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Abstract

Navigation towards different objects is prevalent in daily lives. State-of-the-art em-
bodied vision methods accomplish the task by implicitly learning the relationship be-
tween perception and action or optimizing them with separate objectives. While effec-
tive in some cases, they have not yet developed (1) a tight integration of perception and
action, and (2) the capability to address visual variance that is significant in the mov-
ing and embodied setting. To close these research gaps, we introduce a new attention
mechanism, which represents the pursuit of visual information that highlights the poten-
tial directions of final targets. Instead of working conventionally as a weighted map for
aggregating visual features, the new attention is defined as a compact intermediate state
connecting visual observations and action. It is explicitly coupled with action to enable a
joint optimization through a consistent action space, and also plays an importance role in
learning features more robust against visual variance. Our experiments show significant
improvements in navigation across various types of unseen environments with known
and unknown semantics. Ablation analyses indicate that the proposed method correlates
attention patterns with the directions of action, and overcomes visual variance by distill-
ing useful information from visual observations into attention distribution. Our code is
publicly available at https://github.com/szzexpoi/ana.

1 Introduction
One of the fundamental goals in artificial intelligence is to develop intelligent agents that
can efficiently perceive information from diverse environments, and navigate to different
targets with autonomy and adaptability. While humans have little difficulty accomplishing
the task, there are two key challenges remaining largely unsolved for embodied agents: First,
successful navigation to targets requires close cooperation between perception and action.
Existing embodied vision methods either implicitly learn their relationship through repeated
trials [6, 9, 34, 36, 38] or leverage separate objectives [20, 24, 33] to independently optimize
perception and action, without modeling how they collaborate with each other. Second,
existing methods show limited capability in navigating in new environments of which they
do not have prior knowledge. Compared to static and passive scenarios in conventional
vision tasks, in this moving and embodied context, there is a more significant need for the
agents to be able to parse new and diverse visual information and take actions accordingly.
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Figure 1: Attention plays an important role in improving the generalizability and inter-
pretability of embodied agents.

As a step towards embodied agents that can perceive and navigate across diverse environ-
ments with increased generalizability and interpretability, we borrow inspirations from the
evolutionary significance of attention in action [26] and leverage attention as an important
interface to integrate perception and action. We define a new attention mechanism that suits
the embodied setting and addresses the aforementioned challenges. It differentiates itself in
three aspects: (1) Unlike the conventional attention that works as a weighted map for high-
lighting important regions in different frames, the new attention represents pursuit of visual
information that highlights potential directions of the final target and guides navigation to-
wards the corresponding directions. (2) Our method explicitly couples attention with action
through the same action space, enabling a joint optimization of where to look and where to
move. (3) Visual variance is common due to changes in environments, and results in sig-
nificant discrepancies between visual features observed from different scenes. Our method
leverages attention as a compact intermediate state bridging visual observations and action,
distilling useful information instead of conventionally using the exact visual features, and
thus is more reliable against variance. Since the need of perception-action integration and
the visual variance are significant in the embodied setting, we consider the new attention
mechanism a timely contribution to embodied vision, as well as opening a new avenue in
attention research with scenarios involving both perception and action.

Specifically, we focus on the object navigation task that involves navigating to an instance
of the target object category in unseen environments. We study how to exploit attention for
object navigation and develop a novel attention-driven navigation agent (ANA). Augmented
with the proposed attention, our method shows significantly enhanced performance in un-
seen environments with known or unknown semantics. Besides improving the navigation
performance, it also provides an interpretable interface for understanding the underlying
decision-making process of the agents during navigation.

In summary, this work makes the following contributions:

1. We introduce a new form of attention for the embodied context. It goes beyond the
conventional feature-aggregation paradigm of attention, and is applied to the action
space to bridge visual observation and action.

2. Aiming at improved robustness against visual variance, we propose to distill useful
information from visual observations into attention distribution and learn more robust
features for action planning.

