W j and b j are the weights and bias of the the jth class. The
denoising auto-encoder is learned using reconstruction loss between the reconstructed and
original images before random erasing augmentation [49], which acts like noise added in
denoising auto-encoders. We propose this inspired by [6] to self recover from occlusion.
Normally in [6] an autoencoder is learnt to generate non occluded face image from artificially
occluded face image which is then post processed for recognition. But in our case since we
use a joint representation we expect the joint feature to have the self recovering properties.
The reconstruction loss of the autoencoder is given by,

Lrecon,c = E [‖Ic−D(Fc)‖1] , (2)

where D denotes the decoder function of the denoising auto-encoder. We do not use the re-
constructed image for any other steps. However, the reconstruction loss is optimised in order
to enable the deep features to have generative properties and to self-recover from occlusion.
The total loss for the joint learning of generative discriminative learning is:

Ljoint,c = LCE,c +λLrecon,c , (3)

where λ is the trade-off parameter.
Student-Teacher Model: A student-teacher model with the proposed backbone is shared
between the teacher and student. In addition to the backbone, the student model carries an
embedding to produce attention maps. From Fig. 1, it can be observed that a DCD obtained
by comparing extracted deep features of occluded in-class images overlap with those of out-
of-class distances by a large margin in comparison with the holistic dataset. The overlap of
the DCD indicates corrupted features as in-class distance distribution must have good sepa-
ration from that of out-of-class distribution. We further justify the use of holistic guidance
by the following. One could learn a separation between classes in the feature space using a
triplet or contrastive loss on an occluded dataset alone. Yet, the model may overfit on the
occluded dataset due to class overlap. However, holistic datasets are much larger than oc-
cluded ones. Therefore, they can provide a good generalization of non-corrupted DCD given
that class overlap can be well dealt within the dissimilarity space. By matching the DCD, the
student network can learn the class overlap of the teacher network (which is well separated).

Fig. 2 shows our overall architecture along with the backbone auto-encoder-based deep
feature extractor. We simultaneously take two input images—one from the holistic dataset
and the other from the occluded dataset. The extracted deep features are simultaneously
optimized for identity loss by learning a set of two fully connected layers for classification.
We use two separate classifiers, one for the teacher to learn holistic data identities and the
other for the student to learn occluded data identities.

Attention Embedding is particular to student network alone capable of producing atten-
tion for the partial features such that the attended partial feature will have good separation
between within and between-class distances similar to that of the teacher. Let the atten-
tion embedding (which is a set of two layers 1×1 convolutional filters with ReLU between
them followed by batch normalization layer with sigmoid activation for final attention out-
put) be represented by AE. The attention produced by the attention embedding is given by
Ai = AE( f i

O). The attention maps in Ai of size B×C are obtained for each partial feature,
with i = 1, . . . , p and p being the number of parts. The attention obtained is multiplied with
each partial feature to obtain attended partial features, fa

i = f i
O
⊗

Ai. The layers for occluded

Citation
Citation
{Zhong, Zheng, Kang, Li, and Yang} 2020

Citation
Citation
{Cheng, Wang, Gong, and Hou} 2015

Citation
Citation
{Cheng, Wang, Gong, and Hou} 2015



KIRAN ET AL.: HOLISTIC GUIDANCE FOR OCCLUDED PERSON RE-IDENTIFICATION 7

image classification, FCi
c, are applied on each of the attended partial feature fa

i. While train-
ing on an artificially occluded dataset alone, we use a binary classifier to learn occluded or
non-occluded images on artificially occluded samples similar to [51].

In order to learn the attention, the student network relies on occluded input images and
distance distribution matching. Then, DCD of the occluded and holistic features are com-
pared. Given a mini-batch of image input with occluded and holistic images IO and IN , partial
features f i

N and fa
i (partial feature with attention) are extracted. We denote the class identity

for the features by u and v. Therefore, for each mini-batch, we extract pairs of image features
with different combinations within a batch according to:

dwc
i (Iu

c ,I
v
c) =

∥∥∥Pi,u
N −Pi,v

N

∥∥∥
2
,u = v , and, dbc

i (Iu
c ,I

v
c) =

∥∥∥Pi,u
N −Pi,v

N

∥∥∥
2
,u 6= v . (4)

Eqn. 4 transforms the features to dissimilarity space. Pi denotes the part features i.e., f i
N

for holistic data and fa
i for occluded data. The distance distributions are extracted from dwc

i
and dbc

i for both holistic and occluded data. We implicitly learn to produce a good atten-
tion embedding AE by minimising the discrepancy between DCD of holistic and occluded
data using MMD [13]. Let Dwc

c and Dbc
c be the distributions from dwc

i and dbc
i . The losses

measuring the discrepancy between class distributions of holistic and occluded data are,