3. Through extensive experiments, we demonstrate enhanced performance and general-
izability over previous state-of-the-art in object navigation across various unseen en-

Citation
Citation
{Norman and Shallice} 1986



CHEN AND ZHAO: ATTENTION TO ACTION 3

vironments. Ablation studies shed light on the role of attention in object navigation,
and the key factors for integrating perception and action.

2 Related Works
Our work is most related to previous efforts on attention modeling and visual navigation.

Visual Attention. Inspired by the human visual system that parses visual scenes with a
sequence of eye fixations, visual attention has become an increasingly important components
in computer vision models. There is a large body of research on attention modeling in
conventional vision [2, 10, 17, 19, 35] and embodied vision [3, 8, 11, 21, 25, 37] tasks.
These methods typically concentrate on the role of attention in perception, and use it as a
weighted map to selectively aggregate visual features from different regions. While showing
usefulness, conventional attention does not consider the collaboration between attention and
action, and usually requires case-specific analyses [21, 25] to elaborate their relationship.
Going beyond the feature-aggregation paradigm, our new attention is designed as the pursuit
of information to highlight the potential directions of final targets, and explicitly coupled
with action through an adaptive mapping.

Learning-based Visual Navigation. Recent visual navigation methods typically follow
a learning-based paradigm to develop policy for action planning. These include methods
that make use of recurrent neural networks [3, 8, 11, 22, 30, 31, 32], structured spatial rep-
resentations [5, 12, 13, 16, 27] and topological representations [7, 28, 29]. Since navigation
towards different objects is prevalent in daily life, several recent studies [6, 9, 24, 34, 36, 38]
focus on the object navigation task: Zhu et al. [38] propose a deep reinforcement learning
framework for object navigation, where a picture of the target object is used as the input.
Later on, Wortsman et al. [34] substitute the picture with language embedding, and develop
a meta-learning approach. Aiming for better generalization, Yang et al. [36] and Moghad-
dam et al. [24] utilize knowledge about the semantic relationship between different objects,
and augment the agent with Graph Convolutional Networks. Chaplot et al. [6] develop a
neural SLAM model to guide navigation with semantic information. Druon et al. [9] in-
corporate a context grid for encoding the spatial and semantic relationship between objects.
The aforementioned methods either implicitly learn the relationship between perception and
action [6, 9, 34, 36, 38], or optimize them with separate objectives [20, 24, 33].

Our method differentiates itself in two key aspects: (1) It emphasizes the tight collabo-
ration between perception and action, and explicitly couples attention with action. By map-
ping attention to the action space, it jointly learns where to look and where to move. (2)
Unlike previous methods that typically ignore the visual variance of different environments,
we identify it as a critical issue in tasks with embodied paradigms. To overcome variance
and improve generalizability, our method utilizes attention as an intermediate state bridg-
ing visual observations and action, and determines action based on the attention distribution
instead of raw visual features.

3 Attention-driven Navigation Agent
Navigation towards different objects requires understanding visual environments and gener-
ating action planning accordingly. Existing object navigation methods [6, 9, 23, 24, 34, 36]
pay little attention to the integration of perception and action as well as the visual variance of
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Observations
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Figure 2: Illustration of the proposed method. The left and the upper part visualize the
model architecture, while initialization of the spatial masks M is shown at the bottom right.
� denotes the dot product while ⊕ represents an element-wise summation. For the spatial
masks, locations with value 1 and 0 are highlighted in blue and white color, respectively.

diverse environments. As a result, they fall short of navigating in environments where they
do not have prior knowledge and have limited generalizability. Attention is an important
mechanism in humans that affects where people look to acquire information and where they
move based on the observations [26]. In this paper, we propose a new attention to addresses
the perception-action integration and visual variance challenges in object navigation.

Our method consists of two principal components: (1) It leverages attention as an inter-
mediate state and learns features from attention distribution for action planning. Compared
to raw visual features, attention, as a compact feature representation with well-defined struc-
ture (i.e. a probabilistic map), is more robust against the visual variance and plays a key role
in navigating across diverse environments. (2) Now with the new attention that goes beyond
the feature-aggregation paradigm, our method further utilizes an explicit mapping to couple
attention with action, and jointly optimizes them through a consistent action space. Besides
improving the performance, it also provides an interpretable interface for understanding the
underlying rationale behind the agent’s decisions.

3.1 Leveraging Attention as an Intermediate State

A key challenge preventing the generalization of embodied agents is the visual variance of di-
verse environments. The variance leads to significant discrepancies in visual features learned
by embodied agents, causing difficulties for them to understand different environments and
generate reasonable action planning. To tackle the challenge, our method bypasses the direct
use of visual features, and instead uses attention distribution to derive features. As shown in
Figure 2, instead of working conventionally as a weighted map, our attention serves as the
intermediate state connecting visual observations and action.

Specifically, at each time step t, our method computes the attention map by consider-
ing both the visual observations and semantic relationship between different objects. The
visual observations encode important knowledge about the environment, while the semantic
relationship provide useful priors for object navigation (e.g., coffee mug is likely located
near the coffee machine). Following [9], we use ResNet-18 [15] to extract visual features
Vt ∈R2048×14×14 from four recent observations in egocentric view, and represent the seman-
tic relationship with a context grid Gt ∈R1×16×16 that encodes the cosine similarity between
word embeddings of object categories for the target and objects detected in the current frame.
The two types of features are first processed independently with convolutional and adap-
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tive pooling layers to obtains features with consistent spatial dimension V̂t ∈ R128×7×7 and
Ĝt ∈ R16×7×7, and then concatenated to compute the attention αt ∈ R1×7×7:

αt = σ( fatt([V̂t ; Ĝt ])) (1)

where fatt denotes the convolutional layers for computing the additive attention, [·] represents
the concatenation of features, and σ is the softmax activation function.

Upon obtaining the attention map, instead of multiplying it with visual features, we di-
rectly learn features from the attention distribution. Benefiting from the structure and com-
pact nature of attention, the features learned under this paradigm are more robust against
visual variance and enables better generalization across different environments. The action
in our approach is determined based on the features derived from both attention distribution
and semantic relationship between objects:

Actc
t = fact([ f α

act(αt); f G
act(Gt)]) (2)

where f α
act and f G

act are convolutional layers that further encode attention and context grid, fact
denotes fully-connected layers that derive the action likelihood based on flattened features,
and Actc

t is the unnormalized likelihood of candidate actions.
The aforementioned method distills useful knowledge from raw visual features into at-

tention, addressing the issues of visual variance without losing important information (see
supplementary materials for details). More importantly, it also enables an explicit integration
of perception and action as detailed in the next subsection.

3.2 Coupling Attention with Action
Moving forward, we propose to explicitly couple attention with action and jointly optimize
them through a consistent action space to further improve the navigation performance.

The principal idea behind the method is to learn a set of spatial masks that map attention
distribution to different candidate actions. The masks serve as action templates that highlight
the locations to be explored after performing different candidate actions, and explicitly model
the relationship between attention and action. The agent is more likely to perform an action,
if its attention is allocated towards the locations in the associated mask:

Actα
t = ∑M ·αt (3)

where M ∈ Rk×7×7 represents the spatial masks and k is the number of candidate actions.
Actα

t denotes the unnormalized likelihood of candidate actions mapped from the attention.
The summation is performed on spatial dimensions of the attention map.

We initialize the spatial masks M as binary maps based on the average attention patterns
for different actions (Figure 2, bottom right; see Section 4.3 for details). To support gener-
alization across various scenarios, we further optimize the masks with the other components
(e.g., fact for deriving action) through interacting with various environments. Therefore, the
agent can leverage prior knowledge to efficiently establish the relationship between attention
and action, and adaptively refine it in a data-driven manner.