Lwc
D = MMD(Dwc

N ,Dwc
O ) , Lbc

D = MMD
(

Dbc
N ,Dbc

O

)
and, Lglobal = MMD( fN , fa) (5)

It is important to note that losses Lwc
D and Lbc

D are optimized by fixing Dbc
N and Dwc

N , the
DCD of teacher network. This allows the student network distance distribution to match that
of the teacher network. Hence, Eqn. 5 calculates the discrepancies between the within-class
and between-class DCDs of holistic datasets and occluded datasets. This loss is minimized
during learning to obtain a good attention map from the embedding to focus on non-occluded
regions of occluded images. Lglobal calculates the MMD distance between teacher features
and student features to encourage the model to perform well on both occluded and holistic
data. This Lglobal is particularly used when the holistic and occluded datasets are from differ-
ent domains. Parameters λ1, λ2, and λ3 balance these losses, and are determined empirically.

LD = λ1Lwc
D +λ2Lbc

D +λ3Lglobal . (6)

End-to-End Learning and Testing: The full system is optimized for reconstruction losses
and identity losses with cross-entropy on both occluded and holistic data, and finally, the
class distance distribution loss. The overall loss function LTotal is given by,

LTotal = αLjoint,c +(1−α)LD , (7)

where α balances these losses, and is determined empirically (see supp. material). During
testing, only the student is used along with the components denoted within Fig. 2 to extract
ψ , which is a concatenation of global and local features, FO and fa

i, for both gallery and
query images. Extracted features are matched with Euclidean or Cosine distance to retrieve
the identity of a query image from the gallery.

4 Experimental Results and Discussion
Datasets: Our approach is validated on three challenging groups of datasets – Holistic ReID,
Occluded-ReID, and Partial ReID datasets. Our main objective is to address performance on
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Occluded-ReID problems (Occluded-DukeMTMC [26] and Occluded-ReID [51] datasets)
and Partial ReID problems (Partial-ILIDS [26, 46] and Partial-ReID [47] datasets), but we
also evaluated on Holistic problems – Market1501 [44] and Duke-MTMC [29] datasets –
to further assess the effectiveness our approach on regular ReID problems. The Occluded-
DukeMTMC dataset [26] contains a total of 15,618 training and 17,661 gallery with 2,210
occluded query images. This is a subset of the Duke-MTMC dataset. To test on Occluded-
Duke, we train the student model with Occluded-Duke training set similar to [26, 36, 50].
The Occluded-ReID dataset [51] mimic real-world application scenarios by collecting datasets
using mobile camera equipment on campus. It has a total of 2,000 annotated images with 200
identities. Each identity consists of 5 full-body images and 5 partial images. The Holistic
ReID and Partial ReID datasets are described in the supplementary material.
Implementation Details: For validation, the ResNet50 [14] was implemented as our back-
bone Encoder. Transposed convolution layers were used along with Interpolation for the
Decoder (see details in the supplementary material). To evaluate Occluded-Duke-MTMC,
we train the student using the train data of Occluded-Duke-MTMC, and the teacher with
Market1501 [44], as in the SOA. Since Occluded-ReID and Partial ReID do not have a pre-
scribed set of training images, the whole dataset was used for testing (as in [12]). To have a
common setting with the SOA [26, 26], we use an input image size of 384 X 128. We train
our backbone with Partial Features with p = 6 parts, and set the co-efficient λ = 0.01. The
teacher network is pre-trained for 15 epochs, and the student-teacher is trained together for
120 epochs. The Adam optimization is used with an initial learning rate of 0.0003. We report
the Cumulative Matching Characteristics (CMC) and mean average precision (mAP) [44].
Results with Occluded and Partial ReID Problems. Tabs. 1 and 2 show the result of
our method on the Occluded-Duke and Occluded-ReID dataset compared with State-Of-The
art (SOA) methods. [26, 36, 50] are Occluded-ReID methods. We show the results for
our method with both ResNet50 and ResNet-IBN [27] backbones. In the Table "PM"-pose
maps, "KP"-key -point detection. Our method outperforms all the other Occluded Person
ReID methods mentioned in the table. Our proposed HG method performs competitively in
Rank-1 without any external input, such as pose or segmentation masks, on the Occluded-
Duke dataset and 2.5% on the Occluded-ReID dataset. Since the Occluded-ReID dataset
does not contain training images, we show two sets of results, one with student trained on
artificially occluded Market1501 dataset -HG(Unsup) and the other the student model trained
on occluded samples from Occluded-Duke dataset -HG(Sup). Our results show that student
trained on augmented Market1501 already outperforms many SOTA. Additionally, when the
student is trained on a totally different occluded dataset (Occluded-Duke) from that of the