Our method determines its final action Actt by considering both the features derived
from attention and contextual information (i.e., Actc

t ) and the alignment between attention
and spatial masks (i.e., Actα

t ). We incorporate a trainable balance factor β ∈ R to adaptively
combine the two likelihood of actions:

Actt = σ(Actc
t +β ·Actα

t ) (4)
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where σ is the softmax activation function for normalizing the likelihood of actions.
By leveraging attention as an intermediate state to learn features and explicitly coupling

it with action, our method establishes a new paradigm for using attention to integrate percep-
tion and action. Our experiments demonstrate its effectiveness on improving the navigation
performance across various environments. Our analyses also shed light on the decision-
making process, and highlight the key components for integrating perception and action.

4 Experiments and Analyses

In this section, we compare our method with existing state-of-the-art, and analyze the role of
attention in object navigation. We report results that validate the effectiveness of our method
(Section 4.2), and perform ablation studies that shed light on two research questions that
have yet to be answered: (1) Where do embodied agents look while navigating to objects?
(Section 4.3), and (2) What are the keys for integrating perception and action? (Section 4.4).
Additional analyses and qualitative results are provided in the supplementary materials.

4.1 Experiment Settings

Dataset. Following recent state-of-the-art methods for object navigation [9, 24, 34, 36,
38], we evaluate our method with the popular AI2-THOR [18] framework. It provides 120
photo-realistic environments with four room types (Living Room, Bathroom, Kitchen and
Bedroom), where each room type has 30 different environments. We use 9 candidate actions
in our experiments, including Move Ahead, Move Back, Move Left, Move Right, Rotate Left,
Rotate Right, Look Up, Look Down and STOP (see supplementary materials for details).

Evaluation Protocols. We demonstrate the effectiveness and generalizability of our
method with two popular evaluation settings used in previous state-of-the-art: (1) Unseen
environments with known semantics: Following [24, 34], we split 30 environments per
room type into 20/5/5 for training/validation/testing. Agents are trained with environments
of all types, and target objects (see supplementary materials for details) for training and eval-
uation are consistent. Therefore, while agents have not seen the environments for evaluation
during training, they still have knowledge about their layouts and corresponding targets. For
testing, we perform inference for 250 episodes per room type, where the environment, initial
state and target are randomly chosen. (2) Unseen environments with unknown semantics:
We also experiment with a more challenging setting where both room types and target ob-
jects for evaluation are unknown during training. Specifically, we follow [9], training agents
with environments from two room types (i.e., Living Room and Bathroom, Kitchen and
Bedroom) and evaluating them on the others. Target objects for evaluation are determined
by selecting objects closest to training targets on the word embedding space. This allows us
to evaluate the effectiveness of agents on navigating to semantically relevant objects. To be
consistent with [9], only 10 environments per room type are used for training (environments
for training/validation/testing are adjusted accordingly), and evaluation is carried out on 250
random episodes per environment/target.

We use two popular evaluation metrics, including Successful Rate (SR) and Success
weighted by normalized Path Length (SPL) [1]. An episode is successful if the agent releases
a STOP signal within 300 steps, and an instance of target object is visible and within 1 meter.
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Living Room Bathroom Kitchen Bedroom Average
SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%)

Known Semantics

A3C [23] - - - - - - - - 33.40 14.68
GCN [36] - - - - - - - - 35.13 15.47
SAVN [34] 21.60 7.71 69.60 28.49 43.60 17.80 29.20 8.65 40.86 16.15
GVE [24] 25.20 9.41 75.60 31.03 45.60 17.93 27.60 8.06 43.80 17.27

Spatial Context [9] 45.23 16.27 59.20 22.89 60.20 22.52 40.60 13.57 51.31 18.84
ANA 58.16 20.61 68.08 25.07 75.36 28.72 48.64 16.58 62.56 22.75

Unknown Semantics

A3C [23] 23.52 6.34 16.32 3.36 9.65 3.74 6.00 2.46 13.87 3.97
GCN [36] 14.52 2.40 11.81 1.84 16.36 5.10 6.11 1.73 12.20 2.77

Spatial Context [9] 37.03 12.38 49.48 10.28 31.07 4.70 21.63 3.82 34.80 7.80
ANA 57.09 16.40 55.56 13.88 54.42 12.22 32.32 8.02 49.85 12.63

Table 1: Comparison between our model and state-of-the-art in unseen environments with
known (top) and unknown (bottom) semantics. Results are averaged across 5 runs.

Living Room Bathroom Kitchen Bedroom Average
SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%) SR (%) SPL (%)

Known Semantics

Baseline 45.23 16.27 59.20 22.89 60.20 22.52 40.60 13.57 51.31 18.84
Baseline w/o spatial masks 43.24 15.22 67.80 21.21 68.87 24.16 35.95 11.02 53.97 17.91

Baseline w/ attention 44.99 15.19 62.27 21.10 63.18 20.54 45.62 14.50 54.02 17.83
Baseline w/ coupling 46.80 14.87 65.60 20.72 66.00 21.90 44.40 14.15 55.70 17.91
ANA (full method) 58.16 20.61 68.08 25.07 75.36 28.72 48.64 16.58 62.56 22.75

Unknown Semantics

Baseline 37.03 12.38 49.48 10.28 31.07 4.70 21.63 3.82 34.80 7.80
Baseline w/o spatial masks 43.39 11.30 38.36 12.72 31.79 8.40 33.04 6.78 36.64 9.80

Baseline w/ attention 38.52 10.16 43.44 12.92 48.08 10.52 40.29 10.90 42.58 11.12
Baseline w/ coupling 32.27 9.26 28.76 9.62 39.52 9.72 33.88 9.70 33.61 9.58
ANA (full method) 57.09 16.40 55.56 13.88 54.42 12.22 32.32 8.02 49.85 12.63

Table 2: Comparison between our method and different baselines in unseen environments
with known (top) and unknown (bottom) semantics. Results are averaged across 5 runs.

4.2 Results

Comparison with the state-of-the-art. We compare our method with the following state-of-
the-art: A3C [23] is a strong baseline for object navigation, SAVN [34] uses meta-learning
to enhance model generalizability, GCN [36] and Spatial Context [9] (our Baseline) take
advantage of prior knowledge about object relationship, GVE [24] incorporates both meta-
learning and prior knowledge. According to Table 1, our attention-driven navigation agent
(ANA) significantly improves the navigation performance across various environments. In
environments with known semantics (top panel), our method outperforms the previous best-
performing state-of-the-art (Spatial Context) by 11.2% and 3.9% of absolute gain in average
successful rate and SPL. For the more challenging setting with unknown semantics (bottom
panel), it leads to even larger improvements in successful rate (15.1%) and SPL (4.8%).

Comparison with the baselines. To evaluate the effectiveness of the proposed com-
ponents in our method, we further conduct experiments on various baselines of the model.
Baseline w/o spatial masks incorporates conventional soft attention with the Spatial Con-
text [9] baseline to selectively aggregates visual features, without integrating perception and
action with the proposed spatial masks. Baseline w/ attention includes the proposed at-
tention mechanism but without mapping attention distribution to the action space. Baseline
w/ coupling couples attention with action, but replaces the proposed attention with conven-
tional attention. As shown in Table 2, without considering the perception-action integration
and visual variance, introducing conventional attention to the Baseline fails to provide a
visible improvement. On the contrary, our full method achieves a significant boost of per-
formance over the Baseline, and also considerably outperforms baselines with one proposed
components (i.e., attention and coupling). The results demonstrates the advantages and the
integral design of the proposed method. It is also noteworthy that the proposed attention
alone improves performance dramatically with unknown semantics, showing its effective-

Citation
Citation
{Mnih, Badia, Mirza, Graves, Harley, Lillicrap, Silver, and Kavukcuoglu} 2016

Citation
Citation
{Yang, Wang, Farhadi, Gupta, and Mottaghi} 2019

Citation
Citation
{Wortsman, Ehsani, Rastegari, Farhadi, and Mottaghi} 2019

Citation
Citation
{Moghaddam, Qiprotect unhbox voidb@x protect penalty @M  {}Wu, and Shi} 2021