Method Backbone Supervision Accuracy
Rank-1 Rank-5 Rank-10 mAP

LOMO+XQDA [24], CVPR 2015 - None 8.1 17.0 22.0 5.0
Part Aligned [43], ICCV 2017 GoogLeNet None 28.8 44.6 51.0 20.2
Random Erasing [49], AAAI 2020 ResNet50 None 40.5 59.6 66.8 30.0
HACNN [22], CVPR 2018 Custom None 34.4 51.9 59.4 26.0
Adver Occluded [17], CVPR 2018 ResNet50 None 44.5 - - 32.3
PCB [33], ECCV 2018 ResNet50 None 42.6 57.1 62.9 33.7
Part Bilinear [32], ECCV 2018 GoogLeNet Occluded-Duke 36.9 - -
PGFA [26],ICCV, 2019 ResNet50 Occluded-Duke + PM 51.4 68.6 74.9 37.3
Depth Occln [50], PRL 2020 ResNet50 Occluded-Duke + PM 53.0 67.0 72.9 38.1
HOReID [36], CVPR 2020 ResNet50 Occluded-Duke + KP 55.1 - - 43.8
PAT [23], CVPR 2021 ResNet50 Occluded-Duke 64.5 - - 53.6
MOS [19], AAAI 2021 ResNet50 Occluded-Duke 61.0 - - 49.2
MOS [19], AAAI 2021 ResNet50-IBN Occluded-Duke 66.6 - - 55.1
HG(ours) ResNet50 Occluded-Duke 61.4 77.0 79.8 50.5
HG(ours) ResNet50-IBN Occluded-Duke 65.1 79.1 81.4 54.7

Table 1: Accuracy of HG and state-of-the-art methods on the Occluded-Duke dataset.
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Method Backbone Supervision Accuracy
Rank-1 Rank-5 Rank-10 mAP

IDE [44], ICCV 2015 - None 52.6 68.7 76.6 46.4
MLFN [3], CVPR 2018 Custom None 42.3 60.6 68.5 36.0
HACNN [22],CVPR 2018 Custom None 29.1 44.7 54.7 26.1
PCB [33], ECCV 2018 ResNet50 None 59.3 75.2 83.2 53.2
Part Bilinear [32], ECCV 2018 GoogLeNet None 54.9 70.8 77.7 50.3
teacher-S [52], ArXiv 2019 ResNet Split Test Set 55.0 64.5 77.3 59.8
PGFA [26], ICCV 2019 ResNet50 PM 57.1 77.9 84.0 56.2
PVPM [12], CVPR 2020 ResNet50 PM 70.4 84.1 89.8 61.2
HOReID [36], CVPR 2020 ResNet50 KP 80.3 - - 70.2
PAT [23] ResNet50 - 81.6 - - 72.1
HG (ours Unsup) ResNet50 None 79.4 88.5 93.7 71.1
HG (ours Sup) ResNet50 Occluded-Duke 82.3 89.7 94.1 71.7
HG (ours Sup) ResNet50-IBN Occluded-Duke 82.8 90.1 94.6 72.0

Table 2: Accuracy of HG and state-of-the-art methods on the Occluded-ReID dataset.

test dataset (Occluded-ReID) still outperforms all SOTA. We also evaluate our method on
partial ReID datasets [47] and the result table is presented in the supplementary material.
We can observe from the results that our method has improved over the SOTA by 2%.
Ablation Study. An extensive study was conducted on Occluded-ReID to analyze the impact
on training data and architecture performance. Results are shown in Tab. 3.
(a) Impact of Data. This study was performed on the full student-teacher model with all the
components. In Tab. 3, "Augm. on Holistic": refers to student model trained with artificially
occluded Market1501 dataset by Random Erasing [49]. We also use additional "occluded
or non-occluded" binary classification on the features and show results with and without
this classification. We can see that augmentation has helped the student model to learn
Occluded-ReID and perform better than many SOTA. Using the Occluded-Duke to train the
student shows that the student model performs even better on the Occluded-ReID dataset.
Also, Occluded-Duke and Occluded-ReID datasets have no overlap.
(b) Impact of Architecture. To analyze the effect of architecture on the result from above,
the teacher alone (pre-trained on Market1501) is fine-tuned on Occluded-Duke. Results indi-
cate that fine-tuning the baseline network on Occluded-Duke performs poorly on Occluded-
ReID. In Tab 3, the remarks "identity+reconstruction" refer to the experiment where student-
teacher model has been trained with identity loss and reconstruction loss alone. The recon-
struction loss has helped the student to learn some generative properties, and hence the over-
all result on Occluded-ReID data is better than the baseline fine-tuned on the Occluded-Duke
dataset. We further extend our experiments by using distribution loss, identity loss along with
reconstruction loss, but no attention "reconstruction+MMD." The "MMD+attention" exper-
iment does not use reconstruction loss, and hence the autoencoder is not trained. Finally,
we train the student model with the full system "reconstruction+MMD+attention," which
includes the attention mechanism learned by matching distributions.