Citation
Citation
{Druon, Yoshiyasu, Kanezaki, and Watt} 2020

Citation
Citation
{Mnih, Badia, Mirza, Graves, Harley, Lillicrap, Silver, and Kavukcuoglu} 2016

Citation
Citation
{Yang, Wang, Farhadi, Gupta, and Mottaghi} 2019

Citation
Citation
{Druon, Yoshiyasu, Kanezaki, and Watt} 2020

Citation
Citation
{Mnih, Badia, Mirza, Graves, Harley, Lillicrap, Silver, and Kavukcuoglu} 2016

Citation
Citation
{Wortsman, Ehsani, Rastegari, Farhadi, and Mottaghi} 2019

Citation
Citation
{Yang, Wang, Farhadi, Gupta, and Mottaghi} 2019

Citation
Citation
{Druon, Yoshiyasu, Kanezaki, and Watt} 2020

Citation
Citation
{Moghaddam, Qiprotect unhbox voidb@x protect penalty @M  {}Wu, and Shi} 2021

Citation
Citation
{Druon, Yoshiyasu, Kanezaki, and Watt} 2020



8 CHEN AND ZHAO: ATTENTION TO ACTION

Move Ahead Rotate Right Rotate LeftMove Back Move Right Move Left Look Up Look Down

Baseline w/
proposed
attention

ANA

Baseline w/
proposed
coupling 

Figure 3: Attention patterns for different candidate actions. Conventional attention for fea-
ture aggregation (1st rows) does not have distinct patterns for different actions, while our
attention as the intermediate state (2nd row) correlates with the directions of actions. Further
coupling attention with action (3rd row) learns more discriminative attention patterns.

ness in distilling useful information to address visual variance, which has been a challenge
with unknown semantics. Coupling the proposed attention with action leads to further im-
provements in both settings.

4.3 Where Do Embodied Agents Look While Navigating to Objects?
A distinct property of the proposed method compared to previous object navigation methods
[6, 9, 23, 24, 34, 36] is that it provides an interpretable interface to study the relationship
between perception and action. In this section, we report a more in-depth analysis to under-
stand how perception is correlated with action, and where do agents look while navigating.
Specifically, we consider three methods (i.e., Baseline w/ proposed coupling, Baseline w/
proposed attention, and ANA), and compare their average attention patterns among different
candidate actions. Three key observations can be drawn from the experimental results:

Feature aggregation based attention is not directly correlated with action. Conven-
tional feature aggregation based attention focuses on the role of attention in perception, and
pays little attention to its correlation with action. As shown in the 1st row of Figure 3, there
is no obvious attention pattern for most of the candidate actions (e.g., Move Back and Rotate
Left). The observation supports our results in Table 2, which shows that coupling conven-
tional attention with action (i.e., Baseline w/ proposed coupling) does not bring reasonable
improvements as they are not directly correlated.

Attention as an intermediate state is correlated with action. Unlike the conventional
attention, our new attention, as an intermediate state connecting visual observations and ac-
tion, shows that clear patterns associated with different actions. According to the 2nd row of
Figure 3, when performing actions towards the right direction (i.e., Move Right and Rotate
Right), the agent naturally pays focused attention to the right side. Similarly, when adjust-
ing the camera view (i.e., Look Up and Look Down), it concentrates on the corresponding
directions to indicate the pursuit of additional information. The observation validates the
effectiveness of our new attention in bridging perception and action.

Coupling attention with action learns discriminative attention. The aforementioned
observations validate the advantages of leveraging our attention to close the gap between
perception and action, and suggest the potential benefits of explicitly modeling their relation-
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Similarity (SIM)
Conventional Attention 0.023

Living Room 0.312
Bathroom 0.324
Kitchen 0.341

Bedroom 0.305
Obstacle-free 0.337
w/ obstacles 0.306

Table 3: Alignment scores (SIM) be-
tween attention and spatial masks.

Known Semantics Unknown Semantics
SR (%) SPL (%) SR (%) SPL (%)

Random-Uniform 54.81 18.62 48.31 10.46
Random-He 54.95 18.92 49.04 10.33

Fixed Mapping 61.04 20.30 49.60 11.35
Dynamic Mapping 57.94 18.55 42.07 10.97

ANA 62.56 22.75 49.85 12.63
Table 4: Comparison between different spatial
masks.

ship. Following the inspiration, our full method ANA explicitly couples attention with action
for a joint optimization. According to the 3rd row of Figure 3, it learns more discriminative
patterns of attention, which also leads to significantly improved navigation performance. For
several actions that previously do not have a clear attention pattern (e.g., Move Left) or have
attention patterns not fully distinguishable from the others (e.g., Rotate Right), our method
correlates the attention with their moving directions.

4.4 What are the Keys for Integrating Perception and Action?
Analyses in Section 4.3 show that our method tightly couples attention and action, resulting
in discriminative attention patterns and enhanced navigation performance. In this subsection,
we perform experiments to study its key factors for integrating perception and action:

Cooperation of attention, action and context. Our method explicitly models the rela-
tionship between attention and action through trainable spatial masks, and determines action
by considering the alignment between attention distribution αt (see Equation 3) and the spa-
tial masks M. To complement the qualitative results in Figure 3, we adopt the Similarity
(SIM) score [4] widely used in attention evaluation, and quantitatively measure the align-
ment between attention distribution and the spatial mask for action performed at each time
step. The higher SIM score, the more likely the agent will look at the moving direction of
the corresponding action, thus tighter collaboration between perception and action. Results
reported in Table 3 show that our method maintains reasonable SIM scores across different
settings, as opposed to the Baseline w/ proposed coupling whose attention (Conventional
Attention) is not directly related to action. The observation demonstrates the effectiveness
of our method on modeling the relationship between attention and action. We further an-
alyze the SIM scores with respect to different environments, i.e., various room types, and
obstacle-free vs. w/ obstacles, which suggests that the attention-action relationship can be
environment-dependent, and taking into account the contextual information (i.e., Actc

t in
Equation 4) helps navigation through diverse environments.

Prior knowledge and refinement of relationship. Results in Table 3 show various
degrees of alignment between attention and spatial masks. To study the effectiveness of
different choices of spatial masks, we compare the proposed method with four alternatives:
(1) Randomly initializing the masks with an uniform distribution between 0 and 1 (Random-
Uniform); (2) Initializing with method proposed in [14] (Random-He); (3) Utilizing fixed
masks to align attention with directions of action (Fixed Mapping); and (4) Dynamically
determining the spatial masks (Dynamic Mapping, see supplementary materials for details).

As reported in Table 4, Fixed Mapping significantly outperforms its counterparts with
randomly initialized masks, suggesting value with the prior knowledge used for initializ-
ing the masks. Dynamic Mapping considers the influences of environments, and achieves
slightly better Successful Rate with known semantics than random initialization. The perfor-
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mance, however, does not increase in environments with unknown semantics, as the learned
attention-action relationship from the training data may not generalize with the absence of
prior knowledge. Unlike the compared methods, our full method achieves the best per-
formance by utilizing prior knowledge to establish initial attention-action relationship, and
further refining it through interacting with various environments.

5 Conclusion
We introduce ANA, an object navigation method that leverages a novel attention mecha-
nism to integrate perception and action. Unlike existing methods that utilize attention for
feature aggregation, our method designs attention as the pursuit of visual information. It
distills useful information from visual observations into attention to overcome visual vari-
ance, and explicitly couples attention with action to enable a joint optimization of where to
look and where to move. Through extensive experiments, we demonstrate the advantages of
our method in navigating across various scenarios. Additionally, our analyses highlight the
role of attention in object navigation and the key components for integrating perception and
action. We hope that this work will be helpful for future development of attention methods
for embodied vision, and inspire analyses of the decision-making process.
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