Model Experiment Training Data (Student) Rank-1
Impact of Training Architecture (Test Set: Occluded-ReID)
HG (student+teacher) w/o occlusion classifier Augment Holistic 75.6

w/ occlusion classifier Augment Holistic 79.4
w/o occlusion classifier Occluded-Duke 82.3

Impact of Losses (Test Set: Occluded-ReID)
teacher only identity only - 59.5
teacher+student identity only Occluded-Duke 63.8
teacher+student identity+reconstruction Occluded-Duke 67.7
teacher+student identity+reconstruction+MMD Occluded-Duke 76.1
teacher+student MMD + attention (no autoencoder) Occluded-Duke 80.1
teacher+student reconstruction+MMD+attention Occluded-Duke 82.3
Impact of backbone (Only ResNet50 Backbone, w/o Part Pooling)
teacher only identity - 51.3
teacher+student reconstruction+MMD+attention Occluded-Duke 68.5

Table 3: Impact on HG accuracy of training data and architecture on Occluded-ReID dataset.
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Model Backbone Market1501 Duke-MTMC
Rank-1 mAP Rank-1 mAP

PCB [33], ECCV 2018 ResNet50 92.3 77.4 81.8 66.1
MaskReID [30], CVPR 2018 MSCAN 90.0 75.3 - -
FPR [16], ICCV 2019 ResNet50 95.4 86.6 88.6 78.4
PVPM [12], CVPR 2020 ResNet50 93.0 80.8 83.6 72.6
PGFA [26], ICCV 2019 ResNet50 91.2 76.8 82.6 65.5
HOReID [36], CVPR 2020 ResNet50 94.2 84.9 86.9 75.6
MOS [19], CVPR 2021 ResNet50-IBN 95.4 89.0 90.6 80.2
PAT [23], CVPR 2021 ResNet50 95.4 88.0 88.8 78.2
HG (Ours) ResNet50 95.6 86.1 87.1 77.5

Table 4: Accuracy of our HG method on Market1501 and Duke-MTMC datasets.

(c) Impact of CNN Backbone. In order to assess the impact of part pooling, we perform
another the "Impact of backbone" experiment, where only a ResNet-50 backbone is used
with no part pooling. Although the overall results are this case is lower than when using
part pooled features, it can be seen that proposed loss has still improves Occluded-ReID
performance. From the results, we can conclude that our system learns occluded-ReID by
using either artificially-occluded examples or real-occluded examples with holistic data as a
reference. We show additional ablation studies in the supplementary materials.
(d) Holistic ReID Datasets. Tab. 4 shows results with the HG model on holistic Mar-
ket1501 [44] and Duke-MTMC-[29] datasets. Results show that HG is competitive with
other SOTA models designed to work with the Occluded-ReID problem.

Figure 3: Activation maps generated for four occluded images of the Partial ReID dataset by
the PGFA method [26] versus our HG method. PGFA uses pose estimation additionally.
Qualitative Results. Fig. 3 compares activation maps from the student model tested on ex-
amples with Partial-ReID dataset with activation maps of [26] (uses pose maps for attention).
In the figure, both head and legs are occluded. But, from the activation maps of our proposed
HG method, it can be seen that our method is good at localising non-occluded regions alone.

5 Conclusion
In this paper, a novel HG student-teacher model is proposed for occluded person ReID that
only requires image identity labels but no costly process to focus on visible parts of occluded
regions. The proposed HG teacher considers the DCD of among samples in a holistic dataset
to train a student model to generate attention maps, thereby alleviating the occlusion prob-
lem. Unlike most methods in the literature that use external supervision (such as pose) to
generate visibility cues, we only rely upon the distribution of holistic data during training,
using it as a soft label. Hence during test time, our model requires no external cues such as
pose, and the overall parameters include just the backbone Encoder and a small embedding
to generate attention maps to be used during feature extraction. Joint learning of a denoising
autoencoder was used to improve the ability to self-recover from occlusion. Results on sev-
eral challenging datasets show that our HG method can outperform state-of-the-art models
for Occluded-ReID, as well as Holistic ReID tasks.
Acknowledgments: This research was supported by the Compute Canada and MITACS.
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